Comparative Analysis between Different Commonly used Lateral Load Resisting Systems in Reinforced Concrete Buildings

Authors

  • Owais Rasool

Keywords:

SAP2000, pushover analysis, base shear, lateral displacement, storey drifts

Abstract

The concept of tall structures is not new to the world yet the trend of high-rise construction started in the nineteenth century High-rise or multi-storey buildings are being constructed either to cater for a growing population or as a landmark to boost a country s name and get recognition Any structure to be reliable and durable must be designed to withstand gravity wind earthquakes equipment and snow loads to be able to resist high or low temperatures and to assimilate vibrations and absorb noises This has brought more challenges for the engineers to cater both gravity loads as well as lateral loads Earlier buildings were designed for the gravity loads but now because of height and seismic zone the engineers have taken care of lateral loads due to earthquake and wind forces Seismic zone plays an important role in the earthquake resistant design of building structures because the zone factor changes as the seismic intensity changes from low to very severe In present research we have used square grid of 12m in each direction of 4m bay in each direction in seismic zone 5 Software used is Staad proV8i select series 5 and the work has been carried out for the different cases with lateral load resisting systems like Shear wall Bracing Moment Resisting Frames and check their efficiency by comparing nodal displacements relative displacement of beams maximum moments and shear forces in beams and thereby predicting their efficiency

How to Cite

Owais Rasool. (2016). Comparative Analysis between Different Commonly used Lateral Load Resisting Systems in Reinforced Concrete Buildings. Global Journals of Research in Engineering, 16(E1), 47–53. Retrieved from https://engineeringresearch.org/index.php/GJRE/article/view/1416

Comparative Analysis between Different Commonly used Lateral Load Resisting Systems in Reinforced Concrete Buildings

Published

2016-01-15