# I. Introduction a) Structural Systems n the earliest structures at the beginning of the 20th century, structural members were assumed to carry primarily the gravity loads. Today, however, by the advances in structural design/systems and highstrength materials, building height is increased, which necessitates taking into consideration mainly the lateral loads such as wind and earthquake. Understandably, especially for the tall buildings, as the slenderness, and so the flexibility increases, buildings suffer from the lateral loads resulting from wind and earthquake more and more. As a general rule, when other things being equal, the taller the building, the more necessary it is to identify the proper structural system for resisting the lateral loads. Currently, there are many structural systems that can be used for the lateral resistance of tall buildings [2,3]. Structural systems of tall buildings can be divided into two broad categories: interior structures and exterior structures. This classification is based on the distribution of the components of the primary lateral load-resisting system over the building. # b) Shear Wall Structure Shear Wall-Frame Systems (Dual Systems), The system consists of reinforced concrete frames interacting with reinforced concrete shear walls are adequate for resisting both the vertical and the horizontal loads acting on them. # c) Necessity of Shear Walls Shear wall system has two distinct advantages over a frame system. ? It provides adequate strength to resist large lateral loads with-out excessive additional cost. ? It provides adequate stiffness to resist lateral displacements to permissible limits, thus reducing risk of non-structural damage. # d) Seismic Load The seismic weight of building is the sum of seismic weight of all the floors [8]. The seismic weight of each floor is its full dead load plus appropriate amount of imposed load, the latter being that part of the imposed loads that may reasonably be expected to be attached to the structure at the time of earthquake shaking. Earthquake forces experienced by a building result from ground motions (accelerations) which are also fluctuating or dynamic in nature, in fact they reverse direction somewhat chaotically [2,3]. In theory and practice, the lateral force that a building experiences from an earthquake increases in direct proportion with the acceleration of ground motion at the building site and the mass of the building. As the ground accelerates back and forth during an earthquake it imparts backand-forth (cyclic) forces to a building through its foundation which is forced to move with the ground [1]. # e) Geo-Technical Consideration The seismic motion that reaches a structure on the surface of the earth is influenced by local soil conditions. The subsurface soil layers underlying the building foundation may amplify the response of the building to earthquake motions originating in the bedrock. # Bearing Capacity of Foundation Soil Three soil types are considered here: I. Hard -Those soils, which have an allowable bearing capacity of more than 10t/m2. II. Medium -Those soils, which have an allowable bearing capacity less than or equal to 10t/m2. III. Soft -Those soils, which are liable to large differential settlement or liquefaction during an earthquake. The allowable bearing pressure shall be determined in accordance with IS: 1888-1982 load test (Revision 1992). a) To understand and evaluation building structures and aims to the effect of Seismic load on column Forces in Different Type of RC Shear Walls in Concrete Frame Structures under Different Type of Soil Condition with seismic loading. b) Modeling a G+29 story high building for five different cases [9][10][11]. c) Analyzing the building dynamic analysis using linear, i.e. Response Spectrum Analysis [1][2][3]. d) Analyzing the results and arriving at conclusions. # a) Dynamic Analysis Dynamic analysis may be executed to get the design seismic force, and its spread in different levels through the height of the building, and also various lateral load resisting element [1-2-3,8]. # b) Response Spectrum Method This method is executed to design spectrum, where as it is specified with a code for specific-site design can be used for a project site for the purposes of dynamic of steel and reinforce concrete buildings, the values of damping for building may be taken as 2 and 5 percent of the critical, respectively. response spectrum method is typically implemented in linear elastic procedures and also very much easier to use. This also called as or mode superposition method or model method, It also made on the idea of the superposition of responses given by the building through various modes of vibrations, each vibration modes is recorded as with its own particular deformed shape, with its own modal damping and its own frequency [7,8]. # a) Details of the Building A symmetrical building[15] of plan 38.5m X 35.5m located with location in high Seismic zone considered. Four bays of length 7.5m & one bays of length 8.5m along X -direction and four bays of length 7.5m & one bays of length 5.5m along Y -direction are provided. Shear is provided the center inner core of model building. Struct I: G+29 story'stall building with Plus shape RC shear wall at the center of structure. Struct II: G+29 story'stall building with Box shape RC shear wall at the center of structure. Struct III: G+29 story'stall building with C-shape RC shear wall at the center of structure. Struct IV: G+29 story'stall building with E-shape RC shear wall at the center of structure. Struct V: G+29 story'stall building with I-shape RC shear wall at the center of structure. # b) Load Combinations As per IS 1893 (Part 1): 2002 Clause no. 6.3.1.2, the following load cases have to be considered for analysis: "1.2 (DL + IL ± EL)" "1.5 (DL ± EL)" "EQXP&EQYP" Earthquake load must be considered for +X, -X, +Y and -Y Directions [5][6][7]. EQXP & EQYP in different type of soil conditions (soft, medium and hard) were considered, in this regard we compared all column forces in different type of soil condition of structures II, III, IV, V with structure I (plus shape shear wall), also compared forces in hard and medium soils with soft soil for all five structures. # a) Discussion on Results When a structure is subjected to earthquake, it responds by vibrating. An example force can be resolved into three mutually perpendicular directionstwo horizontal directions (X and Y directions) and the vertical direction (Z) [8]. This motion causes the structure to vibrate or shake in all three directions; the predominant direction of shaking is horizontal. All the structures are primarily designed for gravity loads-force equal to mass time's gravity in the vertical direction. Vertical acceleration should also be considered in structures with large spans those in which stability for design, or for overall stability analysis of structures. The basic intent of design theory for earthquake resistant structures is that buildings should be able to resist minor earthquakes without damage, resist moderate earthquakes without structural damage but with some non-structural damage. To avoid collapse during a major earthquake, Members must be ductile enough to absorb and dissipate energy by post elastic deformation. Redundancy in the structural system permits redistribution of internal forces in the event of the failure of key elements. When the primary element or system yields or fails, the lateral force can be redistributed to a secondary system to prevent progressive failure. When a structure is subjected to an earthquake excitation, it interacts with the foundation and the soil, and thus changes the motion of the ground [2,8]. This means that the movement of the whole ground-structure system is influenced by the type of soil as well as by the type of structure. Understanding of soil structure interaction will enable the designer to design structures that will behave better during an earthquake. From the above results and discussions, following conclusions can be drawn: ? The shear wall and it is position has a significant influenced on the time period, the time period is not influenced by the type of soil, in tall building with box shape Shear Walls is showing the low time period which shows a very significant performance. ? Shear is effected marginally by placing of the shear wall, grouping of shear wall and type of soil. The shear is increased by adding shear wall due to increase the seismic weight of the building. ? The Axial force and Moment in the column increases when the type of soil changes from hard to medium and medium to soft. Since the column moment increase as the soil type changes, soil structure interaction must be suitably considered while designing frames for seismic force. ? It is evident that the maximum column axial force is various with type of soil and placing of the shear wall. ? It is evident that the maximum column shear force in X-direction is influenced by the type of soil and placing of the shear wall. ? It is evident that the maximum column shear force in Y-direction has no influence on the type of soil and placing shear wall. ? It is evident that the maximum column torsion is same for all columns in a structure, but is influenced by the type of soil and placing shear wall. ? It is evident that the maximum column moment in Xdirection has no influence on the type of soil and placing shear wall. ? It is evident that the maximum column moment in Ydirection is influenced by the type of soil and placing of shear wall. ? It is evident that the results from1.2 (DL + IL ± EL) combination load is closed to the 1.5 (DL + EL) and there is no more difference between these combination load. ? Based on the analysis and discussion, shear wall are very much suitable for resisting earthquake induced lateral forces in multistoried structural systems when compared to multistoried structural systems whit out shear walls. They can be made to behave in a ductile manner by adopting proper detailing techniques. ? According to IS-1893:2002 the number of modes to be used in the analysis should be such that the total sum of modal masses of all modes considered is at least 90 percent of the total seismic mass. Here the maximum mass is for the tall building with box shape RC shear wall. ? ETABS is the robust software which is utilized foranalyzing any kind of multi building structures. 12![Figure 1: Plan of the Structure I](image-2.png "Figure 1 :Figure 2 :") 34![Figure 3: Plan of the Structure II](image-3.png "Figure 3 :Figure 4 :") 567![Figure 5: Plan of the Structure III](image-4.png "Figure 5 :Figure 6 :Figure 7 :") 8910![Figure 8: 3D view showing shear wall location for Structure IV](image-5.png "Figure 8 :Figure 9 :Figure 10 :") ![](image-6.png "") ![](image-7.png "") ![](image-8.png "") 1Column Axial Force, P in Soft SoilStruct IStruct IIStruct IIIStruct IVStruct VStory"Column""Unique -Name""Load Case-Combo""Station"m"P""P""P""P""P"1STC341.2(DL+LL+EQXP)0-24171.0618-24285.0493-24629.8602-24381.5444-24398.17731STC341.2(DL+LL+EQXP)1.45-24103.093-24217.0806-24561.8915-24313.5757-24330.20861STC341.2(DL+LL+EQXP)2.9-24035.1243-24149.1118-24493.9227-24245.6069-24262.23981STC341.2(DL+LL+EQYP)0-23630.6382-23276.1711-23447.6424-23345.1752-23441.16491STC341.2(DL+LL+EQYP)1.45-23562.6694-23208.2023-23379.6736-23277.2065-23373.19611STC341.2(DL+LL+EQYP)2.9-23494.7007-23140.2336-23311.7049-23209.2377-23305.2274Column Axial Force, P in Medium Soil1STC341.2(DL+LL+EQXP)0-24937.4993-25121.0698-25571.6279-25446.3503-25240.65141STC341.2(DL+LL+EQXP)1.45-24869.5305-25053.1011-25503.6591-25378.3816-25172.68261STC341.2(DL+LL+EQXP)2.9-24801.5618-24985.1323-25435.6904-25310.4128-25104.71391STC341.2(DL+LL+EQYP)0-24202.5232-23748.9954-23963.8116-23949.6572-23939.11441STC341.2(DL+LL+EQYP)1.45-24134.5545-23681.0267-23895.8428-23881.6884-23871.14561STC341.2(DL+LL+EQYP)2.9-24066.5857-23613.0579-23827.8741-23813.7197-23803.1769Column Axial Force, P in Hard Soil1STC341.2(DL+LL+EQXP)0-25597.4871-25840.9764-26382.5944-26235.5482-25966.11511STC341.2(DL+LL+EQXP)1.45-25529.5184-25773.0076-26314.6257-26167.5794-25898.14641STC341.2(DL+LL+EQXP)2.9-25461.5496-25705.0389-26246.6569-26099.6107-25830.17761STC341.2(DL+LL+EQYP)0-24694.9798-24156.1497-24408.2906-24397.697-24367.90431STC341.2(DL+LL+EQYP)1.45-24627.011-24088.181-24340.3219-24329.7283-24299.93551STC341.2(DL+LL+EQYP)2.9-24559.0423-24020.2122-24272.3531-24261.7595-24231.9668 2Moment, M for structures with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQYP), Allvalue in "kN-m"Column Moment, M in Soft SoilStruct IStruct IStruct IIStruct IIStruct IIIStruct IIIStruct IVStruct IVStruct VStruct VSto ryColu mnLoad bo Case/ComStati m on"M2""M3""M2""M3""M2""M3""M2""M3""M2""M3"1S TC341.2(DL+LL+ EQXP)0-244.01 18979.47 15-171.67 741061.1 112-251.86 411421.2 435-239.99 221271.7 973-249.77 58971.72 831S TC341.2(DL+LL+ EQXP)1.45-146.26 84805.69 93-84.416 8912.71 96-151.39 271219.8 181-142.18 61095.4 925-150.87 48826.99 061S TC341.2(DL+LL+ EQXP)2.9-48.525 1631.92 712.8438764.32 8-50.921 31018.3 927-44.379 9919.18 78-51.973 8682.25 291S TC341.2(DL+LL+ EQYP)01727.5 733-24.707 51026.4 07-134.63 531218.6 199-173.18 541153.6 344-157.40 431174.9 664-74.852 31S TC341.2(DL+LL+ EQYP)1.451393.6 416-70.519 4893.97 23-94.6281027.4 053-112.27 58974.88 51-107.00 72954.74 75-81.408 31S TC341.2(DL+LL+ EQYP)2.91059.7 1-116.33 13761.53 75-54.620 7836.19 07-51.366 3796.13 58-56.610 1734.52 87-87.964 4Column Moment, M in Medium Soil1S TC341.2(DL+LL+ EQXP)0-312.52 421329.5 266-216.791461.8 423-325.85 381958.0 803-325.92 71862.7 469-322.56 991328.7 5431S TC341.2(DL+LL+ EQXP)1.45-197.67 081112.7 719-115.99 391264.1 942-207.08 21683.6 228-206.75 271610.8 77-205.97 961142.9 0811S TC341.2(DL+LL+ EQXP)2.9-82.817 5896.01 72-15.197 81066.5 461-88.310 21409.1 652-87.578 51359.0 072-89.389 3957.06 191S TC341.2(DL+LL+ EQYP)02368.8 316-36.156 81412.6 049-164.37 291674.0 045-210.34 291686.2 828-200.78 171615.0 795-94.595 21S TC341.2(DL+LL+ EQYP)1.451896.6 069-78.885 51214.6 153-105.79 851396.0 833-128.02 51406.1 652-125.34 181297.6 668-92.514 41S TC341.2(DL+LL+ EQYP)2.91424.3 822-121.61 421016.6 256-47.224 21118.1 621-45.7071126.0 477-49.901 9980.25 41-90.433 6Column Moment, M in Hard Soil1S TC341.2(DL+LL+ EQXP)0-371.52 091630.9 629-255.63 691806.9 164-389.56 712420.3 565-389.65 262300.9 465-385.25 371636.1 9351S TC341.2(DL+LL+ EQXP)1.45-241.93 41377.1 956-143.18 531566.8 529-255.03 672083.0 102-254.63 21993.0 377-253.43 11414.9 4821S TC341.2(DL+LL+ EQXP)2.9-112.34 711123.4 282-30.733 61326.7 894-120.50 621745.6 638-119.61 131685.1 289-121.60 821193.7 031S TC341.2(DL+LL+ EQYP)02921.0 262-46.015 91745.1 642-189.98 022066.1 412-242.33 972081.2 226-232.94 531994.0 659-111.59 611S TC341.2(DL+LL+ EQYP)1.452329.7 158-86.089 71490.7 245-115.41 761713.5 56-141.58 671725.9 364-138.93 691592.9 584-102.07 81S TC341.2(DL+LL+ EQYP)2.91738.4 055-126.16 341236.2 848-40.8551360.9 708-40.833 81370.6 502-44.928 5 3Shear, V for structures with the load combination 1.2 (DL+LL+EQXP) & 1.2 (DL+LL+EQYP), Allvalue in "KN"Column Shear, V in Soft SoilStruct IStruct IStruct IIStruct IIStruct IIIStruct IIIStruct IVStruct IVStruct VStruct VSto ryColu mnUniq ue NameLoad Case/Comb oStati on m"V2""V3""V2""V3""V2""V3""V2""V3""V2""V3"1ST C341.2(DL+LL+ EQXP)0119.8 429-67.40 92102.3 39-60.17 98138.9 141-69.29 06121.5 895-67.45 2599.81 91-68.20 761ST C341.2(DL+LL+ EQXP)1.45119.8 429-67.40 92102.3 39-60.17 98138.9 141-69.29 06121.5 895-67.45 2599.81 91-68.20 761ST C341.2(DL+LL+ EQXP)2.9119.8 429-67.40 92102.3 39-60.17 98138.9 141-69.29 06121.5 895-67.45 2599.81 91-68.20 761ST C341.2(DL+LL+ EQYP)031.59 44230.2 977-27.59 1291.33 43-42.00 66131.8 722-34.75 66123.2 7544.521 4151.8 7511ST C341.2(DL+LL+ EQYP)1.4531.59 44230.2 977-27.59 1291.33 43-42.00 66131.8 722-34.75 66123.2 7544.521 4151.8 7511ST C341.2(DL+LL+ EQYP)2.931.59 44230.2 977-27.59 1291.33 43-42.00 66131.8 722-34.75 66123.2 7544.521 4151.8 751Column Shear, V in Medium Soil1ST C341.2(DL+LL+ EQXP)0149.4 86-79.20 92136.3 091-69.51 45189.2 811-81.91 16173.7 034-82.18 92128.1 698-80.40 711ST C341.2(DL+LL+ EQXP)1.45149.4 86-79.20 92136.3 091-69.51 45189.2 811-81.91 16173.7 034-82.18 92128.1 698-80.40 711ST C341.2(DL+LL+ EQXP)2.9149.4 86-79.20 92136.3 091-69.51 45189.2 811-81.91 16173.7 034-82.18 92128.1 698-80.40 711ST C341.2(DL+LL+ EQYP)029.46 81325.6 722-40.39 61136.5 446-56.77 1191.6 698-52.02 75193.1 845-1.435218.9 0531ST C341.2(DL+LL+ EQYP)1.4529.46 81325.6 722-40.39 61136.5 446-56.77 1191.6 698-52.02 75193.1 845-1.435218.9 0531ST C341.2(DL+LL+ EQYP)2.929.46 81325.6 722-40.39 61136.5 446-56.77 1191.6 698-52.02 75193.1 845-1.435218.9 053Column Shear, V in Hard Soil1ST C341.2(DL+LL+ EQXP)0175.0 12-89.37 03165.5 61-77.55 28232.6 527-92.77 96212.3 509-93.11 77152.5 829-90.91 221ST C341.2(DL+LL+ EQXP)1.45175.0 12-89.37 03165.5 61-77.55 28232.6 527-92.77 96212.3 509-93.11 77152.5 829-90.91 221ST C341.2(DL+LL+ EQXP)2.9175.0 12-89.37 03165.5 61-77.55 28232.6 527-92.77 96212.3 509-93.11 77152.5 829-90.91 221ST C341.2(DL+LL+ EQYP)027.63 71407.8 002-51.42 25175.4 757-69.48 48243.1 622-64.83 34245.0 25-6.564 2276.6 2581ST C341.2(DL+LL+ EQYP)1.4527.63 71407.8 002-51.42 25175.4 757-69.48 48243.1 622-64.83 34245.0 25-6.564 2276.6 2581ST C341.2(DL+LL+ EQYP)2.927.63 71407.8 002-51.42 25175.4 757-69.48 48243.1 622-64.83 34245.0 25-6.564 2276.6 258 © 2023 Global Journ als Global Journal of Researches in Engineering ( ) E Volume Xx XIII Issue III V ersion I 4Column Torsion, T in Soft SoilStruct IStruct IIStruct IIIStruct IVStruct VStory"Column""Unique-Name""Load Case-Combo""Station"m"T""T""T""T""T"1STC34671.2(DL+LL+EQXP)0-41.6175-29.3334-44.901-42.3525-43.84361STC34671.2(DL+LL+EQXP)1.45-41.6175-29.3334-44.901-42.3525-43.84361STC34671.2(DL+LL+EQXP)2.9-41.6175-29.3334-44.901-42.3525-43.84361STC34671.2(DL+LL+EQYP)045.314531.952548.872446.137548.56381STC34671.2(DL+LL+EQYP)1.4545.314531.952548.872446.137548.56381STC34671.2(DL+LL+EQYP)2.945.314531.952548.872446.137548.5638Column Torsion, T in Medium Soil1STC34671.2(DL+LL+EQXP)0-56.5981-39.8539-61.0208-61.1008-59.5841STC34671.2(DL+LL+EQXP)1.45-56.5981-39.8539-61.0208-61.1008-59.5841STC34671.2(DL+LL+EQXP)2.9-56.5981-39.8539-61.0208-61.1008-59.5841STC34671.2(DL+LL+EQYP)061.629443.494966.511166.6666.091STC34671.2(DL+LL+EQYP)1.4561.629443.494966.511166.6666.091STC34671.2(DL+LL+EQYP)2.961.629443.494966.511166.6666.09Column Torsion, T in Hard Soil1STC34671.2(DL+LL+EQXP)0-69.4981-48.9132-74.9017-75.004-73.13831STC34671.2(DL+LL+EQXP)1.45-69.4981-48.9132-74.9017-75.004-73.13831STC34671.2(DL+LL+EQXP)2.9-69.4981-48.9132-74.9017-75.004-73.13831STC34671.2(DL+LL+EQYP)075.678453.434281.699981.878881.1821STC34671.2(DL+LL+EQYP)1.4575.678453.434281.699981.878881.1821STC34671.2(DL+LL+EQYP)2.975.678453.434281.699981.878881.182 5Year 202310Global Journal of Researches in Engineering"Story" 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1STColumn Axial Force, Pin Soft Soil "Column" "Unique-Name" "Load Case-Combo" C34 1.5(DL+EQXP) C34 1.5(DL+EQXP) C34 1.5(DL+EQXP) C34 1.5(DL+EQYP) C34 1.5(DL+EQYP) C34 1.5(DL+EQYP) C34 1.5(DL+EQXP) C34 1.5(DL+EQXP) C34 1.5(DL+EQXP) C34 1.5(DL+EQYP)Struct I "P" -25183.8699 -25098.9089 -25013.948 -24508.3404 -24423.3794 -24338.4185 Column Axial Force, P in Medium Soil Struct II "Station"m "P" 0 -25355.396 1.45 -25270.435 2.9 -25185.4741 0 -24094.2982 1.45 -24009.3372 2.9 -23924.3763 0 -26141.9168 -26400.4216 1.45 -26056.9558 -26315.4607 2.9 -25971.9949 -26230.4998 0 -25223.1967 -24685.3286Struct III "P" -25767.3656 -25682.4047 -25597.4437 -24289.5933 -24204.6324 -24119.6714 -26944.5752 -26859.6142 -26774.6533 -24934.8048Struct IV "P" -25468.0736 -25383.1127 -25298.1518 -24172.6121 -24087.6512 -24002.6903 -26799.081 -26714.1201 -26629.1591 -24928.2146Struct V "P" -25450.8356 -25365.8747 -25280.9137 -24254.57 -24169.6091 -24084.6481 -26503.9282 -26418.9672 -26334.0063 -24877.00691STC341.5(DL+EQYP)1.45-25138.2357-24600.3677-24849.8439-24843.2537-24792.0461STC341.5(DL+EQYP)2.9-25053.2748-24515.4068-24764.8829-24758.2927-24707.0851Column Axial Force, P in Hard Soil1STC341.5(DL+EQXP)0-26966.9016-27300.3048-27958.2834-27785.5783-27410.75781STC341.5(DL+EQXP)1.45-26881.9407-27215.3439-27873.3224-27700.6174-27325.79691STC341.5(DL+EQXP)2.9-26796.9797-27130.383-27788.3615-27615.6564-27240.8361STC341.5(DL+EQYP)0-25838.7674-25194.2715-25490.4036-25488.2644-25412.99431STC341.5(DL+EQYP)1.45-25753.8064-25109.3106-25405.4426-25403.3035-25328.03341STC341.5(DL+EQYP)2.9-25668.8455-25024.3496-25320.4817-25318.3425-25243.0724 Axial Force, P for structures with the load combination 1.5 (DL+EQXP) & 1.5 (DL+EQYP), All value in "kN" © 2023 Global Journ als ( ) E Volume Xx XIII Issue III V ersion I 6Column Moment, M in Soft SoilStruct IStruct IStruct IIStruct IIStruct IIIStruct IIIStruct IVStruct IVStruct VStruct V"Story""Column""Unique -Name""Load Combo" Case-"Station"m"M2""M3""M2""M3""M2""M3""M2""M3""M2""M3"1STC341.5(DL+ EQXP)0-300.97 131225.7 47-213.581343.4 34-313.8 2421800.2 079-298.97 711609.5 397-311.21 441219.4 6771STC341.5(DL+ EQXP)1.45-185.76 631027.6 976-111.24 831165.8 496-194.9 6931551.5 389-183.46 031395.0 708-194.32 031051.1 9821STC341.5(DL+ EQXP)2.9-70.561 4829.64 82-8.9167988.26 53-76.11 451302.8 699-67.943 61180.6 019-77.426 3882.92 881ST 1STC34 C341.5(DL+ EQYP) 1.5(DL+ EQYP)0 1.452163.5 101 1739.1 213-29.476 6 -67.575 71284.0 256 1111.7 38-151.24 91 -93.334 91524. 2808 1278. 5282-192.82 82 -113.57 851443.0 562 1212.8 786-176.96 23 -108.05 391469.7 135 1187.7 076-88.758 4 -84.300Year 20231ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1STC34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C341.5(DL+ EQYP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQYP) 1.5(DL+ EQYP) 1.5(DL+ EQYP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQYP) 1.5(DL+ EQYP) 1.5(DL+ EQYP)2.9 0 1.45 2.9 0 1.45 2.9 0 1.45 2.9 0 1.45 2.91314.7 324 Column Moment, M in Medium Soil -105.67 48 939.45 04 -35.420 6 -386.6 118 1663.3 159 -269.97 07 1844. 3479 -250.0 193 1411.5 384 -150.71 97 1605. 1929 -113.4 269 1159.7 609 -31.468 7 1366. 0378 2965. 0829 -43.788 3 1766.7 729 -188.4 211 2367. 8278 -78.033 4 1512.5 417 -107.2 981 1770. 5727 -112.27 85 1258.3 105 -26.17 5 Column Moment, M in Hard Soil -460.3 577 2040.1 114 -318.52 93 2275. 6905 -305.3 483 1742.0 68 -184.70 89 1983. 5162 -150.3 389 1444.0 245 -50.888 5 1691. 342 3655. 3261 -56.112 2 2182.4 72 -220.4 303 2909. 214 -87.038 6 1857.6 783 -119.3 219 2163. 1019 -117.96 5 1532.8 845 -18.21 351032. 7756 -406.31 13 -264.58 1 -122.85 06 2093.5 115 1739.3 757 1385.2 398 -485.95 3 -324.52 43 -163.09 56 2583.6 823 2136.2 165 1688.7 508-34.328 8 2471.2 54 2131.2 948 1791.3 356 -239.27 51 -133.26 49 -27.254 7 3049.0 992 2630.5 29 2211.9 588 -279.27 11 -150.21 71 -21.163 2982.70 11 -406.39 56 -264.16 87 -121.94 18 2108.8 666 1751.9 788 1395.0 909 -486.05 26 -324.01 77 -161.98 28 2602.5 414 2151.6 928 1700.8 441-39.145 4 2348.2 268 2039.3 015 1730.3 762 -231.18 4 -2 -30.760 1 2895.9 762 2517.0 023 2138.0 283 -271.38 85 -147.96 59 -24.543 4 130.97905.70 -402.20 7 -263.20 13 -124.19 57 2019.8 549 567 586 -480.56 17 -322.51 55 -164.46 93 2493.5 878 1985.4 712 1477.3 547 1212.8 1616.3 189 1665.7 503 1446.0 951 1226.4 4 -113.43 67 98.183 82.929 4 2050.0 492 1786.1 453 1522.2 413 -134.68 77 -110.13 75 -85.587 3 ---79.842Global Journal of Researches in Engineering E ( ) Volume Xx XIII Issue III V ersion I 11© 2023 Global Journ als 7Column Shear, V in Soft SoilStruct IStruct IStruct IIStruct IIStruct IIIStruct IIIStruct IVStruct IVStruct VStruct V"Story" "Column""Unique -Name""Load Combo" Case-"Station "m"V2""V3""V2""V3""V2""V3""V2""V3""V2""V3"1STC34671.5(DL+ EQXP)0136.58 58-79.45 17122.47 2-70.573 6171.49 59-81.968 9147.90 96-79.666 7116.04 79-80.61 661STC34671.5(DL+ EQXP)1.45136.58 58-79.45 17122.47 2-70.573 6171.49 59-81.968 9147.90 96-79.666 7116.04 79-80.61 661STC34671.5(DL+ EQXP)2.9136.58 58-79.45 17122.47 2-70.573 6171.49 59-81.968 9147.90 96-79.666 7116.04 79-80.61 66Year 20231ST 1STC34 C3467 671.5(DL+ EQYP) 1.5(DL+ EQYP)0 1.4526.275 2 26.275 2292.6 819 292.6 819-39.940 9 -39.940 9118.81 9 118.81 9-54.654 9 -54.654 9169.48 46 169.48 46-47.523 1 -47.523 1158.74 31 158.74 31-3.0742 -3.0742194.4 868 194.4 868Global Journal of Researches in Engineering E ( ) Volume Xx XIII Issue III V ersion I 121ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1STC34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C3467 67 67 67 67 67 67 67 67 67 67 67 671.5(DL+ EQYP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQYP) 1.5(DL+ EQYP) 1.5(DL+ EQYP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQXP) 1.5(DL+ EQYP) 1.5(DL+ EQYP) 1.5(DL+ EQYP)2.9 0 1.45 2.9 0 1.45 2.9 0 1.45 2.9 0 1.45 2.926.275 2 Column Shear, V in Medium Soil 292.6 819 -39.940 9 118.81 9 173.63 97 -94.201 7 164.93 45 -82.242 1 173.63 97 -94.201 7 164.93 45 -82.242 1 173.63 97 -94.201 7 164.93 45 -82.242 1 23.617 3 411.90 01 -55.946 9 175.33 19 23.617 3 411.90 01 -55.946 9 175.33 19 23.617 3 411.90 01 -55.946 9 175.33 19 Column Shear, V in Hard Soil 205.54 72 -106.90 31 201.49 95 -92.289 9 205.54 72 -106.90 31 201.49 95 -92.289 9 205.54 72 -106.90 31 201.49 95 -92.289 9 21.328 5 514.56 01 -69.729 9 223.99 57 21.328 5 514.56 01 -69.729 9 223.99 57 21.328 5 514.56 01 -69.729 9 223.99 57-54.654 9 234.45 46 234.45 46 234.45 46 -73.110 5 -73.110 5 -73.110 5 288.66 91 288.66 91 288.66 91 -89.002 7 -89.002 7 -89.002 7169.48 46 -97.745 1 -97.745 1 -97.745 1 244.23 16 244.23 16 244.23 16 -111.33 02 -111.33 02 -111.33 02 308.59 71 308.59 71 308.59 71-1 213.05 19 213.05 19 213.05 19 -69.111 7 -69.111 7 -69.111 7 261.36 13 261.36 13 261.36 13 -85.119 -85.119 -85.119 47.52331 -98.087 5 -98.087 5 -98.087 5 246.12 96 246.12 96 246.12 96 -111.74 82 -111.74 82 -111.74 82 310.93 01 310.93 01 310.93 01 158.743.0742 151.48 63 151.48 63 151.48 63 -10.519 7 -7 -10.519 7 182.00 27 182.00 27 182.00 27 -16.931 2 -16.931 2 -16.931 2 10.519 --95.86 6 -95.86 6 -95.86 6 278.2 746 746 746 -108.9 974 -108.9 974 -108.9 974 350.4 252 350.4 252 350.4 252 278.2 278.2 868 194.4© 2023 Global Journ als 8Column Torsion, T in Soft SoilStruct IStruct IIStruct IIIStruct IVStruct V"Story""Column""Unique-Name""Load Case-Combo""Station"m"T""T""T""T""T"1STC34671.5(DL+EQXP)0-52.0172-36.6355-56.0881-52.909-54.78711STC34671.5(DL+EQXP)1.45-52.0172-36.6355-56.0881-52.909-54.78711STC34671.5(DL+EQXP)2.9-52.0172-36.6355-56.0881-52.909-54.78711STC34671.5(DL+EQYP)056.647839.971861.128657.703560.72211STC34671.5(DL+EQYP)1.4556.647839.971861.128657.703560.72211STC34671.5(DL+EQYP)2.956.647839.971861.128657.703560.7221Column Torsion, T in Medium Soil1STC34671.5(DL+EQXP)0-70.743-49.7861-76.2378-76.3444-74.46261STC34671.5(DL+EQXP)1.45-70.743-49.7861-76.2378-76.3444-74.46261STC34671.5(DL+EQXP)2.9-70.743-49.7861-76.2378-76.3444-74.46261STC34671.5(DL+EQYP)077.041454.399983.176983.356682.62991STC34671.5(DL+EQYP)1.4577.041454.399983.176983.356682.62991STC34671.5(DL+EQYP)2.977.041454.399983.176983.356682.6299Column Torsion, T in Hard Soil1STC34671.5(DL+EQXP)0-86.8679-61.1102-93.589-93.7234-91.40551STC34671.5(DL+EQXP)1.45-86.8679-61.1102-93.589-93.7234-91.40551STC34671.5(DL+EQXP)2.9-86.8679-61.1102-93.589-93.7234-91.40551STC34671.5(DL+EQYP)094.602666.824102.1629102.3801101.49491STC34671.5(DL+EQYP)1.4594.602666.824102.1629102.3801101.49491STC34671.5(DL+EQYP)2.994.602666.824102.1629102.3801101.4949 9Year 202313Volume Xx XIII Issue III V ersion I( ) E"Story" 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1STColumn Axial Force, P in Soft Soil "Column" "Unique-Name" "Load Case-Combo" C34 EQXP C34 EQXP C34 EQXP C34 EQYP C34 EQYP C34 EQYP C34 EQXP C34 EQXP C34 EQXP C34 EQYP C34 EQYPStruct I "P" -1774.1609 -1774.1609 -1774.1609 -1323.8079 -1323.8079 -1323.8079 Column Axial Force, P in Medium Soil Struct II "Station"m "P" 0 -1935.2327 1.45 -1935.2327 2.9 -1935.2327 0 -1094.5008 1.45 -1094.5008 2.9 -1094.5008 0 -2412.8589 -2631.9165 1.45 -2412.8589 -2631.9165 2.9 -2412.8589 -2631.9165 0 -1800.3788 -1488.5211 1.45 -1800.3788 -1488.5211Struct III "P" -2180.0176 -2180.0176 -2180.0176 -1194.8361 -1194.8361 -1194.8361 -2964.824 -2964.824 -2964.824 -1624.9771 -1624.9771Struct IV "P" -1997.9011 -1997.9011 -1997.9011 -1134.2601 -1134.2601 -1134.2601 -2885.2394 -2885.2394 -2885.2394 -1637.9951 -1637.9951Struct V "P" -1950.1714 -1950.1714 -1950.1714 -1152.661 -1152.661 -1152.661 -2652.2331 -2652.2331 -2652.2331 -1567.6189 -1567.6189Global Journal of Researches in Engineering1STC34EQYP2.9-1800.3788-1488.5211-1624.9771-1637.9951-1567.6189Column Axial Force, P in Hard Soil1STC34EQXP0-2962.8488-3231.8386-3640.6295-3542.9042-3256.78621STC34EQXP1.45-2962.8488-3231.8386-3640.6295-3542.9042-3256.78621STC34EQXP2.9-2962.8488-3231.8386-3640.6295-3542.9042-3256.78621STC34EQYP0-2210.7593-1827.8164-1995.3763-2011.3616-1924.94381STC34EQYP1.45-2210.7593-1827.8164-1995.3763-2011.3616-1924.94381STC34EQYP2.9-2210.7593-1827.8164-1995.3763-2011.3616-1924.9438© 2023 Global Journ als 10Column Moment, M in Soft SoilStruct IStruct IStruct IIStruct IIStruct IIIStruct IIIStruct IVStruct IVStruct VStruc t V"Stor y""Column""Unique-Name""Load Case-Combo""Station"m"M2""M3""M2""M3""M2""M3""M2""M3""M2""M3"1STC34EQXP0-158.5935810.312 8-104.427 2927.618 4-171.27 251242.67 79-161.3631109. 5618-168.5 048826.4 4921STC34EQXP1.45-118.987710.816 2-73.0951813.598 6-128.91 041073.62 19-121.236 7967.6 594-127.5 574731.2 9061STC34EQXP2.9-79.3805611.319 7-41.763699.578 8-86.548 4904.566-81.1104825.7 569-86.60 99636.1 319Year 20231ST 1STC34 C34EQYP EQYP0 1.451484.394 1 1164.271 4-26.503 -19.366893.976 6 742.229 1-68.837 -25.85781054.1 309 853.42 12-86.0128 -36.4563999.992 5 809.655 9-81.43 95 -34.42 381018. 7804 793.7 946-45.70 12 -25.70 85Global Journal of Researches in Engineering E ( ) Volume Xx XIII Issue III V ersion I 141ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1STC34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34EQYP EQXP EQXP EQXP EQYP EQYP EQYP EQXP EQXP EQXP EQYP EQYP EQYP2.9 0 1.45 2.9 0 1.45 2.9 0 1.45 2.9 0 1.45 2.9844.1487 -215.6871 -161.8223 -107.9575 2018.776 1583.409 1 1148.042 2 -264.8511 -198.7083 -132.5655 2478.938 1 1944.333 2 1409.728 3-12.229 Column Moment, M in Medium Soil 590.481 7 17.1215 1102.02 54 -142.020 9 1261.56 1 966.710 1 -99.4093 1106.49 41 831.394 8 -56.7977 951.427 1 -36.0441 1215.80 81 -93.6183 -26.3378 1009.43 16 -35.1666 -16.6314 803.055 1 23.2852 Column Moment, M in Hard Soil 1353.22 23 -174.393 4 1549.12 27 1187.06 31 -122.068 8 1358.70 96 1020.90 39 -69.7443 1168.29 65 -44.26 1492.94 09 -114.957 8 -32.3412 1239.52 26 -43.1825 -20.4224 986.104 4 28.5929652.71 16 -232.93 06 -175.31 82 -117.70 58 1433.6 18 1160.6 529 887.68 78 -286.02 51 -215.28 04 -144.53 58 1760.3 985 1425.2 135 1090.0 28413.1002 1690.04 19 1460.12 58 1230.20 98 -116.977 5 -49.5806 17.8162 2075.27 21 1792.94 86 1510.62 52 -143.641 4 -60.8821 21.8773619.319 3 -232.975 4 -175.042 3 -117.109 3 1443.86 61 1169.05 6 894.245 9 -286.08 -214.941 7 -143.803 3 1772.98 27 1435.53 2 1098.08 1312.59 2 1602.0 199 1397.1 465 1192.2 73 -117.58 73 -49.702 5 2 1967.1 862 1715.6 137 1464.0 411 -144.39 03 -61.031 8 22.326 7 18.182568.8 -229.16 66 -173.47 8 -117.78 95 1385.5 413 1079.5 773.58 -281.40 31 -213.02 08 -144.63 86 1701.3 633 1325.6 37 949.91 07 607 0881123 .971 994. 5552 865. 1394 -62.1 537 636 35 1380 .170 2 1221 .255 3 1062 .340 3 -76.3 21 -42.9 332 -9.54 54 7.77 --34.9 8 -5.715© 2023 Global Journ als 11Column Shear, V in Soft SoilStruct IStruct IStruct IIStruct IIStruct IIIStruct IIIStruct IVStruct IVStruct VStruct V"Story""Unique -Name""V2""V3""V2""V3""V2""V3""V2""V3""V2""V3"1STC3467EQXP068.6183-27.314878.6344-21.6083116.590 3-29.215297.8638-27.673365.62 67-28.23961STC3467EQXP1.4568.6183-27.314878.6344-21.6083116.590 3-29.215297.8638-27.673365.62 67-28.23961STC3467EQXP2.968.6183-27.314878.6344-21.6083116.590 3-29.215297.8638-27.673365.62 67-28.23961STC3467EQYP0-4.9221220.774 3-29.6409104.653 4-34.1769138.420 4-32.4246131.2666-13.78 81155.162 61STC3467EQYP1.45-4.9221220.774 3-29.6409104.653 4-34.1769138.420 4-32.4246131.2666-13.78 81155.162 61STC3467EQYP2.9-4.9221220.774 3-29.6409104.653 4-34.1769138.420 4-32.4246131.2666-13.78 81155.162 6Column Shear, V in Medium Soil1STC3467EQXP093.3209-37.1481106.942 7-29.3873158.562 8-39.7327141.292-39.953889.2523-38.40591STC3467EQXP1.4593.3209-37.1481106.942 7-29.3873158.562 8-39.7327141.292-39.953889.2523-38.40591STC3467EQXP2.993.3209-37.1481106.942 7-29.3873158.562 8-39.7327141.292-39.953889.2523-38.40591STC3467EQYP0-6.694300.253-40.3116142.328 6-46.4806188.251 8-46.8171189.524 2-18.7518211.021 21STC3467EQYP1.45-6.694300.253-40.3116142.328 6-46.4806188.251 8-46.8171189.524 2-18.7518211.021 21STC3467EQYP2.9-6.694300.253-40.3116142.328 6-46.4806188.251 8-46.8171189.524 2-18.7518211.021 2Column Shear, V in Hard Soil1STC3467EQXP0114.592 6-45.6157131.319 4-36.0859194.705 8-48.7894173.498 3-49.0609109.596 5-47.16021STC3467EQXP1.45114.592 6-45.6157131.319 4-36.0859194.705 8-48.7894173.498 3-49.0609109.596 5-47.16021STC3467EQXP2.9114.592 6-45.6157131.319 4-36.0859194.705 8-48.7894173.498 3-49.0609109.596 5-47.16021STC3467EQYP0-8.2199368.693-49.5002174.771 2-57.0754231.162 1-57.4886232.724 6-23.0261259.121 61STC3467EQYP1.45-8.2199368.693-49.5002174.771 2-57.0754231.162 1-57.4886232.724 6-23.0261259.121 61STC3467EQYP2.9-8.2199368.693-49.5002174.771 2-57.0754231.162 1-57.4886232.724 6-23.0261259.121 6 12"Load"Column"Case-"Station"mCombo"Year 202315Volume Xx XIII Issue III V ersion I( ) E"Story" 1ST 1ST 1ST 1ST 1ST 1ST 1ST 1ST"Column" C34 C34 C34 C34 C34 C34 C34 C34Column Torsion, T in Soft Soil "Unique-Name" "Load Case-Combo" EQXP EQXP EQXP EQYP EQYP EQYP EQXP EQXPStruct I "T" -34.6774 -34.6774 -34.6774 37.766 37.766 37.766 Column Torsion, T in Medium Soil Struct II "Station"m "T" 0 -24.353 1.45 -24.353 2.9 -24.353 0 26.7186 1.45 26.7186 2.9 26.7186 0 -47.1612 -33.12 1.45 -47.1612 -33.12Struct III "T" -37.3143 -37.3143 -37.3143 40.8301 40.8301 40.8301 -50.7475 -50.7475Struct IV "T" -35.2051 -35.2051 -35.2051 38.5365 38.5365 38.5365 -50.8287 -50.8287Struct V "T" -36.4362 -36.4362 -36.4362 40.5699 40.5699 40.5699 -49.5533 -49.5533Global Journal of Researches in Engineering1STC34EQXP2.9-47.1612-33.12-50.7475-50.8287-49.55331STC34EQYP051.361736.337355.52955.638655.17511STC34EQYP1.4551.361736.337355.52955.638655.17511STC34EQYP2.951.361736.337355.52955.638655.1751Column Torsion, T in Hard Soil1STC34EQXP0-57.9112-40.6695-62.315-62.4147-60.84851STC34EQXP1.45-57.9112-40.6695-62.315-62.4147-60.84851STC34EQXP2.9-57.9112-40.6695-62.315-62.4147-60.8485© 2023 Global Journ als 13Modal Load Participation RatiosStruct IStruct IStruct IIStruct IIStruct IIIStruct IIIStruct IVStruct IVStruct VStruct V"Case""Item Type""Item""Static""Dynamic""Static""Dynamic"Static""Dynamic""Static""Dynamic""Static""Dynamic"%%%%%%%%%%ModalAccelerationUX99.8286.7199.9994.799.9894.5999.9994.5499.9791.54ModalAccelerationUY99.7987.4699.9891.4699.9791.8599.9791.8399.9792.51ModalAccelerationUZ0000000000 Graph 1: Modal Load Participation Ratios of Structures 14Year 202316Volume Xx XIII Issue III V ersion I( ) EGlobal Journal of Researches in EngineeringCase Modal Modal Modal Modal Modal Modal Modal Modal ModalMode 1 2 3 4 5 6 7 8 9Struct I Period sec 6.298 6.248 5.545 2.062 1.952 1.603 1.191 1.027 0.803Frequency cyc/sec 0.159 0.16 0.18 0.485 0.512 0.624 0.84 0.974 1.245Period sec 5.785 5.606 4.684 1.701 1.547 1.475 0.9 0.838 0.645Struct II Frequency cyc/sec 0.173 0.178 0.213 0.588 0.646 0.678 1.112 1.193 1.551Period sec 6.415 6.32 5.767 2.114 1.958 1.568 1.219 1.028 0.82Struct III Frequency cyc/sec 0.156 0.158 0.173 0.473 0.511 0.638 0.82 0.972 1.22Period sec 6.375 6.21 5.792 2.102 1.901 1.575 1.212 0.983 0.815Struct IV Frequency cyc/sec 0.157 0.161 0.173 0.476 0.526 0.635 0.825 1.017 1.226Period sec 6.382 5.694 5.642 2.088 1.565 1.524 1.19 0.791 0.711Struct V Frequency cyc/sec 0.157 0.176 0.177 0.479 0.639 0.656 0.84 1.264 1.406Modal100.7821.2790.6131.6320.7111.4060.7141.4010.7031.423Modal110.6451.550.52.0020.6411.560.6041.6560.5651.769Modal120.5811.720.452.2220.5921.6890.5891.6970.4232.363© 2023 Global Journ als 15Column axial forces "P"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"P""P""P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.90%2%1%1%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-2%-1%-1%-1%1STC34671.5(DL+EQXP)0,1.45,2.91%2%1%1%1STC34671.5(DL+EQYP)0,1.45,2.9-2%-1%-1%-1%1STC3467EQXP0,1.45,2.98%19%11%9%1STC3467EQYP0,1.45,2.9-21%-11%-17%-15% 16Column axial forces "P"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique-Name""Load Case-Combo""Station"m"P""P""P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.91%2%2%1%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-2%-1%-1%-1%1STC34671.5(DL+EQXP)0,1.45,2.91%3%2%1%1STC34671.5(DL+EQYP)0,1.45,2.9-2%-1%-1%-1%1STC3467EQXP0,1.45,2.98%19%16%9%1STC3467EQYP0,1.45,2.9-21%-11%-10%-15% 17Column axial forces "P"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"P""P""P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.91%3%2%1%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-2%-1%-1%-1%1STC34671.5(DL+EQXP)0,1.45,2.91%4%3%2%1STC34671.5(DL+EQYP)0,1.45,2.9-3%-1%-1%-2%1STC3467EQXP0,1.45,2.98%19%16%9%1STC3467EQYP0,1.45,2.9-21%-11%-10%-15% 18Column moment forces "M"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"M""M""M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.9564%4%-5%4%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-54%-35%-42%-46%1STC34671.5(DL+EQXP)0,1.45,2.9-54%4%-1%4%1STC34671.5(DL+EQYP)0,1.45,2.9-62%-39%-47%-47%1STC3467EQXP0,1.45,2.90%45%41%44%1STC3467EQYP0,1.45,2.90%13%8%5% 19Column moment forces "M"Struct IIStruct IIIStruct IVStruct V"Story""Column""Unique -Name""Load Case-Combo""Station"m"M""M""M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-187%5%5%5%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-55%-35%-34%-46%1STC34671.5(DL+EQXP)0,1.45,2.9-55%5%5%4%1STC34671.5(DL+EQYP)0,1.45,2.9-62%-39%-38%-47%1STC3467EQXP0,1.45,2.90%45%45%44%1STC3467EQYP0,1.45,2.90%13%13%5% 20Column moment forces "M"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"M""M""M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-127%6%5%5%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-55%-35%-34%-46%1STC34671.5(DL+EQXP)0,1.45,2.9-55%6%6%5%1STC34671.5(DL+EQYP)0,1.45,2.9-62%-39%-38%-47%1STC3467EQXP0,1.45,2.90%45%45%44%1STC3467EQYP0,1.45,2.90%13%13%5% 21Column shear forces "V"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"V""V""V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-17%14%1%-20%1STC34671.2(DL+LL+EQYP)0,1.45,2.9215%175%191%-599%1STC34671.5(DL+EQXP)0,1.45,2.9-12%20%8%-18%1STC34671.5(DL+EQYP)0,1.45,2.9166%148%155%955%1STC3467EQXP0,1.45,2.913%41%30%-5%1STC3467EQYP0,1.45,2.983%86%85%64% 22Column shear forces "V"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"V""V""V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-10%21%14%-17%1STC34671.2(DL+LL+EQYP)0,1.45,2.9173%152%157%2154%1STC34671.5(DL+EQXP)0,1.45,2.9-5%26%18%-15%1STC34671.5(DL+EQYP)0,1.45,2.9142%132%134%325%1STC3467EQXP0,1.45,2.913%41%34%-5%1STC3467EQYP0,1.45,2.983%86%86%64% 23Column shear forces "V"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"V""V""V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-6%25%18%-15%1STC34671.2(DL+LL+EQYP)0,1.45,2.9154%140%143%521%1STC34671.5(DL+EQXP)0,1.45,2.9-2%29%21%-13%1STC34671.5(DL+EQYP)0,1.45,2.9131%124%125%226%1STC3467EQXP0,1.45,2.913%41%34%-5%1STC3467EQYP0,1.45,2.983%86%86%64% 24Column torsion forces "T"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique-Name""Load Case-Combo" "Station"m"T""T""T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-42%7%2%5%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-42%7%2%7%1STC34671.5(DL+EQXP)0,1.45,2.9-42%7%2%5%1STC34671.5(DL+EQYP)0,1.45,2.9-42%7%2%7%1STC3467EQXP0,1.45,2.9-42%7%1%5%1STC3467EQYP0,1.45,2.9-41%8%2%7% 25Column torsion forces "T"Struct IIStruct IIIStruct IVStruct V"Story" "Column""Unique -Name""Load Case-Combo""Station"m"T""T""T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-42%7%7%5%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-42%7%8%7%1STC34671.5(DL+EQXP)0,1.45,2.9-42%7%7%5%1STC34671.5(DL+EQYP)0,1.45,2.9-42%7%8%7%1STC3467EQXP0,1.45,2.9-42%7%7%5%1STC3467EQYP0,1.45,2.9-41%8%8%7%Column torsion forces "T"Struct IIStruct IIIStruct IVStruct V"Story""Unique -Name""Load Case-Combo""Station"m"T""T""T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.9-42%7%7%5%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-42%7%8%7%1STC34671.5(DL+EQXP)0,1.45,2.9-42%7%7%5%1STC34671.5(DL+EQYP)0,1.45,2.9-42%7%8%7%1STC3467EQXP0,1.45,2.9-42%7%7%5%1STC3467EQYP0,1.45,2.9-41%8%8%7% 27"Column"Column Axial Forces "P""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.93%6%1STC34671.2(DL+LL+EQYP)0,1.45,2.92%4%1STC34671.5(DL+EQXP)0,1.45,2.94%7%1STC34671.5(DL+EQYP)0,1.45,2.93%5%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 26Year 202321Volume Xx XIII Issue III V ersion I( ) EGlobal Journal of Researches in Engineering© 2023 Global Journ als 28Column Axial Forces "P""Medium soil" "Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.93%6%1STC34671.2(DL+LL+EQYP)0,1.45,2.92%4%1STC34671.5(DL+EQXP)0,1.45,2.94%7%1STC34671.5(DL+EQYP)0,1.45,2.92%4%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 29Column Axial Forces "P""Medium soil""Hard soil""Story""Column""Unique-Name""Load Case-Combo""Station"m"P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.94%7%1STC34671.2(DL+LL+EQYP)0,1.45,2.92%4%1STC34671.5(DL+EQXP)0,1.45,2.94%8%1STC34671.5(DL+EQYP)0,1.45,2.93%5%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 30Column Axial Forces "P""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.94%7%1STC34671.2(DL+LL+EQYP)0,1.45,2.93%4%1STC34671.5(DL+EQXP)0,1.45,2.95%8%1STC34671.5(DL+EQYP)0,1.45,2.93%5%1STC3467EQXP0,1.45,2.931%44%1STC3467EQYP0,1.45,2.931%44% 31Column Axial Forces "P""Medium soil""Hard soil""Story""Column""Unique-Name""Load Case-Combo""Station"m"P""P"1STC34671.2(DL+LL+EQXP)0,1.45,2.93%6%1STC34671.2(DL+LL+EQYP)0,1.45,2.92%4%1STC34671.5(DL+EQXP)0,1.45,2.94%7%1STC34671.5(DL+EQYP)0,1.45,2.93%5%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 32Column Moment Forces "M""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.920%32%1STC34671.2(DL+LL+EQYP)0,1.45,2.9-7%-14%1STC34671.5(DL+EQXP)0,1.45,2.921%34%1STC34671.5(DL+EQYP)0,1.45,2.9-11%-23%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 33Column Moment Forces "M""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.925%38%1STC34671.2(DL+LL+EQYP)0,1.45,2.932%46%1STC34671.5(DL+EQXP)0,1.45,2.926%39%1STC34671.5(DL+EQYP)0,1.45,2.929%43%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 34Column Moment Forces "M""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.927%40%1STC34671.2(DL+LL+EQYP)0,1.45,2.926%40%1STC34671.5(DL+EQXP)0,1.45,2.927%41%1STC34671.5(DL+EQYP)0,1.45,2.925%39%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 35Column Moment Forces "M""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.930%43%1STC34671.2(DL+LL+EQYP)0,1.45,2.933%46%1STC34671.5(DL+EQXP)0,1.45,2.931%43%1STC34671.5(DL+EQYP)0,1.45,2.931%44%1STC3467EQXP0,1.45,2.931%44%1STC3467EQYP0,1.45,2.931%44% 36Column Moment Forces "M""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"M""M"1STC34671.2(DL+LL+EQXP)0,1.45,2.922%35%1STC34671.2(DL+LL+EQYP)0,1.45,2.9415%169%1STC34671.5(DL+EQXP)0,1.45,2.923%36%1STC34671.5(DL+EQYP)0,1.45,2.971%82%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 37Column Shear Forces "V""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.930%44%1STC34671.2(DL+LL+EQYP)0,1.45,2.926%40%1STC34671.5(DL+EQXP)0,1.45,2.929%42%1STC34671.5(DL+EQYP)0,1.45,2.926%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 38Column Shear Forces "V""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.956%61%1STC34671.2(DL+LL+EQYP)0,1.45,2.926%40%1STC34671.5(DL+EQXP)0,1.45,2.940%52%1STC34671.5(DL+EQYP)0,1.45,2.926%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 39Column Shear Forces "V""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.931%45%1STC34671.2(DL+LL+EQYP)0,1.45,2.926%40%1STC34671.5(DL+EQXP)0,1.45,2.929%43%1STC34671.5(DL+EQYP)0,1.45,2.926%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 40Column Shear Forces "V""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.936%48%1STC34671.2(DL+LL+EQYP)0,1.45,2.931%43%1STC34671.5(DL+EQXP)0,1.45,2.934%47%1STC34671.5(DL+EQYP)0,1.45,2.931%43%1STC3467EQXP0,1.45,2.931%44%1STC3467EQYP0,1.45,2.931%44% 41Column Shear Forces "V""Medium soil""Hard soil""Story""Column""Unique-Name""Load Case-Combo""Station"m"V""V"1STC34671.2(DL+LL+EQXP)0,1.45,2.930%44%1STC34671.2(DL+LL+EQYP)0,1.45,2.926%40%1STC34671.5(DL+EQXP)0,1.45,2.929%43%1STC34671.5(DL+EQYP)0,1.45,2.926%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 42Column Torsion Forces "T""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.90%0%1STC34671.2(DL+LL+EQYP)0,1.45,2.926%40%1STC34671.5(DL+EQXP)0,1.45,2.926%40%1STC34671.5(DL+EQYP)0,1.45,2.926%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 43Column Torsion Forces "T""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.926%40%1STC34671.2(DL+LL+EQYP)0,1.45,2.927%40%1STC34671.5(DL+EQXP)0,1.45,2.926%40%1STC34671.5(DL+EQYP)0,1.45,2.927%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 44Column Torsion Forces "T""Medium soil""Hard soil""Story""Column""Unique-Name""Load Case-Combo""Station"m"T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.926%40%1STC34671.2(DL+LL+EQYP)0,1.45,2.927%40%1STC34671.5(DL+EQXP)0,1.45,2.926%40%1STC34671.5(DL+EQYP)0,1.45,2.927%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% 45Column Torsion Forces "T""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.931%44%1STC34671.2(DL+LL+EQYP)0,1.45,2.931%44%1STC34671.5(DL+EQXP)0,1.45,2.931%44%1STC34671.5(DL+EQYP)0,1.45,2.931%44%1STC3467EQXP0,1.45,2.931%44%1STC3467EQYP0,1.45,2.931%44% 46Column Torsion Forces "T""Medium soil""Hard soil""Story" "Column""Unique-Name""Load Case-Combo""Station"m"T""T"1STC34671.2(DL+LL+EQXP)0,1.45,2.926%40%1STC34671.2(DL+LL+EQYP)0,1.45,2.927%40%1STC34671.5(DL+EQXP)0,1.45,2.926%40%1STC34671.5(DL+EQYP)0,1.45,2.927%40%1STC3467EQXP0,1.45,2.926%40%1STC3467EQYP0,1.45,2.926%40% ## Acknowledgments The author would like to express his gratitude to all the individuals for their expertise throughout all aspects of our study and contribution to writing the manuscript. The author would like to express his gratitude to the Nanjing Forestry University, China, for funding this research work through the project No. 163050206 & foreign young talents project No. QN2021014006L. In addition, I thank the anonymous reviewers for their fruitful suggestions to improve the article. The author is truly grateful to all of you. Year 2023 14. Gaikwad Ujwala Vithal, "Effect of Shear Wall on Seismic Behavior of Unsymmetrical Reinforced Concrete Structure", International Journal of Research and Scientific Innovation (IJRSI) Volume IV, Issue X, October 2017. 15. Mahantesh S Patil & R B Khadiranaikar, "Dynamic Analysis of High Rise RC Structure with Shear Walls and Coupled Shear Walls", International Journal of Advance Engineering and Research Development, Volume 2, Issue 8, August, 2015. 16. Durgesh C. Rai, Sudhir K. Jain and C. V. R. Murty, "Seismic Design of RC Structures", short course, conducted by Department of Civil Engineering, IIT Kanpur, Ahmedabad, India, Nov 25-30, 2012. ## Data Availability Statement All data generated or analysed during this study are included in this article. ## Conflict of Interest The author declare no conflict of interest. * Earthquake Resistant Design of Structures New Delhi Oxford University Press 2010 * Dynamics of Structures: Theory and Application to Earthquake Engineering 2012 New Delhi 4th edition * Structural Dynamics: Theory & computations New Delhi CBS Publishers & Distributors 2004 Second Edition * Plain and Reinforced Concrete-Code of practice IS 456 2000 New Delhi, India * Ductile detailing of reinforced concrete structures subjected to seismic forces-Code of Practice 1993 13920 New Delhi, India. * Dead loads on buildings and Structures IS 875 1 1987 New Delhi, India * Live loads on buildings and Structures New Delhi, India 1987 875 * Criteria for earthquake resistant design of structures General provisions and buildings IS 1893 (part 1) New Delhi, India 2002 * Berkeley ETABS Integrated Building Design Software California, USA February 2003 * How to Model and Design High Rise Building Using ETABS Program MakarNageh 2007 Cairo * Seismic Design of Reinforced Concrete and Masonry Buildings TPaulay MJPriestley 1992 INC New York * Design of concrete shear wall buildings for earthquake induced torsion JLHumar SYavari Canada June, 2002 14 structural conference of the Canadian society for civil engineering * Seismic behaviour of RCC shear wall under different soil conditions NAnand CMightraj GPrince Arulraj december 2010 Indian geotechnical conference