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Resonances of Elastic Spheroidal Bodies
A. Kleshchev

Abstract - At the basis of the dynamic elasticity theory with the 
use of Debye’s potentials are found resonances of elastic 
spheroidal bodies (prolate and oblate) as entire so and in form 
of shells. In addition to analytic solutions, computer 
calculations are performed of moduluses of the angular 
characteristics of the scattering and   sections of the scattering 
of  spheroidal bodies. 
Keywords: diffraction, debye’s potential, elastic shell, 
boundary conditions.

I. Introduction

n the paper are investigated  resonances of prolate 
and oblate spheroidal bodies (entire and in the form 
of shells) by the three-dimensional and axis-

symmetrical irradiation. By the three-dimensional 
irradiation for the solution of the problem of the 
diffraction are used Debye’s potentials. To resonances 
of elastic spheroidal bodies are devoted publications              
[1 – 9].

Debye first proposed expanding the vector 

potential A


in the scalar potentials U andV in his 
publication [10] devoted to studying the behavior of  
light waves near the local point or local line. Later, this 
approach was used in solving diffraction problems for  
cases of the electromagnetic wave diffraction of a 
sphere, a circular disk and a paraboloid of a revolution 
[11 – 16], as well as for the diffraction of  longitudinal 
and transverse waves by  spheroidal bodies [7, 17]. 

As applied to problems based on the dynamic 
elasticity theory, the introduction of Debye’s potentials 

occurs as follows.The displacement vector u


of an 
elastic isotropic medium 
obeys the Lame equation:

2( ) ,graddivu curlcurlu uλ µ µ ρω+ − = −
  

       (1)

where λ and µ are  Lame constans, ρ is the
density of the isotropic medium and ω is the circular 
frequency  of  harmonic vibrations.   According   to  the  
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Helmholtz theorem, the displacement vector u


is 

expressed through  scalar Φ and vector Ψ


potentials:

                 u grad curl= − Φ + Ψ
 

                            (2)

Substituting Eg. (2) in Eg. (1), we obtain two 
Helmholtz equations, which include one scalar equation 

for Φ and one vector equation for Ψ


:

                                
2 0,h∆Φ + Φ =                           (3)

                                 
2
2 0.k∆Ψ + Ψ =

 
                       (4)

Here 1/h cω= is the wavenumber of the 
longitudinal elastic wave, 1c is the velocity of this wave, 

2 2/k cω= is the wavenumber of the transverse elastic 
wave and 2c is the velocity of the transverse wave.

In the three-dimensional case, variables 
involved in scalar equation (3) can be separated into 11 
coordinate systems. As for Eq. (4), in the three-
dimensional problem, this equation yields three 
independent equations for each of components of the 

vector function Ψ


in Cartesian coordinate system 
alone. To overcome this difficulty, one can use Debye’s 
potentials U and V , which obey the Helmholtz scalar 
equation

            
2
2 0;V k V∆ + = 2

2 0.U k U∆ + =                       (5)

Vector potential Ψ


(according to Debye) is 
expanded in potentials V and U as

           2( ) ( ),curlcurl RU ik curl RVΨ = +
  

                (6)

where R


is the radius vector of a point of the 
elastic body or the elastic medium.

Let us demonstrate the efficiency of using  
Debye’s potentials in solving the three-dimensional 
diffraction problem for the case of diffraction by an 
elastic spheroidal shell. The advantage of the 
representation (6) becomes evident, if we take into 
account that potentials V and U obey the Helmholtz 
scalar equation. It is convenient to represent 

components of Ψ


in the spherical coordinate system 

by expressing them through ,U V and R


and then, 
using formulas of the vector analysis, to change to  
spheroidal components. The expressions for  spherical 

I 

components of the vector function ( , , )R θ ϕΨ Ψ Ψ Ψ


in
terms of  Debye’s potentials have the form [7]:
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II. The First Part of the Article 
Investigat the Solution of the 

Three-Dimensional Problem of the 
Diffraction at the Elastic 

Spheroidal Body with  Help of  
Debye’s Potentials
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2 2 2 2 2 2 2( / ) ( / ) 2 (/ )( / )( / ) ( / ) ( / )R R B R R B R Bξ ξ ξ η ξ η η ηΨ = ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ +
2 2 2 2 2

2( / )( / ) ( / )( / ) ,R B R B k Bξ ξ η η∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ +                                                                                            (7)
2 2 1 2 2 2

0[ ( 1 )] [( / )( / )( / ) ( / )( / )( / )h R B R Bθ ξ η ξ θ ξ ξ ξ θ η ξ η−Ψ = − + ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ +
2 2 2 2( / )( / )( / ) ( / )( / )( / ) ( / )( / )R B R B B Rξ η θ ξ η η η θ η ξ ξ θ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ +

2 1
2( / )( / )] (sin ) ( / ),B R ik Vη η θ θ ϕ−∂ ∂ ∂ ∂ ∂ + ∂ ∂                                                                                                   (8)

2 2 1/2 1 2 2
0 2[ ( 1 ) sin ] [ / )( / ) ( / )( / )h R B R B ikϕ ξ η θ ξ ξ ϕ η η ϕ−Ψ = − + ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ − ×

[( / )( / ) ( / )( / )],V Vξ θ ξ η θ η∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂                                                                                                           (9)
where:

2 2 1/2
0 ( 1 ) ; 1 1;1 .B h Uξ η η ξ= − + − ≤ ≤ + ≤ ≤ +∞

Spheroidal components of the function ( , , )ξ η ϕΨ Ψ Ψ Ψ


are expressed as follows [7]:

                                 
2 2 1/2 2 2 1/2

0 0( / ) ( 1 ) ( / )( 1 ) ( / ),R h h h hξ ξ θ ξξ ξ η ξ η θ ξ−Ψ = Ψ − + +Ψ − + ∂ ∂                      (10)

                            
2 2 1/2 2 2 1/2

0 0( / ) ( 1 ) ( / )( 1 ) ( / ),R h h h hη η θ ηη ξ η ξ η θ η−Ψ = Ψ − + +Ψ − + ∂ ∂                         (11)

                                                                                     
,ϕ ϕΨ ≡ Ψ                                                                       (12)

where:
2 2 1/2 2 1/2

0 ( ) ( 1) ;h hξ ξ η ξ= − − 2 2 1/2 2 1/2( ) (1 ) .hη ξ η η= − −

Let us consider in the form of an isotropic 
elastic spheroidal shell (Fig. 1). All potentials, including 
the plane wave potential 0 ,Φ the scattered wave 

potential 1,Φ the scalar shell poten-tial 2 ,Φ   Debye’s
potentials U and V and potential 3Φ of the gas filling 
the shell, can be ex-panded in spheroidal functions:

                                          

(1)
, ,0 1 0 1 , 1

0
2 ( , ) ( , ) ( , ) con

m n m nm m n
m n m

i S C S C R C mε η η ξ ϕ
∞ ∞

−

= ≥

Φ = ∑∑                                (13)

                                                      

(3)
,1 , 1 , 1

0
2 ( , ) ( , ) com nm n m n

m n m
B S C R C mη ξ ϕ

∞ ∞

= ≥

Φ = ∑∑                                            (14)

                                 

(1) (2)
,2 , , , ,

0
2 [ ( , ) ( , )] ( , ) com nm n m n l m n m n l l

m n m
C R C D R C S C mξ ξ ξ ϕ

∞ ∞

= ≥

Φ = +∑∑                               (15)

                                               

(1)
,3 , , 2 2

0
2 ( , ) ( , ) com nm n m n

m n m
E R C S C mξ η ϕ

∞ ∞

= ≥

Φ = ∑∑                                                 (16)

                                

(1) (2)
,, , , ,

1
2 [ ( , ) ( , )] ( , )sin ;m nm n m n t m n m n t t

m n m
U F R C G R C S C mξ ξ η ϕ

∞ ∞

= ≥

= +∑∑                                    (17)

                       

       

(1) (2)
,, , , ,

0
2 [ ( , ) ( , )] ( , ) com nm n m n t m n m n t t

m n m
V H R C I R C S C mξ ξ η ϕ

∞ ∞

= ≥

= +∑∑                                     (18)

where:

, 1( , )m nS C η − the angular spheroidal function;  (1)
, 1( , ),m nR C ξ (2)

, 1( , )m nR C ξ and (3)
, 1( , )m nR C ξ −   radial 

spheroidal functions of  first, second and third genders; 0;lC hh= 2 0;tC k h= 1 0 ,C kh= k − is the wavenumber 

of the sound wave in the liquid; 2 1 0 ,C k h= 1k − is the wavenumber of the sound wave in the gas filling the shell; 

oh − the half – focal distance; , , , , ,, , , , ,m n m n m n m n m nB C D E F , , ,, ,m n m n m nG H I − are unknown expansion coefficients.

s
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Figure 1 : Elastic spheroidal shell in a plane harmonic wave field

Expansion coefficients are determined from  
physical boundary conditions preset at  two surfaces of 
the shell 0(ξ and 1,ξ see Fig. 1) [7]:

1. the continuity of the normal displacement component 
at both of the boundaries 0ξ and 1;ξ

2. the identity between the normal stress in the elastic 
shell and the sound pressure in the liquid 0( )ξ or in

the gas 1( );ξ

3. the absence of tangential stresses at both of the shell 
boundaries, 0ξ  and 1.ξ

The corresponding expressions for boundary 
conditions have the form [7]:

            0

1 1 1
0 1 2( ) ( / )( ) ( ) ( / ) ( ) [( / )( ) ( / )( )] ;h h h h h hξ ξ η ϕ ϕ ϕ η η ξ ξξ ξ η ϕ− − −

=∂ ∂ Φ +Φ = ∂Φ ∂ + ∂ ∂ Ψ − ∂ ∂ Ψ
      

(19)

                   1

1 1 1
1 2( ) ( / ) ( ) ( / ) ( ) [( / )( ) ( / )( )] ;h h h h h hξ ξ η ϕ ϕ ϕ η η ξ ξξ ξ η ϕ− − −

=∂Φ ∂ = ∂Φ ∂ + ∂ ∂ Ψ − ∂ ∂ Ψ             (20)

                         0

2 2 1 1
0 0 1 2( ) 2 [( ) ( / ) ( ) ( / )] ;k h h h h u h uξ η ξ η ξ ξ ξ ξλ λ µ η ξ− −

=− Φ +Φ = − Φ + ∂ ∂ + ∂ ∂                   (21)

                                 1

2 2 1 1
1 1 3 2 2 [( ) ( / ) ( ) ( / )] ;k h h h h u h uξ η ξ η ξ ξ ξ ξλ λ µ η ξ− −

=− Φ = − Φ + ∂ ∂ + ∂ ∂                    (22)

                                      0 1;0 ( / )( / )( / ) ( / )( / )( / ) ;h h u h h h u hη ξ η η ξ η ξ ξ ξ ξ ξ ξξ η = == ∂ ∂ + ∂ ∂                                   (23)

                                     0 1;0 ( / )( / )( / ) ( / )( / )( / ) ,h h u h h h u hϕ ξ ϕ ϕ ξ ϕ ξ ξ ξ ξ ξ ξξ ϕ = == ∂ ∂ + ∂ ∂                                   (24)

where:
2 1/2 2 1/2

0 ( 1) (1 ) ;h hϕ ξ η= − −   0λ − is the bulk compression coefficient of the liquid; 1λ − is the bulk 

compression coefficient of the gas filling the shell;

1 1
2( ) ( / ) ( ) [( / )( ) ( / )( )];u h h h h hξ ξ η ϕ ϕ ϕ η ηξ η ϕ− −= ∂Φ ∂ + ∂ ∂ Ψ − ∂ ∂ Ψ

1 1
2( ) ( / ) ( ) [( / )( ) ( / )( )];u h h h h hη η ξ ϕ ξ ξ ϕ ϕη ϕ ξ− −= ∂Φ ∂ + ∂ ∂ Ψ − ∂ ∂ Ψ

1 1
2( ) ( / ) ( ) [( / )( ) ( / )( )].u h h h h hϕ ϕ ξ η η η ξ ξϕ ξ η− −= ∂Φ ∂ + ∂ ∂ Ψ − ∂ ∂ Ψ

The substitution of series (13) – (18) in 
boundary conditions (19) – (24) yields an infinite system 
of equations for the determining of desired coefficients. 
Because of the ortogonality of trigonometric functions 
cos mϕ and sin mϕ , the infinite system of equations 
breaks into infinite subsystems with fixed numbers 

m Each of  subsystems is solved by the truncation 
method. The number of retained terms of expansions 
(13) – (18) is the greater the wave size for the given 
potential.The solution of the axissymmetrical problem of 
the diffraction at elastic spheroidal bodies was 
presented in [1, 2, 7 – 9]. 
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III. The Second Part of the Article 
Investigates  Results of Numerical 
Experiment for Determination of  

low Frequency Resonances of Elastic 
Spheroidal Bodies

Characteristics of the prolate gas – filled shell 

were calculated for two angles of the irradiation 0
0 0θ =

and 0
0 90 .θ = At the Fig. 2 are presented in the 

different scale moduluses of angular characteristics of 

the scattering ( )D θ of the steel prolate gas – filled 

spheroidal shell (curve 1), of the soft prolate spheroid 

(curve 2) and of the hard spheroid (curve 3) by 0
0 0θ =

and 1 1,0.C =   

Figure 2  : Moduluses of angular characteristics of scattering of spheroidal scatterers

Same angular distributions, but by 1 3,1C =
(the elastic shell, 1 3,0C = − for ideal sphe-roids) and 

1 10,0C = according are presented at Fig. 3 and 4. 
Notations of curves at all three Fig.  identical. The 
analysis of presented results shows, what by the angle 
of the irradiation 0

0 0θ = and the wave dimension 

1 1,0C = (see Fig. 2) the angular characteristic of the 
elastic shell is similarly at the characteristic of the hard 
spheroid. By 1 3,1C = and by the angle of the 

irradiation 0
0 0θ = the situation becomes 

indeterminated: the angular  characteristic of the shell 
has dipole character as and by the hard spheroid (see 
Fig. 3). By the increase of the wave dimension 1C the 
character of the sound scattering by the shell remains 
complicated (see Fig. 4): in the lit region the 
characteristic ( )D θ of the hard spheroid, but in the 
shade region it is nearer to the shade lobe of the soft 
spheroid.

Figure 3 :  Moduluses of angular characteristics        Figure 4 : Moduluses of angular chararacteristics  
of spheroidal scatterers                                            of spheroidal scatterers
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Over known angular characteristics of the 
scattering ( , )D θ ϕ can be calculated back- scattering 
cross sections 0σ of elastic spheroidal bodies [7]. At 
Fig. 5 are presented meanings of relative backscattering 
cross sections 0σ of prolate spheroids with a 
correlation of semi – axises 1 : 10 ( 0( 1,005)ξ = by the 

axially symmrtric irradiation 0
0( 0 ).θ = The  continuous

elastic sphe-roid over the its conduct is very near to the  
ideal hard scatterer. This was seen by the compare-son 
of angular characteristics  ( , )D θ ϕ of steel and ideal 

spheroids. A coincidence is observed every where with 
the exception of a resonant point 7,4C = . Thies 
resonance is called by the surface wave of the “type of 
the Rayleigh wave” [5]. By the wave dimension C = 7,4 
on the surface along a contour of the steel continuous 
prolate spheroid is gone 2,5 ,Rλ where Rλ is a length 
of the wave of  the wave of the “type Rayleigh wave”. A 
velocity this wave Rc is equal 2889 / ,m s but on the 
plane boundary steel – vacuum a velocity of the 
Rayleigh wave is equal 2980 / .m s    

                                 

On the Fig. 6 are presented relative back-
scattering cross sections 0σ of oblate spheroids with 
the correlation of the semi – axises 1:10 0( 0,1005)ξ =

by the axially symmetric irradiation 0
0 0θ = , the

notations coincide with the Fig. 5. Until the resonance of 
rhe zero antisymmetrical-

Figure 5 : Relative backscattering cross sections of prolate spheroids

Figure 6 : Relative backscattering cross sections of oblate spheroids

flexural wave (C ≈ 5,3) 0σ of  the steel oblate spheroid 
σ  of the softover a level nearer to 
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Figure 7 :  Relative backscatterings cross sections of prolate spheroidal scatterers

spheroid, but by 5,3C > draws near to 0σ of the hard 
spheroid, at least the angular characteristic ( )D θ of

the elastic spheroid by 0
0 0θ = and by all meanings of 

the wave dimension C is near to the angular 
characteristic ( )D θ of the hard spheroid. On the Fig. 7 
are presented sections 0σ of the prolate spheroidal 
scatterers. The steel prolate spheroid and by 0

0 90θ =
has the resonance of the surface wave by same 
meaning C = 7,4 (see curve 2, Fig. 5) [7]. Itself section 
of the scattering 0σ of t5he steel continuous spheroid 

(curve 3) by 
0

0 90θ = is visiblely nearer to 0σ of the
hard spheroid (curve 4) over the comparison with 0σ of 

the soft spheroid (curve 5). This nearness of the 

scattering properties of  continuous elastic and hard 
spheroids was shown too in the angular characteristic 

( , ).D θ ϕ A frequency dependence of the relative 

section 0σ of the prolate spheroidal shell (curve 1) by 
0

0 0θ = shows a prwesente of the considerable 

resonan- ce by 6,75C = [1, 7 – 9]. On a Fig. 8 are 

shown moduluses of angular characteristics ( )D θ of 
prolate spheroidal scatterers. A curve 1 concerns to the 
steel gas – filled shell by the wave dimension 

6,75C = corresponding its resonance, the curve 2 
concerns to a soft spheroid, a curve 3 concerns to a 
hard spheroid, for ideal spheroids a wave dimension C
is equal 10,0. From the

Figure 8 : Moduluses of angular characteristics of prolate spheroidal bodies

comparison of three curves we see, what a shade lobe 
of the angular characteristic of the shell shows at “the 

soft background”, but the lobe of the backscattering 
shows at “the hard background”. A relative.  

Resonances of Elastic Spheroidal Bodies
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Wave 
dimension, С

0σ by 900 =θ
Spheroidal gas – filled shell

( ;005075,10 =ξ 005,11 =ξ )
Hard    spheroid 

( 005,10 =ξ )
Soft  spheroid 
( 005,10 =ξ )

0,5 0,3012·10-3 0,2452·10-3 4,506
1,0 0,4748·10-2 0,3908·10-2 4,760
1,5 0,2365·10-1 0,1965·10-1 5,194
2,0 0,7354·10-1 0,6147·10-1 5,748
2,5 0,1751 0,1479 6,300
3,0 0,3470 0,3006 6,754
3,5 0,6068 0,5418 7,094
4,0 0,9736 0,8911 7,358
4,5 1,447 1,362 7,592
5,0 2,014 1,960 7,815
5,5 2,599 2,680 8,029

backscattering cross section 0σ of a spheroidal shell 

by 0
0 90θ = was calculated until a wave dimension 
5,5C = . Meanings 0σ of a ashell are very near to 0σ

of a hard spheroid, what was shown worth while 
compare these sections with sections of t spheroid in a 
table form. As we see from a table 1 by this angle of a 
irradiation until  5,5C = is shown “a hard background” 
o9f a scattering, what we see and from comparison of 
angular characteristics of a scattering ( , ).D θ ϕ A full 
scattering cross section σ [7] is determined through a 
square of a modulus of a angular characteristic of a 
sound scattering 

( , )D θ ϕ :
2

2

0 0

( , ) sin .D d d
π π

σ θ ϕ θ θ ϕ= ∫ ∫
A relative scattering cross section rσ , by a

way, is equal  

0/ 2 ,r Aσ σ=

where 0A is an area of a geometrical shade of 

a scatterer.
With a help of an optical theorem a scattering 

cross section σ cab be found through a meaning of an 
imaginaty part of of an angular characteristic in a 
direction of a falling wave (a scattering “forward”) 

0 0
0Im (180 ;180 )D θ− [7]:

0 0
0(4 / ) Im (180 ;180 ),k Dσ π θ= −

where 0θ is an angle of a fall; 0
0 0 .ϕ =

At an analogy with the scattering cross section 
σ can introduce an idea of a section radσ of  an elastic 

or liquid body under an action of a point source [7]:

2
2

0 0

( , ) sin ,rad F d d
π π

σ θ ϕ θ θ ϕ= ∫ ∫

where ( , )F θ ϕ is an angular characteristic of a 
sound radiation of a body under an action of a point 
source.

At a basis of presented formulas was made an 
account of full σ and relative rσ scattering cross 
sections and a radiation cross section radσ of 
spheroidal (prolate and oblate) bodies. On a Fig.9 are 
presented relative sections of a scattering rσ of an
ideal hard oblate spheroid (curve 1), of a steel oblate 
spheroid (curve 2) and of an ideal soft oblate spheroid 
(xcurve 3). In all three ca-ses a relation of a semi – 
axises 0/ 1:10( 0,1005),a b ξ= = but an angle of an 

irradiation 0
0 0 .θ = A relative section rσ of an elastic 

spheroid shows a r5esonance of a coincidence as this 
was and in a relative backscattering 0σ (see Fig. 6), but 
a point of a maximum was by 5,25C = , for rσ is by

5,35.C − With an increase C a curve 2 draws near to 
a meaning 1,0rσ = corresp0onding a geometrical 
acoustics. Calculations show, what by 15,0C = for an
elastic oblate spheroid 0,866,rσ = but by

20,0 0,941.rC σ= → = On a Fig. 10 are presented 
relative sections of a sections of a scattering rσ
(curves 1 and 2) and a section of a radiation radσ
(curve 3) of prolate spheroidal bodies. A curve 1 shows 
a frequency dependence ( )r Cσ of an ideal soft prolate 

spheroid 0[ / 1:10( 1,005)],a b ξ= = a curve 2 

corresponds ( )r Cσ of steel gas – filled prolate 

spheroi- 

Table 1
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dal shell 0 1( 1,005075; 1,005).ξ ξ= = Both

curves correspond 0
0 0θ = (an axially symmetric pro-

blem). A curve 2 for an elastic shell unlike from an its 
relative backscattering section (curve 1 on a Fig. 7) has 
two maximums (two resonances). A first from theirs is 
observed by 6,7C = (unlike from 6,75C = for 0 ),σ
a second resonance is observed by 8,25C ≈ and 
corresponds 1,5 ,L = Λ where L is a length of a 
contour of a neutral surface of a shell, Λ is a length of a 
longitudinal wave (of a zero symmetrical Lamb’s wave) 
spreading with a velocity 1 5420c ≈ / .m s A curve 1 
for an ideal soft spheroid aspires asymptotical to a 
meaning of a geometrical acoustics 1,0) :rσ =

(15,0) 4,16; (65,0) 2,23; (100) 1,93.r r rσ σ σ= = = A 
curve 3 characterises a radiating faculty of a same shell, 
if it is exited from an outside by a point source by 

0
0 00 ( 50hθ = = ).m A section of a radiation radσ has 

an extremums in those points, what and a relative 
section of a scattering .rσ A comparison of curves 2 
and 3 presented on a Fig. 10 with curve 1 of a Fig. 7 
shows, what a relative backscattering section does not 
give sometimes of a full information about a resonant 
properties of elastic scattering.

IV. Conclusions

With the help of the numerical experiment are 
found low frequency resonances of elastic spheroidal 
bodies (entire and in the form of shells) both prolate and 
oblate by the three – dimensional and axissymmetrical 
irradiation.
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