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s Abstract

7 At the basis of the dynamic elasticity theory with the use of Debye?s potentials are found
s resonances of elastic spheroidal bodies (prolate and oblate) as entire so and in form of shells.
9 In addition to analytic solutions, computer calculations are performed of moduluses of the
10 angular characteristics of the scattering and sections of the scattering of spheroidal bodies.

11

12 Index terms— diffraction, debye?s potential, elastic shell, boundary conditions.

3 1 Introduction

14 n the paper are investigated resonances of prolate and oblate spheroidal bodies (entire and in the form of shells)
15 by the three-dimensional and axissymmetrical irradiation. By the three-dimensional irradiation for the solution
16 of the problem of the diffraction are used Debye’s potentials. To resonances of elastic spheroidal bodies are
17 devoted publications 7?71 -9].

18 Debye first proposed expanding the vector potential A

w 2 177

20 in the scalar potentials U andV in his publication [10] devoted to studying the behavior of light waves near
21 the local point or local line. Later, this approach was used in solving diffraction problems for cases of the
2 electromagnetic wave diffraction of a sphere, a circular disk and a paraboloid of a revolution 7?11 -16], as well
23 as for the diffraction of longitudinal and transverse waves by spheroidal bodies [7.17].

24 As applied to problems based on the dynamic elasticity theory, the introduction of Debye’s potentials occurs
25 as follows.The displacement vector u ? of an elastic isotropic medium obeys the Lame equation:
26 where ? and p are Lame constans, 7 1is the density of the isotropic medium and ? is the circular

27 frequency of harmonic vibrations. According to the Author : Saint -Petersburg State Navy Technical University,
28 Russia, 190008, Saint -Petersburg, Lotsmanskaya St., 3. e-mail: alexalex -2@yandex.ru Helmholtz theorem, the
29 displacement vector u ? is expressed through scalar ? and vector ? 7?7 potentials:u grad curl =7 7 + 7 7 77
30 7(2)

31 Substituting Eg. (2) in Eg. (1), we obtain two Helmholtz equations, which include one scalar equation for ?
32 and one vector equation for ?7?7? : 20, h?? +7 =(3)220. k?? + 7 =777 77 7(4)

33 Herel /hc? =

34 is the wavenumber of the longitudinal elastic wave, 1 c is the velocity of this wave,2 2 / k¢ ? =
35 is the wavenumber of the transverse elastic wave and 2 c is the velocity of the transverse wave.
36 In the three-dimensional case, variables involved in scalar equation ( 3) can be separated into 11 coordinate

37 systems. As for Eq. ( 4), in the threedimensional problem, this equation yields three independent equations
38 for each of components of the vector function ? ??? in Cartesian coordinate system alone. To overcome this
39 difficulty, one can use Debye’s potentials U and V , which obey the Helmholtz scalar equation2 2 0; V.k V 7 +
40 =220. UkU?+ = (5) Vector potential ? 7?7 (according to Debye) is expanded in potentials V and U as 2 (
a1 ) (), curlcurl RU ik curl RV ? = + 7?7 ? 7?7 7?7(6)

42 where R 77 is the radius vector of a point of the elastic body or the elastic medium.

43 Let us demonstrate the efficiency of using Debye’s potentials in solving the three-dimensional diffraction
a2 problem for the case of diffraction by an elastic spheroidal shell. The advantage of the representation (6) becomes
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evident, if we take into account that potentials V and U obey the Helmholtz J 2222222 (/) (/)2 (/)(/
)W/)(/)(/)RRBRRBRB???7?77?2°?27?77=227224+772222°024+72772724+222222(/)(
/Y(/)(/) RBRBKB??2?222722242722+(12212220[(1)][(/)(/)(/)(/)(/)/)h
RBRB?7727272727227222222=72477272727272+4+2222222+2222(/)(/)(/)(/)/)/)
(/)/)RBRBBR??7?27?77?727?772722°0272°222°227?2272 4272272272 4+272272724+212(/)(/)]
(sin)(/),BRikV??2?2?2?2?27?2?2?2?2724+778)221/212202[(1)sin][/)(/)(/)(/)hRRBR
Bik??7277722227222=0472222+4222222x[(/)/)(/)/),VV??r2222272727%

+7772(9)
where:221/20 (1);111. BhU??222 =7 4+2727 +77 47

are expressed as follows [7]:221/2221/200(/) (1) (/)(1
=?7?74+4+7?7477(10)221/2221/200(/)(1)(/)(1)(/),Rhhhh???2?27?227?2?272727?77?7="
7T+ +774+77(11)

where:221/221/20()(1);hh??2?2?2=7?7221/221/2()(1)

h?27272="7

Let us consider in the form of an isotropic elastic spheroidal shell (Fig. 1). All potentials, including the plane
wave potential 0 , 7 the scattered wave potential 1 , 7 the scalar shell poten-tial 2 , 7 Debye’s potentials U and
V and potential 3 7 of the gas filling the shell, can be ex-panded in spheroidal functions:(1) ,,0101,102 (,

;02 [(,) ()] (,)eo
(1),3,,2202(,)(
yJcomnmnmumunmERCSCm??7?72?2?2=??7=77(16) (1)(2),,,,,12[(,)(,)](,)sin;mn
monmntmnmnttmnmUFRCGRCSCm???7?7?2?2=?=4+72717)1)2),,,,,02[(,)(,

where:
, 1

3 ()

mn S C 7?7 the angular spheroidal function;

(1),1

(,)mnRC?(2),1(,)mnRC?and(3),1(,)

mn R C 7 7 radial spheroidal functions of first, second and third genders;0 ; 1Chh=20;tCkh=10,C
kh = k 7 is the wavenumber of the sound wave in the liquid; 21 0, Ckh =1

k ? is the wavenumber of the sound wave in the gas filling the shell;o h ? the half -focal distance; , , ,, 5 5 5
,ymnmnmnmnmnBCDEF |,

, » The corresponding expressions for boundary conditions have the form [7];m n m n m n G H 1 ? are unknown

0 (/)0 (
where:2 1/221/2

the bulk

compression coefficient of the gas filling the shell;1 1
7?7 =72 47272°2°?°0272°2112()(/)()
(/)

/)(/)/),hhuhhhuh???2?2?2?2?27?2?222?22?2?2===77477(24)
0(1)(1);hh???=77077? is the bulk compression coefficient of the liquid; 1 7 ? is

2()(/ [(
) )]

[/ ;
)] u h??7777" 7777220 =777477

Ol

) ()

(/)O));uhhhhh??2?22?2?227272727777
hhhh

The substitution of series ( 13) -(18) in boundary conditions ( ?79) -( 24) yields an infinite system of equations

for the determining of desired coefficients. Because of the ortogonality of trigonometric functions cos m? and sin
m? , the infinite system of equations breaks into infinite subsystems with fixed numbers m Each of subsystems is
solved by the truncation method. The number of retained terms of expansions ( 13) -( 18) is the greater the wave
size for the given potential. The solution of the axissymmetrical problem of the diffraction at elastic spheroidal
bodies was presented in 77

The continuous elastic sphe-roid over the its conduct is very near to the ideal hard scatterer. This was seen by
the compare-son of angular characteristics



103 5 ? —

104 A relative section r ? of an elastic spheroid shows a rbesonance of a coincidence as this was and in a relative
105 backscattering 0 7 (see Fig. ?7?), but a point of a maximum was by ). m A section of a radiation rad ? has
106 an extremums in those points, what and a relative section of a scattering . r 7 A comparison of curves 2 and
107 3 presented on a Fig. 10 with curve 1 of a Fig. 7?7 shows, what a relative backscattering section does not give
108 sometimes of a full information about a resonant properties of elastic scattering.

109 6 IV.
w 7 Conclusions

111 With the help of the numerical experiment are found low frequency resonances of elastic spheroidal bodies (entire
and in the form of shells) both prolate and oblate by the three -dimensional and axissymmetrical irradiation.
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