Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

A Comparative Analysis of the Combustion Behavior of Adulterated Kerosene Fuel Samples in a Pressurized Cooking Stove Ejilah¹ Received: 11 December 2012 Accepted: 3 January 2013 Published: 15 January 2013

⁸ Abstract

17

An experimental study was conducted to establish the influence of cylinder pressure on the 9 combustion behavior of a pressurized kerosene cook stove. The test was carried out under 10 ambient room conditions, by pressurizing and igniting the cook stove containing kerosene fuel 11 at a maximum pressure of 1 bar. The combustion flame temperature, flameheight and 12 structure and colour were arefully measured and recorded from a pressure gauge mounted on 13 the fuel tank, a thermocouple, vernier height meter and by direct flamephotography. The 14 same process was repeated for vessel pressures of 0.8, 0.6, 0.4, 0.2, and 0 bar after an interval 15 period of two minutes, and for B5, B10, B15, and B20 kerosene oil blends and B100 (i.e. 100 16

18 **Index terms**— pressurised kerosene stove, combustion temperature, flame height, statistical validation, 19 kerosene-diesel adulteration, economic benefit

20 1 Introduction

rude oil is a natural occurring mixture consisting predominantly of hydrocarbons with other elements, such as; 21 sulphur, nitrogen, and oxygen e.t.c, either existing as organic compounds or in some cases as complex of metals 22 23 [1,2]. In technical terms of one barrel of Nigerian crude oil has a volume yield of 6.6% automotive gas oil, 20.7% 24 gasoline, 9.5% kerosene and jetfuel, 30.6% diesel, and 32.6% fuel oil and residues [3]. The kerosene fraction belongs to the group of hydrocarbon called paraffin, which has lower specific gravity than aromatic hydrocarbon 25 of the same boiling point. The main components of kerosene are paraffin, cycloalkanes (naphtha) and aromatic 26 compounds, where paraffin is the highest composition. Ultimate analysis composition of kerosene is 84.3~% wt 27 Carbon, 14.2 % wt Hydrogen, and remainder is sulfur and nitrogen [4]. The high demand and desirability of 28 kerosene is informed by its lower volatility in comparison to gasoline, good oxidative stability and cleaner burning 29 characteristics [5]. 30

According to Moh [6], kerosene stove consists of wick or the pressurized stove types. The thermal efficiency 31 of kerosene stove is between 20 -40 % depending on stove and cooking equipment design. Flue Gas emission 32 of pressurized kerosene stove has been reported as follows; 2749 ppm CO2, 73 ppm CO, and 3.8 ppm CH4, 33 34 and could be higher if the fuel is adulterated. Existing literature has revealed that if the combustion process is 35 incomplete, CO gas will be produced and a number of fuels will be not combusted, and will result in lower flame 36 temperature, low heating rate and decrease in the thermal efficiency of the stove [7]. The amount of CO gas and other unburnt fuel products usually depends on the configuration of the heating equipment and other factors, 37 such as the flash point of the fuel, air-fuel mixing, ignition, temperature controlling combustion chamber and 38 catalyst respectively. Despite the fact that researchers have for many years tried to improve combustion systems 39 design to enhance complete combustion and lower air pollution, low combustion heat efficiency, unburned fuel and 40 air pollution (such as; CO, NOx, SOx and soot) are still a prevalent problems in combustion systems ??8]. The 41 simultaneous evolution of heat and light occasioned by the combustion kerosene is used for household cooking 42

43 and lighting .The incessant power outages and inadequate distribution and supply of electricity to especially rural

44 Nigeria constitutes a major challenge presently, has increased the patronage of kerosene stoves.

45 2 Abstract -

In Nigeria, official statistics has revealed that an average of about 9 million liters of kerosene is consumed daily, 46 and the bulk of the consumers come from the rural poor, low-income and middle-class economic class [9]. However, 47 the growing demand for this most sought-after cooking and heating fuel has made the illicit practice of kerosene 48 adulteration and its untold consequences commonplace in the country ??10, 11, 12, 13, and 14]. Even though 49 some studies has been carried out on the evaporation of kerosene droplets at elevated temperature and pressure, 50 existing data and information on evaporation and combustion of kerosene remain insufficient ??15]. To this end, 51 this paper intends to investigate the combustion behavior of adulterated kerosene, with a particular focus on 52 the effect of vessel pressure variations on flame temperature, flame height and flame structure and colour. In 53 addition, the need to establish the economic feasibility of kerosene -diesel fuel adulteration activities through a 54 preliminary cost analysis will also form an essential component of this research. 55

56 **3 II.**

57 4 Materials and Methods

58 5 a) Fuel Properties

The kerosene and diesel fuel samples were collected from an NNPC approved gas station in Bauchi -Nigeria. The 59 comparative specifications and properties of the petroleum fuels used in this study are as presented in table 1. In 60 accordance with standardized ASTM D97-93 test procedures, the densities of the blended fuel samples were also 61 determined [16]. with air and burns in a sootless, blue cooking flame. The flame continues to heat fuel in the 62 fuel line, either via a loop of the fuel line passing through the flame (or a heat sink) on the stove that maintains 63 the proper temperature, and a steady supply of vaporized fuel is drawn from the tank to the jet [18]. Additional 64 pumping increases the vessel pressure and makes the flame larger. The turning action of a small "air screw" 65 (usually located in the filler cap) releases the vessel pressure and reduces the flame size [19]. The stove (refer to 66 plate 1), which uses pressure and heat to vaporize the fuel before ignition, provides a hotter and more efficient 67 burning without sooty emissions [20]. 68

```
69 Plate 1 : Pressurized kerosene stove c) Experimental Methods
```

The oil knob of the pressure stove was unscrewed to allow 1 liters of unadulterated kerosene oil into the tank. 70 The oil knob and air release screw was tightened; the cylinder was pressurized with manual pumping action about 71 three to five times. As soon as the kerosene oil comes out from the burner tip, the air Source: [17] The kerosene 72 pressure stove understudy is fed fuel from a tank under pressure created by gravity and a hand pump. To light 73 the stove, the burner assembly is pre-heated with a small amount of alcohol burned in a circular "spirit cup" or 74 priming pan just below the burner. Once heated, the tank is pressurized by means of a hand pump integrated 75 into the tank, which forces the kerosene from the tank up through the rising tube in the ascending pipe to the 76 pre-heated burner head for heating and vaporization. The kerosene is then forced under pressure through a 77 descending tube to the vapour nozzle. The vapourized kerosene gas is sprayed through a jet in the middle of the 78 burner, where it mixes warm up for 30 seconds, the air release screw was tightened and the cylinder was further 79 pressurized to a maximum cylinder pressure of 1.0 bar with a manually operated hand pump. The kerosene rises 80 inside the burner and vaporizes. The kerosene vapor is ignited and the combustion process is initiated, the heat 81 from the flame keeps the burner hot enough to continue the vaporization process and the fuel in the tank warms 82 up to keep the stove pressurized and burns ??22]. The vessel pressure, flame temperature, height and structure 83 were carefully measured and recorded with a pressure gauge mounted on the fuel tank, a thermocouple, vernier 84 height meter and by visual observation for a period of two minutes. The readings are taken for the different vessel 85 pressure levels of 0.8, 0.6, 0.4, 0.2, and 0 bar, and repeated for B5 fuel oil blend (i.e. 5% diesel and 95% kerosene 86 oil), B10, B15, and B20 kerosene oil blends and 100 B (i.e. 100%) diesel oil respectively. The experiment was 87 replicated and the mean values of results at different vessel pressure levels for fuel samples were computed and 88 presented as figures 1 and 2. 89

Furthermore, giving a burner orifice diameter and area of 0.0003m and 7.07 x 10 -8 m 2, and vessel outlet pipe diameter and area of 0.012m and 1.13 x 10 -4 m 2, the Bernoulli's equation was used to calculate the escape velocity of the fuel at the orifice, and was subsequently used to determine the volumetric and mass flow rate of the fuel samples [23], and their results plotted against the vessel pressure levels. In addition to study the effect of vessel pressure on flame structure, direct flame photography was employed.

95 6 d) Statistical validation

The experimental results were also subjected to statistical (i.e. ANOVA and T-test) analysis using the SPSS statistical package; to establish if the multiple linear regression models of the 36 fuel samples comprising of kerosene, B5, B10, B15, B20, and 100B diesel oil combusted at varying vessel pressure levels ranging from 1-0 bar, to ascertain their significance and validity, and also demonstrate if the flame temperature and flame height were truly interacting factors. The vessel pressure was considered as the dependent variable while the flame heights and temperatures of the fuel samples are considered as the independent (i.e. control) variables.

102 **7 III.**

103 8 Results and Discussion

From the result presented in figures 1 and 2, the effect of vessel pressure on flame temperature and flame height, fuel combustion, flame structure and color, are discussed accordingly. a) Effect of vessel pressure on flame temperature It could be seen from figure 1 below that as the vessel pressure of the test stove increases the flame temperature the flame temperature also increases.

However, if the flame temperature of kerosene pressurized at 1 bar (i.e. maximum experimental pressure) is 108 considered as the benchmark, it was observed that the flame temperatures for B2, B10, B15, B20 fuel blends and 109 diesel fuel are lower than the kerosene by 8.82%, 11.76%, 15.58%, 20.59% and 8.82%. Hence, samples of kerosene 110 fuel, B5, B10 and B15 fuel blends exhibited the highest flame temperatures in the group respectively. According 111 112 to Martin et. al. [24] the higher temperatures recorded is attributed to the increased the rate of combustion 113 reactions, and concentrations of reactants caused by the higher vessel pressure. However, the higher temperature of kerosene in this case could be ascribed to its relatively higher calorific value over diesel fuel (refer to table 1) 114 115 and its fuel blends. This is because high pressure is equivalent to high escape velocity and longer spray length, 116 providing opportunity for the fuel to fully atomize and granting excess air access to the combustion process.

test shows that there is a correlation between vessel pressures versus flame height. it could also be seen from 117 figure 2 that the flame height at maximum vessel pressure for B5, B15, B20 fuel blends and diesel fuel are higher 118 than the benchmark by 0.22%, 1.11%, 18.89% and 37.77%. This is with exception of B10 fuel blend that is lower 119 than the benchmark by 8.88%. This exceptional behavior of B10 fuel sample with respect to its flame height 120 could be ascribed to the partial blockage of the It is obvious that from figure 2 that the performance of the 121 122 pressurized kerosene stove under spray nozzle by sooty deposits. However, the foregoing has clearly shown that 123 vessel pressure influences the flame height, while the higher flame height of diesel fuel could be attributed to incomplete combustion and overventilation -i.e. the volumetric flow rate of air is in excess of the stoichiometric 124 amount required for the volumetric flow rate of fuel to burn completely [25]. optimal performance will be 125 close to the pressure at which fluid velocity will equal flame velocity. The combustion quality of the fuels and 126 blends are largely influenced by the calorific values of the fuels, their ignition ability, and stoichiometric mixture, 127 concentrations of the reactant and the specific heat capacity of the fuel. The calorific (heating) value of kerosene 128 is about 1.98% higher than diesel fuel (refer to table 1). The implication of this result is that kerosene and the 129 B5, B10, B15, B20 fuel blends, possess the tendency to combust more efficiently with higher emanation of heat 130 131 than diesel for reasons that adiabatic combustion (flame) temperature increases for higher heating values, inlet 132 air and fuel temperatures and for stoichiometric air ratios approaching one.

In addition, the self-ignition ability of hydrocarbon fuels -represented by the cetane number, also impacts on the combustion process, as it affects the ignition delay time. It has been reported that the higher the cetane number, the shorter the ignitions delay of hydrocarbon fuels and vice versa [26]. To this end, it is important to mention that the Nigerian diesel fuel has a cetane number in the low 40s, while the Nigerian kerosene has an average cetane number of 49 [17]. This implies that the careful blending of kerosene and diesel fuel could result in a blended fuel with cetane numbers in the high end of the range [27]. Hence, this also explains the relatively lower ignition delay period (i.e. 0.0015s) of kerosene in comparison to diesel fuel sample (0.002s).

The combustion efficiency of liquid hydrocarbon fuels could also be better enhanced if the air-fuel ratio is 140 chemically corrected (i.e. stoichiometric). It could be seen from the illustration in figure 3 that the stoichiometric 141 142 mixture of kerosene (15.6) is higher than that of diesel fuel ??14.6). Hence, it implied that more mass of air is required to burn 1kg of kerosene, and partly explains why kerosene and its blended fuel samples under test, 143 burns more richly at higher vessel pressure than diesel fuel. The combustion process is most efficient when the 144 mixture of air and fuel is slightly rich [28]. It is important to add that combustion can be made more efficient, 145 and the amount of energy released maximized if the correct mixture of air is provided to support the combustion 146 process. Excess air however, reduces the ultimate temperature of the product and the amount of energy released. 147 Therefore, an optimum air to 0.0.5 By same token, it could be seen from figure 3 that the fuel mass flow rate 148 increases with vessel pressure, and at maximum vessel pressure (i.e. 1 bar) the mass flow rate of fuel samples B5, 149 B15, B20 fuel blends and diesel fuel rose higher than the benchmark by 0.64%, 0.72%, 0.76%, 1.20% and 3.28%. 150 The higher densities and relative densities Figure 3: Relationship of fuel mass flow rate and vessel pressure (refer 151 to table 2 below) of diesel over kerosene could be responsible for the relatively higher mass flow rate of kerosene 152 -diesel blends and diesel fuel. This is understandable in view of the fact that the implicit variable within the 153 154 governing functions include mass flow rate, atmospheric pressure, orifice size, flow velocity, flame velocity and 155 the calorific value of the fuel. Furthermore, a further study would be required to optimize the performance of the 156 pressurized kerosene cooker. The guess is that substituting vessel pressure at fuel ratio can almost and always be determined depending on the rate, extent of combustion and final temperature. 157

Hence, the air pressurization of the fuel in the cylinder increases the density of air in the cylinder and allows for the fuel/air mixture to escape through a nozzle to ensures better atomization and also enhance fuel droplet vaporization, gasification and combustion. It is important to note that diffusion rates vary with pressure, and

the rates of overall combustion reaction vary approximately with the pressure squared. In same vein, it worthy 161 of note that the rate at which the droplets evaporates and burns is generally considered to be determined by 162 the rate of heat transfer from the flame front to the fuel surface [25]. Nonetheless, considering the double film 163 model for the combustion of liquid fuel (i.e. one film separating the droplet surface from the flame front and 164 the other separating the flame from the surrounding oxidizer atmosphere) with the droplet surface assumed to 165 be slightly below the normal boiling temperature of the fuel, it could be seen from the sf region in figure 4, 166 that the fuel evaporates at the droplet surface and diffuses toward the flame front where it is consumed, and the 167 heat is conducted from the flame front to the liquid fuel and vaporizes [30,25]. The fuel and oxidizer meets at 168 stoichiometric proportions, and react at the flame front. Air from the surrounding atmosphere diffuses into the 169 flame front. While, heat and other combustion products are transported to the surrounding atmosphere (along 170 the s? region) in compliance with Fick's law of diffussion. According to Martins, et. al. [24], higher pressure 171 could also increase the rate of combustion reactions by increasing the concentrations of the reactants to generate 172 higher combustion temperatures with shorter and more compact flames. Another reason that could be attributed 173 for the higher combustion temperature of kerosene and its blended samples is it specific heat capacity. It could 174 be seen from table 3 of the specific heat capacities of some fuel that kerosene with 2010 J/kgK demonstrated 175 a higher value than diesel fuel (1750 J/kgK) and implied that more energy is required to warm kerosene by 1 176 177 degree K. From the images of the flames obtained in plate 2, it could be seen that the flames are bluish at 1bar 178 for kerosene, B5, and B10 blends; at 0.8bars for kerosene, and B5 blends; and at 0.6 bars for kerosene only. Furthermore, light bluish flames were also observed for; B15 blends at 1bar; B10 and B15 at 0.8 bars; kerosene, 179 B5, B10, B15 at 0.6 bars; kerosene, B5, B10, B15, B20, at 0.4 bars; and kerosene, B10, B15, B20 at 0.2 bars. The 180 somewhat fan-shaped bluish flames are suggestive of combustion under-ventilation produced when air supply is 181 reduced below the recommended stoichiometric mixture [24]. 182

In addition, the seemingly elongated orange colored flames manifesting in the combustion of remaining fuel 183 samples in the group, is indicative of over-ventilation, partial (incomplete) combustion, and is also associated 184 with the emission of soot. It was reported that the orange color of diffusion flame in the luminous zone is due 185 to the radiation of carbon particle, formation of soot on the fuel side of the flame, and burnt in the reaction 186 zone to produce the flame temperature Source: [31] [25]. The flames arising from these fuel samples reflects the 187 predominance of diesel fuel, and the evidence of inefficient combustion in these cases could be attributed to the 188 relatively higher specific gravity (0.893), kinematic viscosity (2.7mm 2/s) and lower calorific value (44500 kJ/kg) 189 of diesel fuel over kerosene (refer to table 1). These prevailing properties could also inhibit effective atomization 190 and consequently leads to undesirable combustion performance. According to Linck ,et al. [32], vessel pressure 191 affects flame structure of combusting liquid fuels, and the flame structure depends to a large extent on the features 192 of the combustion air flow and fuel spray through the nozzle, and the effects of flame structure on the combustion 193 behavior, including the composition of the exhaust gases, have also been reported. In the current investigation, 194 the nozzle formed solid-cone spray, with the fuel droplets occurring throughout the cone. 195

e) Result of statistical validation Validated summary of experimental data shown in table 2, gave a computed value for the R 2 as 0.769, thus indicating that the regression was "strong" as about 76.9% of the variation in the vessel pressure could be accounted for by the control variables. The ANOVA analysis in the regression result, shown in table 2, gave a computed value for the F-statistic as 54.794 while the corresponding table value of 3.27 at 0.05 level of significance (q) and (2,35) degrees of freedom showed that the multiple linear regression model was significant and valid. Also large regression sum of squares **??3**.

²⁰² 9 f) Comparative cost analysis

Comparative cost analysis has been made for B5 (95% kerosene and 5% diesel fuel), B10, B15, and B20 blended 203 fuel samples and diesel fuel. The cost analysis has been made for the consumption of 1 litres of fuel by a household 204 at the current official retail pump prices, namely, N155 for diesel fuel and N50 kerosene in Nigeria [34,35]. With 205 the new price regimen, it could be seen from figure 3 below that the present cost of one liter of B5, B10, B15, 206 B20 blended fuel samples are 10.5%, 21.0%, 31.5%, and 42.0% higher than the cost of one liter of kerosene. 207 Hence, the present pricing policy of petroleum products in Nigeria has clearly revealed that kerosene-diesel fuel 208 adulteration is not economical, and will no doubt discourage the illicit practice, unlike in the previous pricing 209 regimen that puts the cost per liter of kerosene higher than that of other petroleum products such as gasoline 210 and diesel, which makes it a prime candidate for adulteration with diesel as it also occurs presently in India [36]. 211

²¹² 10 Regression Standardized Residual

213 11 Conclusion

214 From the foregoing, the following could be concluded: i.

Tested samples of kerosene fuel, B5, B10 and B15 fuel blends exhibited the higher the higher temperatures due to higher rate of combustion reactions, and concentrations of reactants occasioned by the higher vessel pressure, and their relatively higher calorific value. ii.

At the maximum vessel pressure, the flame heights for B5, B15, B20 fuel blends and diesel fuel are higher than

the flame height generated from kerosene fuel. The influence of vessel pressure on the flame height was confirmed.

220 iii.

The combustion quality of kerosene and its blends are to a large extent, affected by the calorific values of the fuels, ignition ability, and stoichiometric mixture, reactant concentrations and their specific heat capacities. iv. The vessel pressure also affects flame structure of combusting liquid fuels, and the flame structure depends to a large extent on the features of the combustion air flow and fuel spray through the nozzle. A bluish flame was observed at 1bar for kerosene, B5, and B10 blends; at 0.8bars for kerosene, and B5 blends; and at 0.6 bars for kerosene fuel. Finally, the adulteration of kerosene with diesel fuel would not yield any economic benefit in terms of profit.

²²⁸ 12 V. Acknowledgement

229 The present work was supported by the Federal Polytechnic, Bauchi, at the Department of Mechanical Engineering

230 Technology. Hence, the authors are grateful to the Management of the institution for allowing the use of its thermodynamic laboratory facilities. 1 - 2

Figure 1: 2 ©

231

 $^{^1 \}odot$ 2013 Global Journals Inc. (US)

 $^{^2 \}odot$ 2013 Global Journals Inc. (US)

Figure 2: Figure 1 :

Figure 3: Figure 2 :

Figure 4: Figure 4 :

Figure 5: Figure 3 :A

Figure 6: Plate 2 :

Figure 7: -Figure 4 :

1				
	Property	Unit	Diesel	Kerosene
	Chemical formula	-	C 12 H 26	C 10 H 22 $$
	Calorific value	kJ/kg	44500	45400
	Self-ignition temperature	o C	725	640
	Final boiling point	o C	369	249
	Ignition delay period	\mathbf{S}	0.002	0,0015
	Flame propagation rate	m cm/s	10.5	11.8
	Flame temperature	οĊ	1715	1782
	Kinematic viscosity @ 39 o C	mm 2	2.7	2.2
	-	/s		
	Specific gravity @ 15.6/15.6 o C	-	0.893	0.843
	Colour	-	Red	Soybolt
				(20 min)
	Sulphur content	wt $\%$	0.16	0.04
	b) Description of pressure stove			

Figure 8: Table 1 :

$\mathbf{2}$

Samples	Kerosene	B5	B10 B15 B20 Diesel			
Density	843	845 848		850	855	893
(kg/m 3)						

[Note: c) Effect of vessel pressure on fuel combustion]

Figure 9: Table 2 :

3

Fuels	Specific heat capacity (J/kg		
	K)		
Gasoline	2220		
Kerosene	2010		
Diesel	1750		
d) Effect of vessel pressure on flame structure and			
color			

Figure 10: Table 3 :

3

	ANOVA		COLLIN	VEARITY DIAGNOSTICS		
Parameter	ValueParameter	em Parame	e @o nditio	onCoefficketts	Т-	ł
					Statis	st
	of		index			
	sq	uares				
R 2	0.769Regressió	228 Consta	n t .00		-	Ś
				1.163	5.972	
		$(b \ 0)$				ł
						v
F-Statistic	54.79 Residuel 9	$972\mathrm{FT}$	9.860	0.002839447	3.319	Ś
		(b 1				
)				
						I
Significance	0.000	$_{\rm FH}$	17.662	$0.120 \ 1.447$	6.410	-
		(b 2)				
)				
of F-statistic						
Figure 5 : Plot of regressive experiment	ntal result					
multi co-linearity was not a problem in	n this application	on as				

VIF < 4 [33], which clearly demonstrate that flame

temperature and flame heights were not significantly interacting factors.

Figure 11: Table 3 :

- [Astm ()] Astm . ASTM Standard Parts 17 and 18. American Society of Testing and Materials, (Philadelphia, Pennsylvania) 1993.
- [Izeze (2012)] 'Between Jonathan and NNPC's criminal kerosene racketeering'. I Izeze . Commentary: Sahara
 reporters 2012. November 28.
- [Odebunmi et al. ()] 'Characterization of crude oils and petroleum products; (I) Elution liquid chromategraphic
 separation and gas chromatographic analysis of crude oil and petroleum Bull'. E O Odebunmi , E A Ogunsakin
 , P E P Ilukhor . *Chem. Soc. of Ethiopia* 2002. 16 (2) p. .
- [Khudyakov ()] Chem Abst. 46, 10844e. 31. Specific heat capacities of fuels, L Khudyakov . http://www.
 engineeringtoolbox.comspecificheatfluids_d_151htm 1955. 6.
- 243 [Martin et al. ()] Combustion characteristics of pressurized swirling spray flame and unsteady two-phase exhaust
- *jet*, B L Martin , K G Ashwani , B Guillaume , KenYu . 2007. U.S.A: AIAA. American Institute of Aeronautics
 and Astronautics Publications.
- [Cngur and Altiparmak ()] Effect of fuel cetane number and injection pressure on a DI Diesel engine performance
 and emissions, Energy and Conservation Management, Y Cngur, D Altiparmak. 2003. 44 p. .
- [Ghassemi et al. ()] 'Experimental study of evaporation of kerosene droplets at elevated pressure and temperature'. H Ghassemi, S W Beak, Q S Khan. The seventh Asia Pacific international Symposium on Combustion and Energy Utilization, Hong kong SAR. December, 2004. p. . (References Références Referencias 15)
- [Kamil et al. ()] 'Experimental study on adulterated gasoline and diesel fuels'. M Kamil , N Sardar , M Y Ansari
 India Chem. Eng. J 2008. 89 (1) p. .
- [Linck et al. (2003)] 'Flow characteristic effects on exhaust gas composition in kerosene spray flames'. M Linck ,
 M Armani , A K Gupta . *IECEC Conference* 2003. August, 17-21, 2003. p. .
- [Rajput ()] Fluid Mechanics and Hydraulic Machines, S. Chand and Company Ltd, R K Rajput . 2004. New
 Delhi. p. .
- [Osueke and Ofondu ()] 'Fuel adulteration in Nigeria and its consequences'. C O Osueke , I O Ofondu .
 International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 2011. 11 (04) p. 34.
- [Smith and Uma (2000)] 'Greenhouse Gases From Small Combustion Devices in Developing Countries'. K R
 Smith , R Uma . EPA Research and Development Report USA 2000. June 2000.
- 261 [Hale ()] C Hale . Domestic Science, Part II, (Britain) 1916. Cambridge University Press. p. .
- [Hillier and Pittuck ()] V A W Hillier , F W Pittuck . Fundamentals of Motor Vehicle Technology, (London)
 1972. Hutchinson Publishers. p. . (Second edition)
- [Gillespie ()] How Does a Kerosene Cooking Stove Work? eHow Contributor, E Gillespie . http://www.ehow.
 com 2013. p. .
- [Narang ()] 'Instruction Manual for Kerosene Pressure Stove'. Narang . http://www.milesstair.com/Bf_
 2412.html.Retrievedonthe2/6/13 Butterfly #2412 Kerosene Pressure Stove, 2013.
- 268 [Primus ()] Instructions for use" Hang Tag (undated, circa, Primus . 1935.
- [Liberman ()] Introduction to Physics and Chemistry of Combustion, M A Liberman . DOI: 10.1007. 2008. Berlin,
 Heidelberg: Springer-Verlag. p. . (Copyright edition)
- [Obodeh and Isaac ()] 'Investigation of performance characteristics of Diesel Engine Fueled with Diesel-Kerosene
 blends'. O Obodeh , F O Isaac . http://www.jeteas.scholarlinkresearch.org
 Trends in Engineering and Applied Sciences 2011. 2 (2) p. . (JETEAS))
- [Encarta ()] 'Kerosene'. Encarta . HTTP:/www.Microsoftencarta.com Encarta Library, 2005.
- [Lawal ()] 'Kerosene adulteration in Nigeria: Causes and effects'. Y O Lawal . http://www.scihub.org/AJSMS
 American. Journal of Social and Mgmt. Sciences 2011. 2 (4) p. .
- [Rajvanshi (2013)] 'Lanstove for rural households kerolanstove'. A K Rajvanshi . Nimbkar Agricultural Research
 Institute (NARI), (Maharashtra, India) 2013. May. p. 415523.
- 279 [Saksono ()] 'Magnetizing kerosene for increasing combustion efficiency'. N Saksono . http://www.mundi.com
- Indonesia 8. Mundimex, 2005. Juni 2005. 1997. Mundimex. Inc., USA. 6. (Hydrocarbon Fuel Research Division
 and Publishers)
- 282 [Mathur and Sharma] M L Mathur, R P Sharma . http://www.amtoniline.com/publication/article 283 jsp? Pubid=1 and id=1171, 6.
- [Sanni ()] Nigeria groan as diesel price hits N160 per liter. The Tribune Newspapers, O Sanni . http:
- //www.tribune.com.ng/index.php/news/25/4/2011.Retrievedon8/7/13 2011.

^{232 .1 ()}

²³³ A Year

12 V. ACKNOWLEDGEMENT

- 286 [Nigerian National Petroleum Corporation, Warri Refining and Petrochemical Co. Ltd NNPC ()] 'Nigerian Na-
- tional Petroleum Corporation, Warri Refining and Petrochemical Co. Ltd'. NNPC 2007. 4 p. 87. (Technical
- 288 Report)
- [Mugaga ()] 'NNPC, PPPRA, PPMC differ on kerosene price'. S Mugaga . http://www.thewillnigeria.
 com.9/4/13 The Will Newspapers, 2012. p. .
- [Bland and Davidson ()] Petroleum Processing Handbook, 4 th edition. William Clovers and sons limited, F W
 Bland, R L Davidson. 1983. New York. p. .
- [Mohan and Singh ()] 'Standardization for automotive exhaust pollution: Some issues in Indian perspective'. D
 Mohan , A K Singh , RS . J. Inst. Eng 2006. 86 p. .
- [Neave ()] Statistics Table for Mathematicians, Engineers, Economist and Behavioral and Management Sciences,
 H R Neave . 1978. London: George Allen and Unwn Publishers.
- [Muralikrisha et al. ()] 'Studies on exhaust emissions of catalytic coated spark ignition engine with adulterated
 gasoline'. M V S Muralikrisha , K Kishor , R Venkata . J. Environ. Sci. Eng 2006. 48 (2) p. .
- [Moh ()] 'The design and construction of a portable kerosene pressure cooker'. K D Moh. http://www.ajol. info African Research Review 2010. 4 (2).
- 301 [Agbon ()] The real cost of Nigerian petrol, I Agbon . http://www.saharareporters.com/article/
- ³⁰² real-cost-nigeria-petrol-drizielen-agbon 2011.