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Process Capability Analysis using Curve Fitting
Methods

John J. Flaig * & Fred Khorasani °

Abstract - This paper offers a new approach to process
capability measurement based on techniques for estimating
the fraction nonconforming in the tails of the observed process
distribution. The methodology proposed can provide
significantly more accurate results and applicability to a much
larger class of process distributions than the standard
approaches of calculating capability indices based on making
parametric assumptions or using standard curve fitting
techniques.

The tail probability estimation approach to capability
analysis can significantly enhance the practitioners
understanding of the processes they are aftempting to
develop and/or control because it provides a more robust and
accurate measure of capability. This clearer insight into
process performance becomes increasingly important as the
allowable fraction nonconforming levels decline.

Keywords : process capability, fraction nonconforming
estimation.

L. HisTory

t is critical in process development and ongoing

monitoring to have an understanding of how capable

the process is of meeting requirements. These
requirements reflect internal and external demands that
are expressed in terms of specifications. Historically,
assessment of process capability using the indices such
as Cp and Cpk became popular in the early 1980’s.
Engineers used these indices to determine if a process
should be released to production (i.e., during
qualification) and customers demanded that suppliers
provide them as measures of their process
performance. Clearly, important decisions were based
on these indices. Then, around 1990, questions began
to be raised about their validity in industrial applications
where the assumptions underlying the calculation of the
indices were often not met. Numerous papers have
been published that discuss the shortcomings of
capability indices [Gunter, 1989 and 1991][Somerville,
1997]. However, we still find today that capability indices
are the primary tool for assessing and communicating
the process capability.
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[ [NTRODUCTION

If process capability can be defined as the
ability of a process to produce products or services that
meet the specified requirements [ASQC, 1983]
[Duncan, 1986], the question then becomes; how can
this ability be measured? A reasonable approach might
be to try to estimate the probability that the product or
service falls within the acceptance region defined by the
specifications. There are three common methods for
generating this estimate:

1. Empirical: Based on sampling the process to
determine the number of conforming items divided
by the total number of items sampled. This is the
relative  frequency approach to  capability
assessment and in the limit it would provide a true
measure of capability assuming that the process is
stable. Unfortunately, many real world processes
are not stable.

2. Parametric: Based on the assumption that the
observed values come from some theoretical
distribution. This top-down approach is the classical
method used by many practitioners to assess
process capability [Somerville, 1997]. The
parametric assumption might be given credibility
because the nature of the process may “a priori”
give rise to the theoretical distribution or it might be
supported by goodness-of-fit tests. This approach
has two risks, the first is the assumption of stability
and the second is the subjective nature of the
assumed distribution.

3. Modeling: Based on curve-fitting techniques such
as polynomial regression or Johnson curves. This is
a bottom-up approach [Pyzdek, 1992] [Farnum,
1996]. This approach also assumes process
stability. However, model selection is less subjective
because it is based upon the limited set of choices
typically offered by the computer program. The
problem is that the limited set may not include a
“good” fitting distribution.

There is also another and more common
approach to measuring and communicating the
assessment of process capability. This methodology
involves generating so-called capability indices. These
indices are generally just functions of the processes
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descriptive statistics and specifications limits. Based on
our experience using the fraction conforming as an
estimator of process capability offers several
advantages over the use of capability indices because it
is more intuitive. That is, most people have an intuitive
understanding of what percent nonconforming means
(i.e., high yield implies the process is capable and low
yield implies that it is incapable) whereas there is no
such intuitive understanding for an abstract numeric
capability index. In addition, there are so many
capability indices (in excess of one hundred) that it is
difficult to recall the merits of each.

[II.  ALTERNATE METHODS

There are a number of different approaches to
estimating the fraction nonconforming. For example,
Pyzdek and Farnum discussed using Johnson curves to
estimate the fraction nonconforming [Pyzdek, 1992]
[Farnum, 1996]. Other researchers have expressed
concerns with the curve fitting approach because of
accuracy issues [Wheeler, 1995]. The author’s agree
with Wheeler that curve fitting methods will typically not
be able to resolve nonconformance rates down to low
levels unless there is a relatively large amount of data
available.

If the process distribution and specification
limits are reasonably well structured (i.e., the process
distribution is mostly within the specification limits), then
the problem of determining process capability becomes
one of estimating tail probabilities. A major criticism of
the curve fitting approach is that a single function is
probably not sufficient to fit the observed data in the tails
and in the middle of the distribution simultaneously. This
follows from the observation that least squares
regression analysis will tend to fit the bulk of the data
(i.e., the central mass) and miss-fit the limited amount of
data in the tails. Because of this, attempts to fit
parametric distributions such as Normal, Johnson, or
Weibull to mound shaped empirical data sets will give
rise to tail fit errors. This problem is further complicated
because real world processes are generally dynamic —
meaning that the data may not be coming from a single
or static distribution generator.

Our proposed approach to fitting the process
distribution differs from the classical curve fitting
methodology in two ways:

1. The distribution is divided into three parts (left,
middle, and right) and the tails are fit separately.

2. Awell-known and very flexible modeling approach is
used to fit the tails of the distribution so that the left
and right tails are approximated by unique
functions.

The first point focuses attention and statistical
techniques where they should be -- on the tall
probabilities and not the bulk of the distribution.
Johnson, Kotz and Pearn proposed a somewhat similar
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analysis approach [Johnson, 2006]. However, they
divided the process distribution in half, which is an
improvement but still has the central mass fitting issue.

The second point allows the practitioner to fit
the observed data in a realistic way. For example, there
are distributions where the observed data is increasing
and then decreasing in the tail, so the fitting function
should have this property. The classical approach of
assuming a Normal distribution (which goes to zero in
the tail) is clearly unrealistic. Bounded or truncated
distributions offer another example, where the standard
approaches do not work very well. For example, fitting a
Johnson curve to a bounded distribution gives rise to a
function (SB type) that goes to zero in the tail whereas
the bounded function may have no tail area (e.g., if the
LSL is less than the lower bound).

V. ANALYTIC METHODOLOGY

Techniques from reliability analysis will be used
to fit various functions to the tail distributions of data
drawn at random from known distributions [Tobias,
1995]. The fitted curve results will be compared with the
true results from the actual distribution and contrasted
with the results of using the classical assumption of
normality.

The first class of distributions to be considered
are the bounded type (i.e., the domain (t) of the function
is bounded on one or both sides and the range (y) does
not go to zero on at least one side). A triangular
distribution defined by, y = -2t+2 on the interval [0, 1]
will be used in this example. This function was selected
because it offers a challenging test of the classical
normality assumption and its ability to yield a realistic
assessment of process capability.

The analysis is carried out as follows and
displayed in Table 1 and Figure 1:

1. One thousand data points are generated at random
from the triangular (Tri) distribution

2. The datais sorted smallest to largest

3. The first one hundred (left tail) and last one hundred
values (right tail) are selected

4. Normal (Nor), Johnson (Jon), and Weibull (Wei)
distributions are fitted to the tail values

5. The PDF and CDF functions for each distribution are
generated and graphed

6. Several estimates of forecast accuracy are
generated so that the results can be compared.



Table 7 Tail Probability Analysis

Left Tail
CDF PDF CDF PDF ERR ABS CDF PDF ERR ABS CDF PDF ERR ABS
t Tri Tri Nor Nor Nor Err Wei Wei Wei Err Jon Jon Jon Jon
0.00 1,000,000  2.000 993,862 0.527 6,138 6,138 1,000,000 - 0 0 975,008 14.582 24,992 24,992
0.01 980,100 1.980 986,112 1.076 -6,012 6,012 981,574  2.049 -1,474 1,474 769,536 22.893 210,564 210,564
0.02 960,400 1.960 971,070  2.005 -10,670 10,670 960,321 2.182 79 79 537,568 23.250 422,832 422,832
0.03 940,900 1.940 944,428 3.406 -3,528 3,528 938,173 2.240 2,727 2,727 306,798 22.778 634,102 634,102

0.04 921,600 1.920 901,371 5.276 20,229 20,229 915,630  2.265 5,970 5,970 89,640 19.542 831,960 831,960
0.05 902,500 1.900 837.867 7.453 64,633 64,633 892,946  2.270 9.554 9,554 #NUM! #NUM! #NUM! #NUM!
0.06 883,600 1.880 752,397 9.601 131,203 131,203 870,280  2.262 13,320 13,320 #NUM! #NUM! #NUM! #NUM!
0.07 864,900 1.860 647,425 11.278 217475 217475 847,738  2.245 17,162 17,162  #NUM! #NUM! #NUM! #NUM!
0.08 846,400 1.840 529,775 12.081 316,625 316,625 825,396  2.222 21,004 21,004  #NUM! #NUM! #NUM! #NUM!
0.09 828,100 1.820 409,446 11.801 418,654 418,654 803,312 2.194 24,788 24,788  #NUM! #NUM! #NUM! #NUM!
0.10 810,000 1.800 297,140 10.513 512,860 512,860 781,527  2.162 28,473 28,473  #NUM! #NUM! #NUM! #NUM!

Mean 151,601 155,275 11,055 11,323 #NUM! #NUM!
Sigma 188,423 10,633 #NUM!
Right Tail
CDF PDF CDF PDF ERR ABS CDF PDF ERR ABS CDF PDF ERR ABS

t Tri Tri Nor Nor Nor Err Wei Wei Wei Err Jon Jon Jon Jon
0.90 10,000 0.200 8,179 0.146 1,821 1,821 9,259 0.155 741 741 100,794 1.895 -90,794 90,794
091 8,100 0.180 6,832 0.124 1,268 1,268 7,815 0.134 285 285 83,112 1.644  -75,012 75,012
0.92 6,400 0.160 5,685 0.106 715 715 6,568 0.116 -168 168 67,835 1414 -61,435 61,435
0.93 4,900 0.140 4,712 0.089 188 188 5,497 0.099 -597 597 54,762 1.204  -49,862 49,862
0.94 3,600 0.120 3,891 0.075 -291 291 4,581 0.085 -981 981 43,687 1.014  -40,087 40,087
0.95 2,500 0.100 3,200 0.063 =700 700 3,801 0.072 -1,301 1,301 34,405 0.845 -31,905 31,905
0.96 1,600 0.080 2,622 0.053 -1,022 1,022 3,140 0.061 -1,540 1,540 26,717 0.696  -25,117 25,117
0.97 900 0.060 2,139 0.044 -1,239 1,239 2,582 0.051 -1,682 1,682 20,429 0.565 -19,529 19,529
0.98 400 0.040 1,739 0.036 -1,339 1,339 2,114 0.043 -1,714 1,714 15,356 0452  -14,956 14,956
0.99 100 0.020 1,408 0.030 -1,308 1,308 1,722 0.036 -1,622 1,622 11,326 0.356  -11,226 11,226
1.00 0 0.000 1,135 0.025 -1,135 1,135 1,397 0.030 -1,397 1,397 8,177 0.276 -8,177 8,177
Mean -277 1,002 -907 1,093 -38,918 38918
Sigma 1,121 857 27,429

Total Distribution

CDF PDF CDF PDF ERR ABS CDF PDF ERR ABS CDF PDF ERR ABS
t Tri Tri Nor Nor Nor Err Wei Wei Wei Err Jon Jon Jon Jon
0.00 1,000,000 2.000 927,658 0.599 72,342 72,342 1,000,000 - 0 0 979,148 0.893 20,852 20,852

0.10 810,000 1.800 847,031 1.027 -37,031 37,031 803,882  2.030 6,118 6,118 816,764 2.060 -6,764 6,764
0.20 640,000 1.600 722,069 1.458 -82,069 82,069 614,642 1.730 25358 25,358 608,420 1.995 31,580 31,580
0.30 490,000 1.400 561,281 1.714 -71,281 71,281 459,333 1.378 30,667 30,667 428,443 1.587 61,557 61,557
0.40 360,000 1.200 389,522 1.668 -29,522 29,522 337.850 1.060 22,150 22,150 291,089 1.169 68,911 68,911
0.50 250,000 1.000 237,197 1.343 12,803 12,803 245434  0.798 4,566 4,566 191,981 0.827 58,019 58,019
0.60 160,000  0.800 125,045 0.895 34,955 34,955 176,481 0.590 -16,481 16,481 122,894 0.568 37,106 37,106
0.70 90,000  0.600 56,493 0.494 33,507 33,507 125,792 0.431  -35,792 35,792 76,073 0.379 13,927 13,927
0.80 40,000  0.400 21,707 0.226 18,293 18,293 88,975 0.311  -48,975 48,975 45,239 0.246 -5,239 5,239

0.90 10,000 0200 7,054  0.085 2,946 2,946 62,503 0223 -52,503 52,503 25,595 0.153  -15,595 15,595

1.00 0 0.000 1931 0.027 -1,931 1,931 43,635  0.158 -43,635 43.635 13,589 0.091 -13,589 13,589
Mean 4272 36,062 9,866 26,022 22,797 30,285
Sigma 46,848 31,102 31,131
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Flgure 7 Approximating a Triangular Distribution

V.  ANALYSIS

It can be seen from Table 2 that the CDF errors
for Weibull and Normal were about equal in the right tail
and both were significantly better than Johnson. For the
left tail the Weibull error is significantly less than Normal
or Johnson. Thus, the Weibull estimates more accurately
reflect the true tail probabilities than does the Normal or
Johnson curve for this triangular distribution.

Table 2 : Errors in Estimating Probabilities (DPM)
Left Tail (0, .1) Right Tail (.9, 1) Total Distribution

Weibull 11,323 * 1,093 26,022
Normal 155,275 1,002 36,062
Johnson Very Large 38,918 30,285

* Mean absolute deviation of the True CDF from the
Estimated CDF measured in defectives per million
(DPM).

The second type of distribution to be
considered is the unbounded type. The data for this
distribution arose as part of a real world study at a
semiconductor equipment manufacturer. Five hundred
and sixty nine readings were taken and the distribution
formed by this data is displayed in Figure 2:

© 2013 Global Journals Inc. (US)

Figure 2 : Real Process Histogram and Normal
Distribution

The distribution has a mean of 12.482 and a
standard deviation of 1.395; it is roughly symmetrical
and highly peaked (as indicated by a kurtosis of 7.5).
This distribution is also non-Normal as can be seen by
comparing it to the superimposed Normal distribution
and this is confirmed by the Shapiro-Wilk’s normality test
statistic of .932.

If the USL = 17.5 and LSL = 10, then the
fraction nonconforming can be estimated based of the
various distribution assumptions. This analysis is given
below:



Observed

The amount of product falling outside of specification limits
based on the observed data is given below:

Percentage of units above the USL =
Percentage of units below the LSL =
Total percent nonconforming =

Normal

Assuming normality, the amount of material falling outside

the specification limits is given below:

Percentage of units above the USL =
Percentage of units below the LSL =
Total percent nonconforming =

Johnson

1.23% 12,302 DPM
1.41% 14,060 DPM
2.64% 26,362 DPM
0.02% 237 DPM
3.98% 39,754 DPM
4.00% 39,990 DPM

Using a Johnson curve to approximate the observed distribution we have:

Percentage of units above the USL =
Percentage of units below the LSL =
Total percent nonconforming =

‘Weibull

0.04% 385 DPM
2.31% 23,053 DPM
2.34% 23,437 DPM

Using a Weibull curve to approximate the observed distribution we have:

Percentage of units above the USL =
Percentage of units below the LSL =
Total percent nonconforming =

It can be seen from Table 3 that the Weibull
fraction nonconforming matched the observed values
better than the Normal or Johnson in both the left and
right tails. Thus, the Weibull estimates more accurately
reflect the observed tail probabilities than does the
Normal or Johnson curve for this empirical distribution.

Table 3 : Tail Probabilities (DPM)

Left Tail Right Tail
Observed 14,060 12,302
Weibull 14,261 11,367
Johnson 23,053 385
Normal 39,754 237

The most disconcerting part of this study is the
realization that many practitioners are currently basing
their process capability analysis and conclusions on the
assumption of normality, which can be seen, in this
example, to yield very unrealistic results.

VI.  SUMMARY

The Weibull tail fitting approach to capability
analysis has been shown to offer good accuracy in
estimating the fraction nonconforming when compared

1.14% 11,367 DPM
1.43% 14,261 DPM
2.56% 25,628 DPM

with two other common fitting distributions in the
examples tested. The use of capability indices for
measuring process capability seem weak because they
offer limited intuitive communication ability and they do
not map one-to-one into an accurate estimate of the
fraction nonconforming which is what management is
interested in knowing. The standard curve fitting
approach is handicapped by the attempt to force a
single function to fit the entire distribution (which may be
a mixture of several distributions) when only the tails are
generally of interest in capability analysis.

The merits of this new approach are:

1. It attempts to estimate an intuitively reasonable
measure of process capability (i.e., the fraction
conforming which is one minus the fraction
nonconforming).

2. It separates the data distribution into three parts (left
tail, middle, and right tail) so that the analysis can
be focused where it should be -- on the tails. This
approach results in significantly increased accuracy

in estimating the tail probabilities.

3. Using the Weibull curve offers significantly greater
flexibility than Normal or Johnson curves when
applied to the tails. This increased flexibility
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translates into a greater ability to mimic the
observed data distribution, which resulting in more
accurate tail probability estimates.

The probability density functions (pdf's) used in

this paper are listed below:

Normal

fity=—L 2% _p<p<mw, 6>0,-0<t< o

1
cy2m

Johnson

fiy=-L 22, -w<z<w -w<t< o
V2n

z=y +nki(t, 2, ¢)
kit », &)= Sinh'l(t'TS: Unbounded (SU type)

_te |
A+e-t)

ks(t, 7 ) = Inft=

ka(t, 2, &) = ln( Bounded (SB type)

Lognormal (SL type)

Weibull

10.
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