Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

1	Finger Typed Electrode Based Electro-Optical Demodulator
2	Fabricated on High Resistivity Silicon
3	Dr. Quazi Delwar Hossain ¹
4	1 Chittagong University of Engineering and Technology, Chittagong, Bangladesh
5	Received: 10 December 2012 Accepted: 5 January 2013 Published: 15 January 2013
6	

7 Abstract

- ⁸ This paper focus on a finger typed electrode based electro-optical photo mixing demodulator.
- 9 This device is fabricated on high resistivity silicon in custom technology. The main

¹⁰ performance indicators uch as DC characteristics, DC and AC demodulation contrast and

¹¹ phase-linearity measurement of a test sample are experimentally characterized. Experimental

¹² results exhibit a good DC charge separation and good dynamic demodulation capabilities

¹³ from 100Hz to 30MHz. The average linearity error of finger typed electrode device for square

14 wave 4.09

15

18 1 INTRODUCTION

ecently a lot of effort has been concentrated to develop standard 3D vision imagers due to the drastic increase
in demand of 3D imaging system. The 2D-imaging system can evaluate only the intensity projection of a scene,
there is no information about the depth of the 3D objects.

Range-imaging sensors acquire threedimensional (3D) maps from a scene and can be used in a variety of applications such as bio medical appliances, surveillance system; several applications in automobiles, robomechatronics single point measurement etc. 3D image isextracting information from the geometric estimation of third co-ordinate of a scene.

In this work, we present a finger typed field assisted electro-optical demodulator fabricated in custom technology. After reviewing related research work in Section 2, the device architecture with its working principle and ISE-TCAD simulation are introduced in Section 3. In Section 4 the electro-optical characteristics of the device is reported. Finally the paper is concluded in Section 5.

A number of applications that can detect the time or phase information of reflected light for 3D imaging 30 are available in the literature. Depth information can be determined by correlating the incoming modulated 31 light signal from the scene with a reference signal synchronous with the modulation signal of the light source 32 []. In time-of-flight optical ranging, the phase information is used to plot the distance map of the observed 33 scene, thus enabling the reconstruction of the shape and position of the observed objects [2]. TOF technique 34 provides the best performance in terms of acquisition speed, reliability, overall cost of the system and is most 35 36 suited to integrate electronic circuitry with more functionality. Several studies on image capturing techniques 37 using specialized pixels coupled with active illumination have reported to produce images with information even 38 at a low intensity level ??3 4]. TOF based 3D imagers so far reported in different literatures depending on the 39 type of photo detector used in the pixels.

The time or phase information in addition to signal intensity is based on a variety of lightsensitivedevices such
as: p-i-n photodiodes, linear or Geiger mode avalanche photodiodes and photomultipliertubes. Several works ??5
-8] reported a standard photodiode coupled with complex readout circuitry using indirect time-of-flight.

The key element of 3D range camera of photo demodulators have been implemented with different types of technologies such as: Charged Couple Device (CCD), Complementary Metal Oxide Semiconductor (CMOS) and

Index terms— electro-optical demodulator, high resistivity silicon, demodulation contrast, photonic device,
 modulation frequency.

4 B) DYNAMIC CHARACTERISTICS

CMOS/CCD hybrid approach. The photo generated charge is mixed on two or more photo-gates thus achieving 45 an intrinsic demodulation effect ??9 -12]. The advantage is the read-out channel simplicity which results in a 46 small pixel size. The disadvantages are the lower sensitivity due to the presence of the "photo-gate", the lack of 47 immunity to the ambient light and the cost of the nonstandard technology. A Photonic Mixer Device (PMD) is an 48 interesting solution for dynamic 3D-vision that is reported in [3]. An alternative demodulating detector structure, 49 the Current Assisted Photonic Demodulator (CAPD) has been reported in [14]. The function of detection and 50 demodulation in a single device uses a modulated electric field that infiltrates deeper into the substrate to enhance 51 the charge separation and collection mechanism. A linear Current Assisted Photonic Mixing Device fabricated on 52 high resistivity silicon has been described in [15]. 53

⁵⁴ 2 III. DEVICE ARCHITECTURE AND WORKING PRINCI ⁵⁵ PLE

A finger-typed electrode based electro-optical demodulator consists of multiple strips. The cross sectional view 56 and the layout of the device is shown in Figure 1 (a) and (b) respectively. The above Figure 1(a) shows an active 57 pixel that contains a finger typed photonic mixing demodulator that is integrated with a read out circuit and a 58 row select transistor for each collecting electrode. This device has four electrodes, two of them known as collecting 59 electrodes and connected to V ce1 and V ce2 and rest of them are known as modulating electrodes and connected 60 toV me1 and V me2 These modulated electrodes are connected to the device substrate. This device consists 61 of nine collecting electrodes. Among these electrodes, the seven central regions (from region 2 to region 8 as 62 shown in Figure ??01) consist of a p+ type detection junction and two n+ type substrate contacts. The rest of 63 collection regions contain one collecting junction and one substrate contact, like the region 1 and 9 (Figure ??1) 64 [16]65

All of the substrate contacts and the collection junctions are connected as shown in the device cross sectional diagram. The collecting electrode V ce1 and the modulating electrode V me1 are connected to the 2, 4, 6 and 8 regions according to the detection junctions and substrate contacts. On the other hand, the collecting electrode V ce2 and the modulating electrode V me2 are V me2 -V me1 is applied at the modulated electrode V me2 . An electric field formed inside the substrate of the device guides the photo-generated charge carriers towards the

 $_{71}$ detection electrode V ce2 .

72 At 780 nm light incident on the device surface the hole current density of this device shown in Figure 2.

his simulated photograph shows the region 1 and 2 according to the cross sectional view of the device shown in Figure 1(a). Most of the generated holes move toward the collecting electrode V ce2, guided by the electric field with a voltage difference applied between two modulating electrodes i.e. V me2 > V me1.

⁷⁶ 3 IV. PERFORMANCE CHARACTERISTICS OF THE DE ⁷⁷ VICE

The customize Fabricated structure is characterized electrically and optically. The demodulation contrast of the 78 device and the effect of frequency and modulation voltage on it are assessed. Phase measurements are carried 79 out to evaluate linearity of the device. connected to the region 1, 3, 5, 7 and 9 accordingly. This device is also 80 enclosed with an n+ bulk-contact, shared along the array and placed at a minimum distance of about 20?m 81 from the pixel boundary. A p+ring is surrounded by n+ bulk-contact at a distance of about 20?m for better 82 isolation of each device. The distance between the neighboring modulating electrodes is 20 ?m and the total 83 area of this device is 0.4 mm \times 0.4 mm. Firstly, the device simulation software ISE-TCAD is used to investigate 84 the operational behaviour of the device. In this device a potential difference is applied between the modulating 85 electrodes to direct the signal charges towards the two detection regions. Now we can calculate the demodulation 86 contrast by using the following equation. The device shows a maximum DC demodulation contrast larger than 87 90%, thus indicating that, this device is potentially enabling a very efficient mixing process. 88

⁸⁹ 4 b) Dynamic Characteristics

In order to measure average current at the collecting electrodes and the dynamic demodulation contrast we 90 have conducted and experiment. The schematic representation of this experiment set up is shown in Figure 5. 91 characterizations Two sinusoidal waves are generated by using a function generator. One of the two sinusoidal 92 93 waves is used to modulate a laser emitter and illuminate the device. The other is connected to the input of a 94 differential amplifier. The differential amplifier outputs with 180 0 phase shift are connected to the modulating 95 electrodes V me1 and V me2 of the device. The electric field formed in the substrate average current through 96 the collecting electrodes V ce1 and V ce2 is read out with a Semiconductor Parameter Analyzer. For this 97 measurement, the sinusoidal signal for laser emitter and two modulating signals are needed to use with an appropriate synchronization. At different modulation frequencies, the average current is measured under a 650nm 98 red laser with 90% modulation depth used to illuminate the test device. The capability to separate and transfer 99 the charges of a sensor to the corresponding output node can be expressed as a demodulation contrast. For data 100 acquisition a LABVIEW software program was developed for the interface with PC and the experimental set-up. 101

The dynamic demodulation contrast is the most important performance indicator for this device. The demodulation contrast depends on both the amplitude of the modulation voltages and frequencies. The dynamic demodulation contrast can be defined as:

Where I max and I min are the photo-generated currents flowing at collecting electrodes V ce1 and V ce2.
 The demodulation contrast for the finger typed device as a function of the modulation voltage amplitude at eight
 different frequencies from 100Hz to 30MHz is shown in Figure : 6.

By increasing the modulation voltage it should be possible to increase the majority current that cause the drift 108 of the minority carriers, namely holes. When the modulation voltage is applied to the modulating electrodes, the 109 photo generated holes arrive at the collecting electrode of the device. If applying more voltages, the electric field 110 penetrates deeper in the substrate so that more holes reach detection node resulting in a higher demodulation 111 contrast. Due to the larger voltage applying at the modulating electrodes the power consumption is increased. 112 So the amplitude of modulation voltage should be carefully chosen. By increasing of the modulating frequency 113 the decrease of the demodulation contrast can be described with respect to diffusion time. The photo-generated 114 charges in the deeper of the substrate need more time to reach the active region where the demodulating electric 115 field is present and thus reduces the demodulation contrast. 116

The phase linearity measurements performed between the applied phase and measured phase of the device. 117 118 In these measurements a variable phase delay V is applied between the laser input to illuminate the device and two modulation electrodes of the device. The value of Vcan be recovered acquiring four amplitude measurements 119 with four different phase shifts 11, 12, 21 and 22 applied to the modulated laser signal considered as -180°, -90°, 120 0° and $+90^{\circ}$ respectively [17]. The phase shift can be calculated with the equation (ii) given below: At three 121 different frequencies-3MHz, 1 MHz and 100 kHz the C-V response of the device is shown in Figure ?? 9. Due to a 122 larger depletion width the higher reverse bias produces a lower capacitance. At lower frequency, the capacitance 123 is larger than at higher frequency. Because of their finite charging and discharging time the deep-level impurities 124 in the space charge region make the capacitance to be frequency dependent [18,19]. 125

126 5 CONCLUSION

This paper has described the characterization of a finger typed electro-optical demodulator fabricated in a custom 127 technology on high resistivity silicon substrates. A 400 m \times 400 m structure with finger typed electrodes has 128 been considered and tested in terms of electrical and electro-optical performance. The maximum phase linearity 129 error between the applied phase and the measured phase is 4.09% for square wave. In particular, the DC and 130 dynamic demodulation performance of the multiple strip devices has been investigated. The measured dynamic 131 demodulation contrast is more than 20% at 20 MHz modulation frequency. This customize device corresponds 132 to understand field assisted photo mixing demodulator in term of optimizing the performance to make them in 133 complementary metal-oxide-semiconductor technology. 134

 $^{{}^{1}}F \otimes 2013$ Global Journals Inc. (US)

 $^{^{2}}$ © 2013 Global Journals Inc. (US)

 $^{^3{\}rm F}$ Finger Typed Electrode Based Electro-Optical Demodulator Fabricated on High Resistivity Silicon © 2013 Global Journals Inc. (US)

Figure 1: Figure 1 :

Figure 2: Figure 2 :

Figure 3: Finger

Figure 4: Figure 3 :

Figure 6: Figure 5 :

V me2 (V)	I ce1 (?A)	I ce2 (?A)
0.000	0.442	20.280
0.200	0.932	19.790
0.400	1.895	18.820
0.600	3.324	17.480
0.800	5.006	15.840
1.000	6.783	14.150
1.200	8.282	12.740
1.400	9.392	11.740
1.600	10.250	10.970
1.800	10.930	10.380

Figure 7: Table 1 :

5 CONCLUSION

135 .1 ACKNOWLEDGEMENTS

- This work has been funded by "Netcarity" European Integrated Project (www.netcarity.org) and supported by the Fondazione Bruno Kessler (FBK), Trento, Italy.
- [Stoppa et al. (2004)] 'A 16x16-Pixel Range-Finding CMOS Image Sensor'. David Stoppa , Luigi Viarani ,
 Andrea Simoni , Lorenzo Gonzo , Gianmariapedretti Mattiamalfatti . Proceedings of IEEE European
 Solid-State Circuits Conference-ESSCIRC'04, (IEEE European Solid-State Circuits Conference-ESSCIRC'04)
 September, 2004. p. .
- [Schrey et al. (2004)] 'A 4x64 Pixel CMOS Image Sensor for 3D Measurement Applications'. O M Schrey , P
 Elkhalili , ' Mengel , M Petermann , W Brockherde , B J Hosticka . *IEEE Journal of Solid State Circuits*
- Elkhalili, 'Mengel, M Petermann, W Brockherde, B J Hosticka. IEEE Journal of Solid State Circuits
 July, 2004. 39 (7) p. .
- 145 [Stoppa et al. ()] A 50×30 pixel CMOS sensor for TOFbased real time 3D imaging" proceedings of the IEEE
- workshop on CCD and advanced Image sensors, D Stoppa , L Viarani , A Simoni , L Gonzo , M Malfatti ,
 G Pedretti . 2005. p. .
- [Jeremias et al. (2001)] 'A CMOS Photosensor Array for 3D Imaging Using Pulsed Laser'. R Jeremias , W
 Brockherde , G Doemens , B Hosticka , L List , P Mengel . *Proceedings of ISSCC'01*, (ISSCC'01Sanfransisco
 (CA) USA) Feb, 2001. 16.
- [Moring et al. ()] 'Acquisition of three dimensional image data by a scanning laser range finder'. I Moring , T
 Heikkinem , R Myllyla , A Kilpela . *Opt.Eng* 1989. 28 p. .
- [Oggier et al. ()] 'An all solid-state optical range camera for 3D real-time imaging with sub-centimeter depthres olution(SwissRanger)'. T Oggier , M Lehmann , R Kaufmann , M Schweizer , M Richter , P Metzler , G Lang
 F Lustenberger , N Blanc . Proceeding of SPIE 2003. 5249 p. .
- [Ohta et al. (2003)] 'An Image Sensor with an In-Pixel Demodulation Function for Detecting the Intensity of a
- Modulated Light Signal'. J Ohta , K Yamamoto , T Hirai , K Kagawa , M Nunoshita . *IEEE Trans. ED* January 2003. 50 (1) p. .
- [Miyagawa and Kanade ()] 'CCD-Based Range-Finding Sensor'. R Miyagawa , T Kanade . *IEEE Trans. ED* 1997. 44 (10) p. .
- [Schwarte (2001)] 'Dynamic 3D Vision'. Rudolf Schwarte . Proceedings of International Symposium on Electron
 Devices for Microwave and Optoelectronic Applications, (International Symposium on Electron Devices for
- Microwave and Optoelectronic Applications) 15-16 November, 2001. p. .
- Idaehne Haussecker Geissler ()] 'Handbook of Computer Vision and Applications'. Sensors and Imaging, B
 Jaehne, H Haussecker, P Geissler (ed.) (San Diego) 1999. Academic Press. 1.
- 166 [Mesa Imaging website] http://www.swissranger.ch Mesa Imaging website,
- 167 [Robinson ()] Micro probe analysis, C F Robinson . 1973.

177

- [Quazi Delwar Hossain et al.] 'Multiple Strip Photo Mixing Demodulator for 3D Imaging Implemented on High
 Resistivity Silicon'. Gian-Franco Dalla Quazi Delwar Hossain , Lucio Betta , David Pancheri , Sagar Kumar
- Stoppa, Dhar. Proceedings of 7th International Conference on Electrical and Computer Engineering, (7th
 International Conference on Electrical and Computer Engineering) p. .
- in international conference on Electrical and computer Engineering) p. .
- [Van Nieuwenhove et al. ()] 'Novel Standard Detector using majority for guiding Photo-Generated Electrons
 towards Detecting Junctions'. W Van Nieuwenhove, M Vandertempel, Kuijik. Proceedings Symposium
 IEEE/LEOS Benelux Chapter, (Symposium IEEE/LEOS Benelux Chapter) 2005. p. .
- [Pancheri et al. ()] L Pancheri , D Stoppa , N Massari , M Malfatti , C Piemonte , G.-F Dallabetta . Current
 Assisted Photonic Mixing Devices Fabricated on High Resistivity Silicon" Sensor Conference, (Page) 2008. p.
- 178 [Schroder ()] D K Schroder . Semiconductor material and device characterization, (New York) 1998. Wiley. (2nd 179 ed)
- [Lange and Seitz (2001)] 'Solid-State Time-of-Flight Camera'. R Lange , P Seitz . *IEEE Journal of Quantum Electronics* March 2001. 37 (3) p. .
- [Ando and Kimachi ()] 'Time-Domain Correlation Image Sensor: First CMOS Realization of Demodulator Pixels
 Array'. S Ando , A Kimachi . *IEEE CCD/AIS Workshop*, (Karuizawa, Japan) 1999. p. .
- [Lange et al. ()] 'Timeof Flight Range Imaging with a Custom Solid State Image Sensor'. R Lange , P Seitz , A
 Biber , R Schwarte . EOS/SPIE International Symposium, (Munich, Germany) June 14-18 1999. p. .