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Abstract -

 

In this paper, we present in-depth analysis of the 
classical double inverted pendulum (DIP) system using the 
DIP

 

modeling

 

and the pole placement approach to control it. 
The double inverted pendulum system has the characteristics 
of multiple variables, non-linear, absolute instability; it can 
reflect many key issues in the progress of control, such as 
stabilization, non-linear and robust problems etc. DIP model is 
a simplified model of the anterior-posterior motion of a 
standing human.

 

DIP has four equilibrium points (Down-Down, 
Down-Up, Up-Down, Up-Up).

 

The objective of this paper is to 
keep the double pendulum in an Up-Up unstable equilibrium 
point. Modeling is based on the Euler-Lagrange equations, 
and the resulted non-linear model is linearized around Up-Up 
position. The built of mathematical model of double inverted 
pendulum plays a guiding role on the stability of the system. 
The eigen-values of the system which are the poles of the 
system have enormous influenced on stability and system 
response. Pole placement is the control method which places 
the poles at the desired position to control the system by 
calculating gain matrix of the system. In this paper, the 
performance of the pole placement method is analyzed by 
MATLAB to control the double inverted pendulum.

 

Keywords  : double inverted pendulum; linear time-
invariant system; pole placement method.

 

I.

 

Introduction

 

he study of humanoid robot is currently one of the 
most exciting research projects. Even if some of 
those works have already demonstrated very 

reliable dynamic biped walking (Yamaguchi, Soga,

 

Inoue & Takanishi, 1999; Hirai, Hirose, Haikawa & 
Takenaka, 1998; Nishiwaki, Sugihara, Kagami, Kanehiro, 
Inaba & Inoue, 2000), we believe it is still important to 
understand the mathematical theoretical background of 
biped locomotion. In standing, it has become common 
to consider the body as an (single\double\triple) inverted 
pendulum pivoted at the ankles. Moreover, up ride of a 
human shoulder is also considered as a motion of an 
(single\double\

 

triple) inverted pendulum (Jadlovská, 
2011; Jadlovská & Jadlovská, 2010). 

 

An inverted pendulum system is a typically non-
linear, redundancy, uncertainty, strong coupling and 
natural characteristics of instabilities. All these features 
make it the ideal model of advanced control theory and 
typical experiment platform of test control results. There 

are a number of different kinds of the inverted pendulum 
systems presenting a variety of control challenges. The 
most common types are the single inverted pendulum 
on a cart (Ohsumi & Izumikawa, 1995; Åström & Furuta, 
2000). the double inverted pendulum on a cart (Zhong & 
Rock, 2001),  the double inverted pendulum with an 
actuator at the first joint only (Pendubot) (Graichen & 
Zeitz, 2005), the double inverted pendulum with an 
actuator at the second joint only (Acrobot) (Hauser & 
Murray, 1990), the light weight rotary pendulum 
(Brockett & Hongyi, 2003).                                        

In this paper, we have addressed the problem 
of stability of double inverted pendulum in the upright 
position using the pole placement method. For this, we 
have assumed that the double inverted pendulum is 
pivoted at the lower end of inner arm (see figure 1). The 
first step to achieve the objective is to understand the 
dynamics of the system of double inverted pendulum by 
developing the mathematical modelling of the system. In 
modelling, we have used Euler-Lagrange formulation to 
find equation of motion. In the second step, we 
linearized this non-linear system of double inverted 
pendulum in the up-up position and builded up its linear 
state space model. The linearization is one of the most 
important issues for control of non-linear systems. There 
are lots of studies in the literature regarding linearization 
(Jordan, 2006; Wang, Chen & Zhou, 2000; Conga, 
Wanga & Hill, 2005). In the next step, the stability and 
controllability criteria showed that the system is unstable 
but it is controllable.  

To control this unstable system, we have 
employed the pole placement method. In this method, 
the poles are the eigen-values of linear state space 
model and the calculated gain matrix places the poles 
at desired position to stabilize a system. In the 
simulation part of this paper, numerical and graphical 
simulations for control task are given to show the 
effectiveness of the proposed pole placement scheme. 

II. Mathematical Modeling of Dip 

In this section, we will describe mathematical 
model necessary for stability and controllability analysis. 
The mechanism of the double inverted pendulum is 
shown in Figure 1 schematically. The mathematical 
model of DIP can be derived using the Euler-Lagrange 
equation. The form of the Euler-Lagrangian equation 
used here is: 

T
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d L L
dt

τ
θθ

∂ ∂
− =

∂∂ 
            (1) 

Where L = T –
 
V is a Lagrangian, T is kinetic 

energy, V is potential energy, τ
 
= [τ1

 
τ2]T

 
is

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1

 

: 

 the input generalized force vector produced by two 
actuators at the lower joint (ankle) and second at joint 

between to arm (knee),
 1 2[ ]Tθ θ θ= is generalized 

coordinate vector where θ1and θ2 
are angular positions 

of first arm, and second arm of the double pendulum. 
The kinetic and potential energies in terms of 
generalized coordinates can be determined as:

 

( )

( )

2 2

1 1 1 1

2 2 2 2 2

2 1 1 1 2 2 1 2 2 2

1

2
1

4 4 cos
2

m l I
T

m l l l l I

θ

θ θ θ θ θ θ

+

=

+ + +

 
 
 
     



    

  

(2)

 

   ( )
1 1 1

2 1 1 2

cos

2 cos cos

m gl
V

m g l l

θ

θ θ
=

+

 
  

          (3) 

Differentiating the Lagrangian L = T – V by 
generalized coordinate’s vector yields Euler-Lagrange 
equation (1) as: 
 

 

( ) ( )

2 2 2 2 24 4 cos 2 cos 2 sin 4 sin11 1 2 1 2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 1 2

2 sin sin1 2 1 1 2 2 1 2 1

m l I m l m l l m l m l l m l m l l m l l

m m gl m gl

θ θ θ θ θ θ θ θ θ

θ θ θ τ

   + + + + − + + −      

− + − − =

    

 

( )2 2 22 cos 2 sin sin2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 2 2m l l m l m l I m l l m g lθ θ θ θ θ θ θ τ   − − + + + + − =      
  

The matrix form of the system is 
 

( )

2 2 2 2 24 4 cos 2 cos 0 2 sin11 1 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 11
2 2 2 sin 0 22 cos 2 1 2 222 1 2 2 2 2 2 2 2 2

4 sin 2 sin2 1 2 2 1 2 1 2 1 1 2 2

m l I m l m l l m l m l l m l m l l

m l lm l l m l m l I

m l l m m gl m gl

θ θ θ θθ

θθθ θ

θ θ θ θ

   + + + + − −          +      − − +         

− − + −
+



 

  ( )
( )

sin 1 2 1

sin 22 2 1 2m gl

θ θ τ

τθ θ

 −     =   −    

a)

 

Linearisation of the System

 

The tracking controller of DIP is designed using 
the Gain Scheduling method based on the linearisation 
of the system equations around certain equilibrium 
points.

 

In this paper, we linearize the system at the 
vertical unstable equilibrium by taking. 

 

( ) ( )

0,1 2
cos cos 11 2
sin ; sin ;1 1 2 2

0; cos 1; sin1 2 1 2 1 2 1 2
2 2 01 2

θ θ

θ θ

θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ

≈ ≈

≈ ≈

≈ ≈

− ≈ − ≈ − ≈ −

≈ ≈   

m1g 

 

m2g 

 

 θ2 

 

 θ1 
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Double Inverted Pendulum 



So,  

( ) ( )
( )

2 2 2 24 4 211 1 2 1 2 1 2 2 2 1 2 1 2 2 2 2

21 2 1 1 2 2 1 2 1
2 22 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2

m l I m l m l l m l m l l m l

m m gl m gl

m l l m l m l I m g l

θ θ

θ θ θ τ

θ θ θ θ τ

   + + + + + − −      

− + − − =

   − − + + + − =      

 

 

 
The matrix of the linear system

 ( )2 2 2 24 4 211 1 2 1 2 1 2 2 2 2 1 2 2 2 1
2 22 22 1 2 2 2 2 2 2

2 1 11 2 1 2 2 2 2

2 22 2 2 2

m l I m l m l l m l m l l m l

m l l m l m l I

m m gl m gl m gl

m gl m gl

θ

θ

θ τ

θ τ

 + + + + − −        − − +    

     − + −
     + =
     −     





 

 

 

 

 

where

 

( )

1 0 0 0
0 1 0 0

2 2411 1 2 1 20 0 2 2 1 2 2 224 2 1 2 2 2
2 20 0 2 2 1 2 2 2 2 2 2

0 0 1 0
0 0 0 1

2 0 01 2 1 2 2 2 2
0 02 2 2 2

m l I m l
M m l l m l

m l l m l

m l l m l m l I

N m m gl m gl m gl

m gl m gl

 
 
 
 + + = − − 

+ + 
 
 − − + 

 
 
 

=  + + − 
 −  

 

0 0

0 0

1 0

0 1

T =

 
 
 
 
 
 

;

1

2

1

2

x

θ

θ

θ

θ

=

 
 
 
 
 
 





.
 

c)
 

Values of Parameters 
 

The values of parameters for the given double 
inverted pendulum are assumed as follows:

 

m1

 
= mass of inner arm = 0.4 kg

 

m2

 
= mass of outer arm = 0.5 kg

 

l1

 
= length of inner arm = 5 m

 

l2

 
= length of outer arm = 5 m

 

g = gravitational acceleration = 9.8 m/s2

 

So the corresponding values of state space matrices are 
as follows:

 

       

0 0 1 0

0 0 0 1  

-0.8276 -1.4206 0 0

-4.1012 -2.1247 0 0

A =

 
 
 
 
 
 

          

0 0

0 0
B =

-0.0328 -0.0908

-0.0908 -0.1775

 
 
 
 
 
 

.
 

III.
 

Stability and Controllability of 
System

 
 

Stability Criterion  
 

A system (state space representation) is stable 
iff all the eigenvalues of the matrix A are inside the unit 
circle.

 

The eigen value of A of our system are: 0.0000    
+

  
1.9939i, 0.0000 -

 
1.9939i,-1.0115, 1.0115 which are 

outside the unit circle because the modules of eigen 
values are greater than 1.  So the system is unstable in 
absence of input force (τ1= 0, τ2

 
0).

 

b)

 

Controllability criterion

 

A system (state space representation) is 
controllable iff the controllable matrix 

 

C = [B AB A2B …. 

An-1B] has rank n where n is the number of degrees of 
freedom of the system.

 

In our system, the controllable matrix C = [B AB 
A2B A3B] has rank 4 which the degree of freedom of the 
system. So, the system is controllable.
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a)

If the system is controllable, then all set of 
distinct closed loop poles are assigned arbitrarily by 
output feedback gain (Kimura, 1975; Kimura, 1977; 
Wonham, 1967).

b)  State space model for the above linear system
The state space model equation for the system is

                         

b)  State space model for the above linear system

The state space model equation for the system is x Ax Bu
y Cx Du

= +
= +


   

(4)

1

2

1 1
4 4 4 4

A M N B M T C I D u




           



IV. Pole Placement 

Block diagram of pole placement is given in Fig. 
2. If the linearized system considered is completely state 
controllable, then poles of the closed-loop system may 
be placed at any desired locations by means of state 
feedback through an appropriate state feedback gain 
matrix K. 
 
 
 
 
 
 
 
 
 

Figure 2 :   

In this paper, we have used the following 
method to calculate state feedback gain matrix: 

Pole placement with output feedback is 
displayed in Figure 2. In this paper, the reference signal, 
r, is taken zero. If an output feedback control  

u = −Kx 

 is applied to (4), the closed-loop system becomes 

( )x A KB x= −  

The poles assigned with output feedback are λ 
= {λ1, λ2, λ3,…, λn}. The problem considered in this 
paper is finding gain matrix K for transferring the poles. 

a) Gain Matrix Scheduling  
Consider the controllability matrix C = [B AB 

A2B …. An-1B] which is an  n×pn order matrix. If the 
system is controllable, then the rank(C) = n. That 
means, it has only n linearly independent columns 
among the pn columns. Therefore, there will be many 
ways to construct an n×n similarity matrix which will give 
a multi-input controllable canonical form. In this paper, 
we use the following way: 
Consider controllable matrix in n block as follows: 

1 1

1 1 1

0 1 1

n n

p p pC b b Ab Ab A b A b

Block Block Block n

− −=

−

      
 

Starting from the left in, this matrix, check each 
column, keeping count of the number of linearly 
independent columns we encounter. We may stop 
counting when n linearly independent columns are 
obtained.  

Let the block in which we find the last (i.e., the 
nth) linearly independent column be denoted by the (µ-
1)th block. Then the first block in which there are no more 
independent columns will be the µth block. This µ is 
controllability index.  

 

 

1 2
1 1 2 2

11 1 p
p pM b A b b A b b A bµµ µ −− −=         

Where µi (1≤ i ≤ p) are the controllability indices of 
(A,B). 
The inverse of M is 

11

1 1

21

1
2 2

1

m

m

m

M m

mp

mp p

µ

µ

µ

 
 
 
 
 
 
 
 
 

−  =
 
 
 
 
 
 
 
 
 
 









 

Using this inverse matrix of M, calculate transformation 
matrix T as follows:

 

1 1

11
1 1

2 2

12
2 2

1

m

m A

m

T
m A

mp p

pm Ap p

µ

µ
µ

µ

µ
µ

µ

µ

µ

 
 
 
 
 −
 
 
 
 
 
 
 −=  
 
 
 
 
 
 
 
 

− 
 
  








 

Using transfer matrix T, transferring of the matrix A and 
B are,

 

1 ,A T AT B TB−= =

 

Using desired poles {λ1, λ2,

 

λ3,…,

 

λn}, the transferred 
canonical form of the system is
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Block Diagram of Pole Placement

Rearranging these selected n linearly 
independent   columns   b 1 ,   b 2 …bp,  Ab 1, Ab2,…

µ- 1b1,...we will get the invertible matrix M as:

+ u x yLinearized 
system

x Ax Bu= +
C

Gain matrix
K

r +



1

2

1 2 3

1 2 3

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 1 0 00 0 0 0 0 0 0 0
0 0 1 00 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0

A BK

µ

µ

α α α α

β β β β

=

− − − −

−

− − − −

  

  

              

  

  

 

 

              

 

 

   





    



1 2 3

0 1 0 00 0 0 0
0 0 1 00 0 0 0

0 0 0 10 0 0 0
0 0 0 0 0 0 0

pµγ γ γ γ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − − −  





        



 

 or  

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

n

A BK

α α α α
−

=

− − − −

 
 
 

−  
 
 
  





    





 
Solving above matrix equation we will get gain matrix K. 
 b)

 
Calculation of gain matrix

  Applying above method, for the desired pole 
0.1, −0.1, 0.1i, −0.1i, the gain matrix is 

 93.8377 24.8771 0 0

24.1188 24.3614 0 0
K

−
=

−

 
    

V.

 

Simulation

 

In absence of the input forces, the angles and 
their velocities increase rapidly which make the system 
unstable (see figure 3). 
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Figure 3 : Uncontrolled System

Pole Placement Approach for Controlling Double Inverted Pendulum



 
   

By giving input force

 

with measurement of gain matrix, the angles and their velocities will be slow down 
which make the system stable at the desired equilibrium place (see figurer 4) .

 

      

  

 

Figure 4  : 

 

VI.

 

Conclusion

 

This study aims to understand what causes 
humanoids to fall, and what can be done to avoid it. 
Disturbances and modelling error are possible 
contributors to falling. For small disturbances in the walk 
of humanoid robot, it is simply behaving like a double 
inverted pendulum. So the results of this paper will be 
used in the development of the humanoid robot. 
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