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Abstract7

In this paper we define those mathematical notions and terms that are useful about ACO and8

the relationships between ACO and other frameworks for optimization and control. This9

chapter defines and discusses the characteristics of: (i) the combinatorial optimization10

problems addressed by ACO, (ii) construction heuristics for combinatorial problems, (iii) the11

equivalence between solution construction and sequential decision process (iv) the graphical12

tools (state graph and construction graph) that can be used to represent and reason on the13

structure and dynamics of construction processes.14

15

Index terms— optimization and control, combinatorial16

1 I. Combinatorial Optimization Problems17

ACO is a metaheuristic for the solution of problems of combinatorial optimization.18
Instance of a combinatorial optimization problema : An instance of a combinatorial optimization problem is19

a pair (S, J), where S is a finite set of feasible solutions and J is a function that associates a real cost to each20
feasible solution, J: S ? R. The problem consists in finding the element s*? S which minimizes the function J:s *21
= arg min ????? ??(??)(1)22

Hereafter only sets S with finite cardinality will be considered, even if the above definition could be extended23
to countable sets of infinite cardinality. Given the finiteness of the set S, the minimum of J on S indeed exists. If24
such minimum is attained for more than one element of S, it is a matter of indifference which one is considered.25

Combinatorial optimization problema : A combinatorial optimization problem is a set of instances of an26
optimization problem. The set of instances defining an optimization problem are usually all sharing some core27
properties or are all generated in a similar way. Therefore, an optimization problem defines a classification over28
sets of instances. This classification can be made according to several criteria that are usually based on both29
mathematical and practical considerations.30

Static and dynamic optimization problems : Static combinatorial optimization problems are such that the31
value of the mapping J does not change during the execution of the solving algorithm. In dynamically changing32
problems the mapping J changes during the execution of the algorithm, that is, J depends on a time parameter33
t: J ? J (s, t).34

If the statistical processes according to which the costs change over time are known in advance, then the35
optimization problem can be stated again as a static problem in which J is either a function of the time or has a36
value drawn according to some probability distribution. In these cases the minimization in Equation 1has to be37
done according to the J’s characteristics (e.g., minimization of the J’s mean value, if J’s values are drawn from a38
unimodal parametric distribution). On the other hand, when only incomplete information is available about the39
dynamics of cost changes, the problem has to be tackled online using an adaptive approach.40

The set of problems here labeled as ”static” are actually most of the problems usually considered in combi-41
natorial optimization textbooks (e.g., the traveling salesman problem, the quadratic assignment problem, the42
graph coloring problem, etc.). They can be solved offline, adopting either a centralized or a parallel/distributed43
approach according to the available computing resources. Dynamic problems are somehow real-world versions of44

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



2 EXAMPLE 1 :

these problems. Routing in communication networks is a notable example of dynamic problem: the characteristics45
of both the input traffic and the topology of the network can change over time according to dynamics for which46
is usually hard to make robust prediction models. Moreover, in general routing requires a distributed problem47
solving approach.48

In general terms, while for static problems using a centralized or a distributed algorithm is a matter of49
choice, dynamic problems usually impose more severe requirements, such that the nature (either centralized or50
distributed) of the problem has to be matched by the characteristics of the algorithm. In this sense, ACO’s51
design, relying on the use of a set of autonomous agents, appears as rather effective, since it can be in principle52
used in both centralized and distributed contexts with little adaptation.53

Primitive, environment, and constraints sets : An optimization problem can be formally identified in terms54
of a primitive set K, an environment set E, a solution set S, and a cost criterion J defined on S. The primitive55
set defines the basic elements of the problem. The environment set E is derived from the primitive set K as a56
subset of its power set, E ? P (K), and the solution set S is in turn derived from the environment set in terms57
of a family of subsets of E defined by a set of mathematical relations ? among the K’s elements, S ? P (E) ? ?.58
The set of relations ?, which puts specific limitations on the way the elements in E can be selected in order to59
identify elements in S, is usually termed the constraints set.60

The choices for sets K, E and ? are not unique. Given an abstract definition of a problem, the same problem61
can be expressed in different ways according to different choices for these sets. One choice can be preferred over62
another just because it puts some more emphasis on aspects that are seen as more important in the considered63
context. In general, these facts raise the issue of the representation adopted to model the abstract problem under64
consideration in the perspective of attacking it with a specific class of algorithms. This issue is discussed more65
in depth in the following of this section. But before that, it is useful to make the above notions of primitive and66
environment sets more concrete through a few examples, and to introduce the notion of solution components67
which will play a central role throughout the thesis.68

In order to explain in what a problem definition in terms of the sets K, E and ? precisely consists of, let us69
consider the concrete case of two wide and quite general classes of combinatorial problems: matching problems70
and set problems [70], to which we will refer often throughout the thesis: Matching problems : A matching in71
a graph is a set of edges, no two of which share a node. Goals in matching problems consist in finding either72
matching with maximal edge sets or, given that costs are associated to the edges/nodes, matching with minimal73
associated cost (weighted matching problems).74

Matching problems in terms of primitive and environment sets : Let K = {1, 2, . . . , N} be a generic set of75
elements of interest, and let K be the primitive set. The environment and solution sets are derived as follows:E76
= P (K) S = {? ? E | problem constraints ? (K ) are satisfied} (2)77

The expressions 3.2 mean that the solution set is directly defined in terms of subsets of K’s power set. In78
the class of matching problems, of particular practical interest, as well as easier to solve, are those problems for79
which the underlying graph is a complete bipartite graph with two sets of nodes that are equal in size. Bipartite80
weighted matching of this type are also known as assignment problems, which are for instance the problems of81
assigning tasks to agents knowing the cost of making agent i deal with task j, and include important combinatorial82
problems like the TSP, the QAP and the VRP. Network flow problems can be also expressed in terms of generic83
bipartite matching. The following example shows in practice how K, E and S can be defined in the case of a84
TSP.85

2 Example 1 :86

Given an N cities TSP, K = {c 1 , c 2 , . . . , c N } = {1, 2, . . . , N} coincides with the set of the cities to87
be visited, E=P(K ) is the set of all their possible combinations, and S results from the application of ? as the88
subset of elements in E which are cyclic permutations of size N. An alternative definition of K, E and ? could89
consist in K being the set of pairs (p i , c j ), p i , c j ? {1, 2, . . . , N}, that is, the set of elements telling90
that city c j is in position p i in the solution sequence (notice that being the TSP’s solutions cyclic permutations,91
the notion of position requires setting an arbitrary start city). In this case E is still the power set of K, but the92
syntax of the ? relations is slightly different from before, S is in fact defined as?? = ?? ?? ? ??, ?? ?? = {(?? 193
?? , ?? 1 ?? ), ? , (?? ?? ?? , ?? ?? ?? )} | ? ?? ?? ?? ?? = {1, ? , ??} ? ? ?? ?? ?? ?? = {1, ? , ??}94

That is, the set of pairs must correspond to a permutation over {1, ?, N}.95
Set problems : In assignment problems solutions can be usually expressed in terms of ordered subsets of96

primitive elements, while in the case of set problems there is no explicit notion of ordering. Moreover, in most97
of the assignment problems the solution has a predefined size, while this is never the case for set problems. Set98
problems are also in general characterized by an additional level of complexity with respect to the assignment99
ones in the sense that is well expressed by the structure of the environment and solution sets:100

Set problems in terms of primitive and environment sets :101
In set problems, which can be further classified in set covering, set packing and set partitioning problems, the102

corresponding of expression 3.2 takes the following form:E= {? ? P (K ) | instance constraints ? I are satisfied}103
S= {?’ ? P (K ) | instance constraints ? I are satisfied} (3)104

These expressions point out the fact that the solution set is defined in a more complex way than in the105
matching case. Solutions are in this case sets of subsets of elements of the environment set, which, in turn,106

2



are subsets of elements of K. The ? I constraints that have been called a bit improperly ”instance constraints”107
are defined by the actual characteristics of the instance at hand. Instance of a combinatorial problem using a108
compact representation : Let C be a finite set of variables such that a solution in S can be expressed in terms109
of subsets of C?s elements. In particular, called X? = P(C), S is identified by the subset of elements of X? for110
which the relations in ? are satisfied: S ? X? ? ?(C). Therefore, given the sets S, C and ?(C), together with a111
real-valued cost function J (S), a problem of combinatorial optimization consists in finding the element s* such112
that:?? * = ?????? ?????? ???{?? ? ? ? (??)} ??(??)(5)113

Following this representation, an instance of a combinatorial optimization problem can be also compactly114
represented by the triple<C, ?, J >(6)115

The elements of C, which represent the object of the decisions of the optimization process, are called hereafter116
solution components.117

3 a) Solution components118

From above definition it is apparent that solution components always have a precise relationship with the primitive119
and environment sets.120

In particular, for assignment problems C coincides with K, while for set problems C coincides with E. However,121
here we prefer to speak in terms of solution components rather than primitive and environment sets, because122
of their more intuitive and general meaning of parts of which a solution is composed of: Solution components :123
The solution components set C is operatively defined as the set from which a step-bystep decision process would124
select elements one-at-atime and add them to a set x until a feasible solution is built, that is, until x ? S.125

According to this characterization, the notion of solution components plays a central role in this thesis, since126
combinatorial optimization is here framed in the domain of decision processes, and the components of a solution127
are precisely the step-by-step objects considered by the decisions processes. More specifically, ACO’s target will128
consists in the learning of good decisions in the terms of pairs of components to be included in the building129
solutions.130

Above definition implicitly implies that for each set C of solution components must exist a bijective mapping:f131
C : X ? P(C) ? S,(7)132

such that each s i ? S has a finite subset {?? ?? 1 , ?? ?? 2 , ? , ?? ?? ?? } ? X of solution components133
as preimage in X, and this preimage is unique. That is, after a finite number of decision steps, where at each134
step t a new component c t is included in the set x t , the elements in x t ? X are expected to map through f135
C onto an element s ? S. The characteristics of the mapping f C define the level of correspondence between the136
problem under solution and the way solutions are represented. In particular, if f C is not anymore surjective,137
not all the feasible solutions are going to have a preimage in terms of a single set of components. Such a choice138
could rule out the same possibility of addressing the optimal solution. On the other hand, if f C is not anymore139
injective, the same solution in S can be addressed by one or more distinct elements in X. Such a choice would140
result in a sort of blurred image of the solution set as seen from the component set, since several solutions could141
be seen as the same solution, making potentially difficult for an algorithm to act optimally. In general, when the142
mapping f C is not anymore bijective the representation will undergo some loss of necessary information. That143
is, additional information must be added to a subset x ? X of C’s elements in order to map it onto a solution.144

It is clear that once a mapping f C has been defined, solution components can be seen in more general terms as145
decision variables. At each solution construction step a decision variable c t representing any convenient value is146
assigned. The only strict requirement consists in the fact that sets of decision variables can be eventually mapped147
bijectively onto a feasible solution. Since in some sense it is natural to explicitly associate decision variables to148
parts of a solution, in the following we will preferably use the term ”solution components” instead of ”decision149
variables”.150

Even if this latter would likely make clearer the intrinsic meaning of ACO’s pheromone variables, which are151
precisely associated to pairs (c i , c j ) of decision variables: decision c j is taken, conditionally to the fact that152
decision c i has been already issued, according to a probability value which depends on the value of the pheromone153
variable ?? ?? ?? ?? ?? associated to the pair of decisions. The way ACO is discussed in this thesis in terms154
of sequential decision processes, as well as the recent work of Chang et al. [13], where ACO, departing from the155
usual application to ”classical” combinatorial optimization problems, is applied to the solution of generic MDPs156
(therefore, dealing with stochastic transitions after the issuing of a decision), strongly confirm this interchangeable157
view of pheromone variables as pairs of decision variables or solution components.158

4 II.159

5 Construction Methods160

ACO’s ant-like agents independently generate solutions according to an incremental construction process.161
Therefore, the notion of construction algorithm is at the core of ACO. A generic construction algorithm is162
defined here as follows: The generic iteration (also termed hereafter transition) of a construction process can be163
described as:164

x j ={c 1 , c 2 , . . . , c j } ? x j+1 = {c 1 , c 2 , . . . , c j , c j+1 }, c i ? C, ?i ? {1, 2, . . . , | C |}, ??3.10)165
where x j ? X? = P(C) is a partial solution of cardinality (length) j, j ? |C | < ?.166
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5 CONSTRUCTION METHODS

The partial solutions, that is, the set of all the possible configurations of solution components that can be167
encountered during the steps of the construction algorithm, coincides with elements of the environment set X?.168
As it has been previously noticed, the majority of these elements are such that, in general, they are not subsets169
of some feasible solution set. That is, without a careful step-by-step checking, the construction process is likely170
to end up in a partial solution that cannot be further completed into a feasible solution.171

The algorithmic skeleton of a generic construction strategy is reported in the pseudo-code of the Algorithm 3.172
It is the duty of the construction algorithm to guarantee that a sequence of feasible partial solutions, defined as173
it follows, is generated during the process: Feasible partial solution : A partial solution x j ? X? is called feasible174
if it can be completed into a feasible solution s ? S, that is, if at least one feasible solution s ? S exists, of which175
x j is the initial sub tuple of length j in the case of sequences, or, of which x j is a subset in the case of sets. The176
set of the feasible partial solutions is indicated with X ? X?.177

It is understood that a process generating a sequence of feasible partial solutions necessarily ends up into a178
feasible solution. The set X of all feasible sets x j is finite since both the set S and the cardinality of the set179
associated to each feasible solution s i are finite. Moreover, S ? X, since all the solutions s i is composed by a180
finite number of components, all belonging to C. Each feasible partial solution x j has associated a set of possible181
feasible expansions: Set of feasible expansions : For each feasible partial solution x j , the set C(x j )? C is the182
set of all the possible new components c j ? C that can be added to x j giving in turn a new feasible (partial)183
solution x j+1 :????? ?? ? = ??? ?? ?? ?? ?? +1 : ?? ?? +1 ? ?? ? ?? ?? +1 = ?? ?? ? ?? ?? } (10)184

Where the operator ? represents the strategy adopted by the construction algorithm to include a new185
component into the building solution. In general, the characteristics of the sets C strongly depend on the186
precise form of the operator ?.187

The very possibility of speaking in terms of feasible partial solutions and feasible expansion sets is related188
to the possibility of checking step-by-step the feasibility of the partial solution in order to take a sequence of189
decisions that can finally take to a feasible solution. For reasons that will be more clear in the following, we190
make a distinction between the components of the algorithm managing the aspects of feasibility from those191
specifically addressed at optimize the quality of the solution(s) that will be built. In order to check step-by-step192
the feasibility of the building solution, we assume that a logical device can be made available to the construction193
agent: Feasibility-checking device : By feasibility-checking device we intend any algorithm which, on the basis194
of the knowledge of the set S and/or of the constraint set ?, is able to provide in polynomial time an answer195
concerning the feasibility of a complete solution and the potential feasibility of a partial solution.196

From a theoretical point of view it is always possible to find such a polynomial algorithm in the case of NP-197
hard problems and in all the subclasses of the NP-hard one. However, even in the case of NPhardness, which198
is the most common and interesting case, to allow a practical use of the device the polynomial order should be199
small. Generally speaking, the computations associated to the device should be light. When this is not the case,200
it can result more convenient to incur the risk of building a solution which is not feasible, that can be either201
repaired or discarded. For the class of problems considered in this thesis it is often possible to have at hand a202
computationally-light feasibility-checking device. In fact, it is usually easy to check step-by-step the feasibility203
of a constructing solution for assignment problems like the TSP or the QAP. However, for some scheduling or204
covering problems, this same task can result both more difficult and computationally expensive to accomplish.205
Moreover, in the case of max constraint satisfaction problems this is precisely the problem. However, the point206
is that here we will not focus on the design of strategies for smart or optimized ways of dealing with feasibility207
issues. Surely this will be an important part of the specific implementations, but we assume that in some sense208
this is not the most important part of the story, which is, on the contrary, the optimization of the quality of the209
final solution output by the algorithm.210

Figure ??.1 shows in a graphical way the generic step of a construction process, pointing out all the important211
aspects and their reciprocal relationships in very general terms. The feasibility checking device which defines the212
set C (x t ) of feasible expansions for the current partial solution x t is indicate with the ? box, to stress the213
role of either the constraints set ? and/or the explicit knowledge of the solution set to accomplish this sub-task.214
The specific strategy of selection and inclusion of the new component ct is indicated by the decision block ?.215
The dashe d contour lines show the actual subsets of components defining respectively the partial solution x t216
and the set of feasible expansions C (x t ). The chosen component ct belongs to this last. The diagram shows217
the case in which a feasible solution x s ? S is eventually constructed. The decision strategy ? is generically218
assumed as making use of at least the information contained in the partial solution in addition to C (x t ). A219
similar diagram will be shown for the specific case of the ACO’s ant agents, in order to show the peculiarities of220
the ACO’s design with respect to this generic one.221

This issue of the feasibility of the final solution has put in evidence the fact that during a construction process222
the single decisions cannot be seen as independent. On the contrary, they are tightly related, since all the decisions223
issued in the past will constrain those that can be issued in the future. On the other hand, feasibility is only224
one aspect of the entire problem of building a solution. The equally, if not more, important aspect concerns the225
quality of the solution. It is evident that the same considerations on the dependence among the decisions apply226
also when quality is considered. In general, to optimize the final quality, each specific decision should be taken in227
the light of all previous decisions, that is, according to the status of the current partial solution. This can be seen228
at the same time as a constraint and an advantage: building a solution in a sequential way allows to reason on229
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each single choice on the basis of an incremental amount of information coming from the past and also possibly230
looking into the future through some form of look ahead. These are the basic key concepts to understand the231
rationale behind a large part of the con-tents of this chapter, which discusses construction and decision processes.232
In fact, in rather general terms, two construction strategies are going to be seen as different according to the233
different way of using and discarding the information contained in the partial solutions. In particular, it will be234
shown that an exact approach, like dynamic programming [3], makes use of the full information, while a heuristic235
approach, like ACO, drops off everything but the last included component.236

6 III.237

7 Conclusion238

In this paper we have defined the formal tools and the basic scientific background. That is, we have defined the239
terms and notions that will allow us to show important connections between ACO and other related frameworks240
and that will allow us to adopt a formal and insightful language to describe ACO.241

More specifically the chapter has introduced the class of combinatorial optimization problems addressed by242
ACO and discussed the role and characteristics of different abstract representations of the same combinatorial243
optimization problem at hand. The chapter has also provided a formal definition and an analysis of construction244
methods for combinatorial optimization, made explicit and discussed the relationship between construction245
methods and sequential decision processes and, in turn, optimal control and defined the notion of construction246
graph as a graphical tool, derived from the state graph through the application of a generating function, which247
is useful to visualize and reason on sequential decision processes using a compact representation. 1

Figure 1:
248

1© 2012 Global Journals Inc. (US)
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7 CONCLUSION

Figure 2:
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