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Acceleration Analysis of 3DOF Parallel 
Manipulators

Hassen Nigatu 
α
, Ajit Pal Singh   , σ Solomon Seid  ρ  

Abstract - This paper presents a new approach to the velocity 
and acceleration analyses 3DOF parallel manipulators. 
Building on the definition of the „acceleration motor‟, the 
forward and inverse velocity and acceleration equations are 
formulated such that the relevant analysis can be integrated 
under a unified framework that is based on the generalized 
Jacobian. A new Hessian matrix of serial kinematic chains (or 
limbs) is developed in an explicit and compact form using Lie 
brackets. This idea is then extended to cover parallel 
manipulators by considering the loop closure constraints. A 3-
PRS parallel manipulator with coupled translational and 
rotational motion capabilities is analyzed to illustrate the 
generality and effectiveness of this approach. 
Keywords : Acceleration analysis, Kinematics, Parallel 
manipulators. 

ower mobility parallel manipulators having fewer 
than six degrees of freedom (DOF) continue to 
draw interest from both industry and academia 

because they regularly offer improved balance between 
speed, accuracy, rigidity and reconfigurability when 
compared with conventional machine tools and 
industrial robots having serial architectures.  

Velocity, accuracy, stiffness and rigid body 
dynamic behaviours are important performance factors 
that‟s should be considered in the design of lower 
mobility parallel manipulators. Particularly in 
circumstances where high speed is the priority, rigid 
body dynamics become a major concern for the 
dynamic manipulability evaluation, motor sizing and 
controller design, all of which involve acceleration 
analysis as the prerequisite.  

Although general, systematic approaches are 
available for velocity analysis of lower mobility parallel 
manipulators using either kinematic influence coefficient 
methods or screw theory based methods (Huang et al., 
2000; Joshi & Tsai, 2002; Jhu et al., 2007) it is by no 
means an easy task to use these approaches for 
acceleration analysis owing to the nonlinearity arising 
from the second order partial derivatives. 

 
 
 
 
 
 
 

   

 

 
 

A number of approaches have been proposed 
for acceleration analysis of either serial or parallel 
manipulators. The most straightforward method is to 
take time derivatives of a set of velocity constraint 
equations. This, however, involves a tedious and 
laborious process as shown by many case-by-case 
studies (Tsai, 2000; Khalil & Guegan, 2004; Li et al., 
2005; Callegari et al., 2006). Therefore, a recursive 
matrix method was proposed in order to reduce 
computational burdens (Staicu & Zhang, 2008; Staicu, 
2009). Having a goal of achieving a general and 
compact form of the Hessian matrix, the kinematic 
influence coefficient method was proposed for dealing 
with the acceleration analysis of serial manipulators 
(Thomas & Twsar, 1982). This idea was then extended 
to cover full and lower mobility parallel manipulators 
(Huang, 1985a; Huang, 1985b; Zhu, 2005; Huang, 
2006; Zhu et al., 2007). Along this track, kinematic 
analysis of a number of parallel manipulators with 
different architectures has been carried out (Fang & 
Huang, 1997; Lu, 2006; Lu, 2008). Despite the 
plausibility and merits of the kinematic influence 
coefficient method, only an implicit form of the Hessian 
matrix can be achieved because of the unavoidable 
partial derivative implementations. Recently, an 
approach for acceleration analysis was proposed that 
introduced an auxiliary Hessian matrix derived from the 
differentiation of the auxiliary Jacobian of a class of 
parallel manipulators containing a passive properly 
constrained limb (Lu & Hu, 2007a; Lu & Hu, 2007b; Lu & 
Hu, 2008). Its suitability for other types of parallel 
manipulators, however, remains an issue to be 
investigated. Screw theory based approaches (Hunt, 
1978; Mohamed & Duffy, 1985; Kumar, 1992; Ling & 
Huang, 1995; Bonev et al., 2003; Fang & Tsai, 2003; 
Zoppi, 2006) could potentially be the most powerful 
method for acceleration analysis. In order to overcome 
the difficulty of expressing the twist derivatives in a 
screw form, a novel term named the “accelerator” 
(Sugimoto, 1990) or “acceleration motor” (Brand, 1947) 
was proposed and employed for the acceleration 
analysis of serial and parallel kinematic chains (Rico & 
Duffy, 1996; Rico & Duffy, 2000). However, the terms 
associated with the second derivatives in the 
acceleration equations can only be written in a lengthy 
form of Lie brackets rather than in a compact form of the 
Hessian matrix.  
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achieve an explicit and compact form of the Hessian 
matrix. Having outlined in Section I the significance of 
acceleration analysis and its existing problems, the 
paper is organized as follows. Sections II and III 
systematically develop the formulations of 
forward/inverse velocity and acceleration models of 
serial and parallel kinematic chains, leading to new 
expressions of the Hessian matrices in a general and 
compact form. A practical illustration is presented in 
Section IV before conclusions are drawn in Section V.

  

 

Based upon the authors‟ previous work (Huang 
et al., 2011), this section briefly addresses the velocity 
analysis of an f-DOF parallel manipulator using the 
“generalized Jacobian” and adds extensions necessary 
to its use in acceleration analysis. Without loss 
generality, assume that the manipulator is composed of 

l ( 1f l f   ) limbs connecting the platform with the 

base, each essentially containing in  ( 1,2, ,i l  ) 1-

DOF joints with at most one of them actuated. Thus, two 
families of parallel manipulators can be taken into 
account. The first family covers fully parallel 

manipulators having f constrained active limbs ( 6in   
for all limbs). The second family contains those having f 
unconstrained active limbs (i.e. 6in   for each of these 

f limbs) plus one properly constrained passive limb 
designated by 1l f  . Any other parallel manipulators 

not belonging to these two families can be dealt with in 
a manner similar to that used below. 

It has been shown (Huang et al., 2011) that 
entire set of the variational twists of the platform spans a 

6-dimensional vector space T , known as the twist 

space. As the dual space of T , the entire set of 
wrenches exerted on the platform spans a 6-

dimensional vector space W , named the wrench 

space. For an f-DOF manipulator, T  can be 

decomposed into an f dimensional subspace, a T T , 

and a 6-f dimensional subspace, c T T , known 

respectively as the twist subspaces of permissions and 

restrictions. Correspondingly, W  can also be 

decomposed into two subspaces, a W W  and 

c W W, known as the wrench subspaces of 

actuations and constraints. It has been proved that the 

following commutative relationships hold: 
 

Direct sum: a c T T T , a c W W W          (1a) 

Orthogonality: a c
W T , c a

W T      
  

(1b) 

Duality: *
a aW T , *

c cW T                 

  

(1c)
 

 a)

 

Velocity analysis of a limb 

 Let , , ,
ˆ

ata j i a i$ T

 

( 1,2, ,a ij n  ), , , ,
ˆ

awa k i a i$ W

 ( 1,2, ,a ik n  ), , , ,
ˆ

ctc j i c i$ T

 

( 1,2, ,6c ij n  ) and 

, , ,
ˆ

cwc k i c i$ W

 

( 1,2, ,6c ik n  ) be the basis elements of 

four vector subspaces associated with the ith

 

limb. Note 
that the commutative relationships given in Eq. (1a, b, c) 
also hold for each limb since all limbs share the same 
platform. The variational

 

twist of the platform can then 
be represented by a linear combination of the basis 

elements of ,a iT

 

and ,c iT

 
, ,

6

, , , , , , , ,
1 1

ˆ ˆ
i i

a a c c
a c

t ta tc ta i tc i

n n

a j i ta j i c j i tc j i
j j

i i

δρ δρ

δ



 

   

 



 

J ρ

$ $ $ $ $

$ $ , 1,2, ,i l 

  

(2)
 

 
where, 

  
TT T

t δ δ= r α$

 , ,J J Ji a i c i   

 
, ,J J Ji a i c i   

 
, ,1, , ,

ˆ ˆ
ia i ta i ta n i 

 
J $ $

 , ,1, ,6 ,
ˆ ˆ

 

J
ic i tc i tc n i

 
 
$ $

  
TT T

, ,i a i c iδ δ δρ ρ ρ
 

 
T

, ,1, ,2, , ,ia i a i a i a n iδ δρ δρ δρρ 

 
T

, ,1, ,2, ,6 ,ic i c i c i c n iδ δρ δρ δρ ρ 

 

 
δr

 

and δα

 

denote, respectively, the linear 

variation of the reference point and the angular variation 

of the platform. , ,
ˆ

ata j i$

 

and , ,aa j iδρ

 

( , ,
ˆ

ctc j i$

 

and , ,cc j iδρ ) 

are the thaj

 

( thcj ) unit screw of permissions 

(restrictions) and its intensity. iJ

 

is a 6 6

 

matrix known 

as the “generalized Jacobian”

 

of a limb having 

connectivity of 6in  . 

 
For velocity analysis, which considers only ideal 

motions of the platform, relevant terms in Eq. (2) are 
replaced by: 

    
T TT T T T

, , ,i a i c i i a iδ δ δ  ρ ρ ρ θ θ  0

 , ,a i a iδ  ρ θ

 ,c iδ  0ρ

  
T

, ,1, ,1, , ,ia i a i a i a n iθ θ θ    θ
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   
T TT T T T

t tδ δ  r α v ω$ $

II. Velocity Analysis

Drawing primarily on the generalized Jacobian 
but also on the strengths of the kinematic influence 
coefficient method and the concept of accelerator, we 
propose a new approach for acceleration analysis of 

lower mobility parallel manipulators. Its goal is to 



 

  

where, i

 

are individual joint velocities. Thus 
(Huang et al.,

 

2011)

 

t i i J θ$ , 1,2, ,i l         

   

(3)

 

 

where,  
TT T

t  v ω$

 

becomes the velocity twist: 

v

 

and ω

 

are the linear velocity of the reference point 

and the angular velocity of the platform. , ,aa j iθ

 

( 1, 2, ,a ik n  ) represents the joint rate of the thaj

 

joint 

in limb i.

 

Using the commutative relationships given in 
Eq. (1) and taking inner products on both sides of Eq. 

(2) with , ,
ˆ

awa k i$

 

( 1, 2, ,a ik n  ) and , ,
ˆ

cwc k i$

 

( 1,2, ,6c ik n  ) leads, after the same replacements, to 

 

1
i i t

θ J $ , 1,2, ,i l            

   

(4)

 
,1

,

L
a i

i L
c i


 

  
  

J
J

J

 T T
,1, ,1, ,1,

,
T T

, , , , , ,

ˆ ˆ ˆ

ˆ ˆ ˆ
i i i

wa i wa i ta i
L
a i

wa n i wa n i ta n i

 
 

  
 
  

J 

$ $ $

$ $ $

T T
,1 ,1 ,1

,
T T

,6 , ,6 , ,6 ,

ˆ ˆ ˆ

ˆ ˆ ˆ
i i i

wc wc tc
L
c i

wc n i wc n i tc n i  

 
 

  
 
  

J 

$ $ $

$ $ $
 

 
Here the superscript L

 

simply identifies that the 
matrix applies to a single limb. Thus, we have

 , ,
L

a i a i tθ J $ , 1,2, ,i l                 

  

(5)

 b)

 

Velocity analysis

 

of a parallel manipulator 

 
Building upon the work in Section 2.1, the 

velocity modeling of a parallel manipulator can be 

carried out with little extra effort. Let , ,
ˆ

kwa g k$

 

be the unit 

wrench of actuations associated

 

with the

 

one actuated 

joint, numbered kg ,

 

in the kth ( 1,2, ,k f  ) limb and 

, ,
ˆ

cwc k i$

 

be the thck

 

( 1,2, ,6c kk n  ) unit wrench of 

constraints

 

in the ith ( 1,2, ,i l  )

 

limb.

  

Again, using the 

commutative relationships given in Eq. (1), taking inner 

products on both sides of Eq. (2) with , ,
ˆ

kwa g k$

 

and 

, ,
ˆ

cwc k i$ , respectively, and making replacements as at 

Eq. (3) results in 

 
t J q$                              

   
(6)
 

 
 
 
 

where,

 

a

c

 
 
 

J
J

J
=

 

1 1 1

2 2 2

T T
, ,1 , ,1 , ,1

T T
, ,2 , ,2 , ,2

T T
, , , , , ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ
f f f

wa g wa g ta g

wa g wa g ta g
a

wa g f wa g f ta g f

 
 
 

  
 
 
  

J


$ $ $

$ $ $

$ $ $

 
,1

,2

,

c

c
c

c l

 
 
 
 
 
  

J
J

J

J


  
T T

,1, ,1, ,1,
T T

,2, ,2, ,2,
,

T T
,6 , ,6 , ,6 ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ
i i i

wc i wc i tc i

wc i wc i tc i
c i

wc n i wc n i tc n i  

 
 
 

  
 
 
 

J


$ $ $

$ $ $

$ $ $
 

 
TTT

aq q = 0

  1 2

T
, ,1 , ,2 , ,fa a g a g a g fq q q   q

 

 

In order to distinguish the joint rates of actuated 

joints from those of the passive joints, we use , ,ka g kq

 

to 

represent the rate of actuated joint numbered kg

 

in the 

kth limb. For convenience, , ,ka g kq

 

will be simplified as 

kq

 

in what follows. J

 

is an   1 6 6l
iif n


  

 

matrix 

known as the

 

generalized 

 

Jacobian

 

of parallel 

manipulators with 6f 

 

DOF. Since

  1 6 6l
iif n


   , the left pseudo-inverse of J

 
exists. Using superscript P

 

to identify explicitly platform 
terms, this leads to

 
P

t a a
 J q J q $ ,  

1T T P P
a c


   

 
J J J J J J

  

(7)

 

 

Substituting Eq. (7) into Eq. (4), iθ can then be 

expressed in terms of q

 
1 LP

i i i
  θ J J q J q   , 1,2, ,i l       

  

(8)

 

 

where, 1LP
i i

 J J J

 

is a   16 6l
iif n


  

 

matrix.

 Furthermore, the linear map between aq

 

and 

,a iθ

 

is

 , , ,
L P LP

a i a i a a a i a θ J J q J q   , 1,2, ,i l        

  

(9)
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where, 

, ,
LP L P
a i a i aJ J J is a in f matrix.



 

   

 

 

Following the scheme in Section II, acceleration 
analysis will first be carried out on an -DOFin

 

limb, with 

the results then being extended to cover an f-DOF 
parallel manipulator.

 

a)

 

Acceleration analysis of a limb

 

Taking the variation of Eq. (2) and expressing 
the derivatives of screws in the form of Lie brackets as

 

given in (Gallardo et al., 2003), yields

 

2
i i iδ A J ρ $ , 1,2, ,i l         

   

(10)

 

 

where, 

 

   
TT T2 2δ δ δ δ 

   
 

A r α r α

   
TT T2 2 2

, ,i a i c iδ δ δ 
  
 

ρ ρ ρ

 
T2 2 2 2

, ,1, ,2, , ,ia i a i a i a n iδ δ ρ δ ρ δ ρρ 

 
T2 2 2 2

, ,1, ,2, ,6 ,ic i c i c i c n iδ δ ρ δ ρ δ ρ ρ 

 

,1, ,1, ,2, ,2, ,6 , ,6 ,

,2, ,2, ,3, ,3, ,6 , ,6 ,

,5 , ,5 , ,6 , ,6 ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

i i

i i

i i i i

i a i ta i a i ta i c n i tc n i

a i ta i a i ta i c n i tc n i

c n i tc n i c n i tc n i

δρ δρ δρ

δρ δρ δρ

δρ δρ

 

 

   

   
 

   
 

  
 







$ $ $ $

$ $ $

$ $

 

2δ r ,
2δ α , 2

, ,aa j iδ ρ , and 2
, ,cc j iδ ρ

 

denote, 

respectively, the variation of δr , δα , , ,aa j iδρ , and , ,cc j iδρ

  

 

in i$

 

denotes the Lie product 

(Gallardo,

 

2006).

 From the properties of the Lie product, i$

 
can 

also be written as
 

, , ,i a i ac i c i  $ $ $ $          
   

(11)
 

 where, 

, ,1, ,2, ,1, ,2, ,1, , , ,1, , ,

,2, ,3, ,2, , , ,2, , , ,2, , ,

, 1, , , , 1, , ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

i i

i i i

i i i i

a i a i a i ta i ta i a i a n i ta i ta n i

a i a i ta i ta n i a i a n i ta i ta n i

a n i a n i ta n i ta n i

δρ δρ δρ δρ

δρ δρ δρ δρ

δρ δρ 

     
   

     
   

  
 







$ $ $ $ $

$ $ $ $

$ $

, ,1, ,1, ,1, ,1, ,1, ,6 , ,1, ,6 ,

,2, ,1, ,2, ,1, ,2, ,6 , ,2, ,6 ,

, , ,1, , , ,1,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

i i

i i

i i

ac i a i c i ta i tc i a i c n i ta i tc n i

a i c i ta i tc i a i c n i ta i tc n i

a n i c i ta n i tc i

δρ δρ δρ δρ

δρ δρ δρ δρ

δρ δρ

 

 

     
   

     
   



 
 







$ $ $ $ $

$ $ $ $

$ $ , , ,6 , , , ,6 ,
ˆ ˆ

i i i ia n i c n i ta n i tc n iδρ δρ  
  
 

 $ $

, ,1, ,2, ,1, ,2, ,1, ,6 , ,1, ,6 ,

,2, ,3, ,2, ,3, ,2, ,6 , ,2, ,6 ,

,5 , ,6 , ,5 , ,6

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

i i

i i

i i i

c i c i c i tc i tc i c i c n i tc i tc n i

c i c i tc i tc i c i c n i tc i tc n i

c n i c n i tc n i tc

δρ δρ δρ δρ

δρ δρ δρ δρ

δρ δρ

 

 

  

     
   

     
   

 







$ $ $ $ $

$ $ $ $

$ $ ,in i
 
 

  

 

Then, Eq. (10) can be rewritten as

 
 

2 T
i i i i iδ δ δ A J ρ ρ H ρ , 1,2, ,i l          

  

(12)

 
, ,

,

a i ac i
i

c i

 
  
 

H H
H

H0

 

 ,1, ,2, ,1, ,3, ,1, , ,

,2, ,3, ,2, , ,

,

, 1, , ,

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

i

i

i i

ta i ta i ta i ta i ta i ta n i

ta i ta i ta i ta n i

a i

ta n i ta n i

      
      

    
    

 
 
  

  
  

H





    





0 $ $ $ $ $ $

0 0 $ $ $ $

0 0 0 $ $

0 0 0 0

 

,1, ,1, ,1, ,6 ,

,

, , ,1, , , ,6 ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

i

i i i

ta i tc i ta i tc n i

ac i

ta n i tc i ta n i tc n i





    
    

 
 
    
    

H



  



$ $ $ $

$ $ $ $

,1, ,2, ,1, ,3, ,1, ,6 ,

,2, ,3, ,2, ,6 ,

,

,5 , ,6 ,

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

i

i

i i

tc i tc i tc i tc i tc i tc n i

tc i tc i tc i tc n i

c i

tc n i tc n i





 

      
      

    
    

 
 
  

  
  

H





    





0 $ $ $ $ $ $

0 0 $ $ $ $

0 0 0 $ $

0 0 0 0

 

  
6 6 6

i
 H 

 

is known as the Hessian matrix of 

the ith limb. It is a three-dimensional matrix having six 
layers, each containing a 6 6

 

upper triangular matrix as 

shown in Fig. 1, where  
iK

 

 

( 1,2, ,6iK   ) denotes 

the thiK
 

element of the Lie bracket    . The 

constituent parts of iH , 6
,

i in n
a i

 
H  , 

 6 6
,

i in n
ac i

  
H 

 

and    6 6 6
,

i in n
c i

   
H  , are also 

three-dimensional matrices having six layers. 

 In acceleration analysis where only ideal 
motions of the platform are considered, replacements 
can be made in Eq. (12) such that:

 
   

T TT T T T
, , ,i a i c i i a iδ δ δ  ρ ρ ρ θ θ  0

     
TT T T2 2 2 T

, , ,i a i c i i a iδ δ δ 
   
 

ρ ρ ρ θ θ  0
 

     
TT TT T T2 2δ δ δ δ   

         
   

A r α r α A v ω v ω 
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The bracket 

Thus,
T

i i i i i A J θ θ H θ   , 1,2, ,i l            (13)

.

III. Acceleration nalysisA



 

   

or

  

T
, , , , ,a i a i a i a i a i A J θ θ H θ   , 1,2, ,i l       

  

(14)

 where,  
T

TT 
   
 

A v ω v ω 

 

becomes the 

accelerator of an DOFin 

 

limb with v

 

and ω

 

being the 

linear acceleration of the reference point and the angular 

 

acceleration of the platform (Gallardo, 2003). The thiK

 

element in A

 

has the expression

 

T
, ,i i iK i K i i i K i A J θ θ H θ   , 1,2, ,i l        

  

(15)
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Fig.1 : Hessian matrix, Hi, of the i th limb. 

,1, ,2, ,1, ,3, ,1, ,6 ,

,2, ,3, ,2, ,6 ,

,5 , ,6 ,

ˆ ˆ ˆ ˆ ˆ ˆ0
ˆ ˆ ˆ ˆ0 0

ˆ ˆ0 0 0
0 0 0 0

i
i i i

i
i i

i i
i

ta i ta i ta i ta i ta i tc n iK K K

ta i ta i ta i tc n iK K

tc n i tc n i K





 

      
      

    
    

 
  

  
  





    





$ $ $ $ $ $

$ $ $ $

$ $

non-zero element
zero element

1 2 3 4 5 61
2

3
4

5
6

1

iK

6

The Kith layer ( 1,2, ,6iK   )

where, , ii KJ is the thiK row of iJ , while , ii KH

is the thiK layer of iH .

In addition, the inverse acceleration equation of 
the ith limb can easily be obtained, by recalling Eq. (4), 
as

 1 T T 1
i i t i i i t

   θ J A J H J $ $ , 1,2, ,i l      (16)

Acceleration analysis of a parallel manipulator
Following the same approach as at Eq. (6), the 

acceleration equation of a parallel manipulator is 
obtained by taking inner products on both sides of Eq. 

(13) with , ,
ˆ

kwa g k$ and , ,
ˆ

cwc k i$ , respectively, and noting 

the relationship given in Eq. (8), to give 
T JA q q Hq             (17)

where,

 
TT

aq q = 0

 1 2

T
, ,1 , ,2 , ,fa a g a g a g fq q q   q

Here, , ,ka g kq is the acceleration of the actuated 

joint numbered kg in the k th limb ( 1,2, ,k f  ). For 

convenience, , ,ka g kq will be simplified as kq in what 

follows. N N N H  (  1 6l
iiN f n


   ) is known as 

the Hessian matrix of an f-DOF parallel manipulator. It is 

a three dimensional matrix composed of f N N
a

 H 

and 
 1 6l

ii n N N
c


  H  . The expression for the thaK

acceleration equation of a parallel manipulator: 

 T A J q q Hq             (19)

Furthermore, substituting Eqs. (8) and (19) into 
Eq. (16) expresses the joint acceleration in the ith limb in 
terms of the velocity and acceleration of the actuated 
joints: 

   
TT 1 TLP LP LP

i i i i i i
  θ J q q Hq J q J H J q      , (20)

1,2, ,i l          

( thcK ) layer of aH ( cH ) is given in Fig. 2. Eq. (17) 

readily yields the inverse acceleration equation of a 

parallel manipulator,

T Tq JA J HJt t $ $               (18)

Moreover, multiplying both sides of Eq. (17) by 
the left pseudo-inverse of J gives the forward 

The above analyses formulate the 
forward/inverse velocity and acceleration equations of 
lower mobility parallel manipulators in a consistent 
manner under the umbrella of the generalized Jacobian. 

The velocity and acceleration of each DOF1
actuated joint of the manipulator can be evaluated using 
Eqs. (8) and (20). Note, also, that the velocity and 
acceleration analyses given for a limb are also valid for 

serial manipulators with 6f  DOF.  

Detailed execution of velocity and acceleration 
analyses for a 3-PRS parallel manipulator serves to 

i.

IV. An xampleE



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

  

 

  

  

 

 

     

 

 

 

 

 

 

  

 

 

 

 

 

    

  

 
 

 

     

 

   

     

 

  

 

illustrate the generality and effectiveness of the 
proposed approach. 

 

Fig. 3 shows a schematic diagram of a 3-PRS 
parallel manipulator which is used as a 3-axis module 
named the Sprint Z3 (Wahl, 2002) as part of a 5-axis 

high-speed machining cell for extra large components. 
The manipulator consists of a base, a platform, and 
three identical limbs, each connecting the base with the 
platform in sequence by an actuated prismatic joint, a 
revolute joint, and a spherical joint. 
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Fig. 3 : Schematic diagram of Sprint Z3 head.

Fig. 2 : Hessian matrix, H, of a parallel manipulator. 
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4-c

 

4-b

 

Fig.

 

4

 

:

 

(a) Shows the motor configuration, (b) The platform tilted with θ=200

 

about Xc , and (c) The 
platform tilted with 200

 

about Yc.
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Fig. 4 (a, b, and c) shows the CAD model of the 
selected example 3-PRS parallel kinematic machine, 
which helps to visualize and internalize the physical 
mechanism.

a) Inverse kinematics
A reference frame R is attached to the base 

and a body fixed frame 0R to the platform, with O and 

O located at the centers of the equilateral triangles 

1 2 3B B B and 1 2 3A A A , as shown. The z and 0z axes are 

normal to the planes of those triangles, the x axis is 

parallel to 2 1B B and the 0x axis is parallel to 2 1A A . 

Also, an instantaneous reference frame R is set with its

origin at point O and its three orthogonal axes 
remaining always parallel to those of R . Consequently, 

the orientation matrix of 0R with respect to R can be 

obtained using three Euler angles,  ,  and  in terms 

of precession, nutation, and body rotation according to 
the z-x-z convention

     Rot , Rot , Rot ,

C C S C S C S S C C S S
S C C C S S S C C C C S

S S S C C

z x z 

   
 

    
 
  

R   

           

           

    

(21)

where, „S‟ and „C‟ represent „sin‟ and „cos‟, 

respectively. Then, the position vector,  
Tx y zr , 

of Ocan be expressed as

1, 3 3,r b s s ai i i i iq l    , 1,2,3i       (22)

where, 

1,si i i iq B P

 
T

1, 0 0 1s i 

3 3,s i i il PA

   
T Tcos sin 0bi ix iy iz i ib b b b   

 
T

0a Rai i ix iy iza a a 

 
T

0 cos sin 0i i iaa  

 
11 21

6 3i i 
    , 1,2,3i 

ib and ai are the position vectors of iA and iB
measured in R ; 0ia is the position vector of iA
measured in 0R ; a and b are the radii of the platform 

and base, respectively; ,1,i a iq θ is the joint variable of 

the actuated prismatic joint in the ith limb.

The constraint imposed by the revolute joint 

restricts the translational motion of iA along the axis of 

the revolute joint in limb i. This leads to three additional 
constraint equations,

 
T

2, 0r a si i  , 1,2,3i              (23)

where,  
T

2, sin cos 0s i i i   . Taking  , 

and z as three generalized coordinates, Eq. (23) 
requires that

                        (24)

 
1 S2 1 C
2

x a            (25)

 
1 C2 1 C
2

y a               (26)

Thus the three desired motions,  ,  , and z , 

can be considered as three independent Cartesian 
variables, leaving the translations along the x and y
axes, and rotation about the z axis (angle ) as the 

constrained variables. Given a set of  ,  , and z , the 

inverse position problem is determined by

, 

 
T

3 3, 1,r a b s si i i i iq l    , 1,2,3i  (27)



 

  
 

  

 

  

 

  

  

 

  

  

  

 

 

 

 

 

    

 

 

 

 
 

 

 

 

 
 

 

     

  

   

 

 

 

 
 

    

 

 
 

      

    

    

 

  

 

 

     

 
T

3, 3 , 3 , 3 ,s i x i y i z is s s ,  3 ,
3

1
x i ix ixs x a b

l
  

 3 ,
3

1
y i iy iys y a b

l
   , 2 2

3 , 3 , 3 ,1z i x i y is s s  

 

b)

 

Velocity analysis

  

Given the bases for the four vector subspaces 
of its ith limb (Huang et al., 2011), the generalized 
Jacobians of the ith limb and the generalized Jacobian 
of the manipulator can be formulated as follows.

 
 

For the i th limb ( 1,2,3i  ):

 

,i a i ci   J J J             

    

(28)

 

 

, ,1, ,2, ,3, ,4, ,5,

1, 3 3, 2, 3, 4, 5,

2, 3, 4, 5,

ˆ ˆ ˆ ˆ ˆJ

s a s s a s a s a s

s s s s

a i ta i ta i ta i ta i ta i

i i i i i i i i i i

i i i i

l

 
 

     
 
 
 

$ $ $ $ $

0

 

 3 3, 1,
, ,1,

1,

ˆ

 

a s n
J

n
i i i

c i tc i
i

l  
  
 
 

$

 

 

For the parallel manipulator: 

 

J
J

J
a

c

 
 
 

=

      

(29)

 

 

 

 

TT T T
3 1 1,1 3 1 1 3 1 1,1 3 1

TT T T
3 2 1,2 3 2 2 3 2 1,2 3 2

TT T T
3 3 1,3 3 3 3 3 3 1,3 3 3

, , , ,

, , , ,

, , , ,

s s s a s s s

J s s s a s s s

s s s a s s s

a

 
 
 

  
 
 
 
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 

 

 

TT T T
2 1 1,1 3 1 1 2 1 1,1 3 1

TT T T
2 2 1,2 3 2 2 2 2 1,2 3 2

3 TT T T
2 3 1,3 3 3 3 2 3 1,3 3 3

1
, , , ,

, , , ,

, , , ,

s s s a s s s

J s s s a s s s

s s s a s s s

c l

 
 
 

  
 
 
 

where, ,aj is is a unit vector along the thaj 1-

DOF joint of the ith limb; 1, 1, 2,i i i n s s . The joint axes 

are arranged such that 1, 2,i is s and 2, 3,i is s ; 3,is , 4,is
and 5,is are coincident with three rotational axes of the 

spherical joint, with 3,is aligned along the rod. 

Substituting Eq. (29) into Eqs. (6) and Eq. (7) generates 
the inverse and forward velocity equations of the 
manipulator

q J t $               (30)

1J qt
$                       (31)

where,  
TTT

aq q = 0 and  
T

1 2 3q =a q q q    .

c) Acceleration analysis
The Hessian matrix, H , of the manipulator can 

be found by substituting the expressions just found for 

,ata j i,$̂ ( 1,2, ,5aj   ), 1,,
ˆ
tc i$ and Jacobians Ji and J

into the forms shown in Figure 2 and Eq. (17) to give

 
T

,
, T

1, 3,

J M J
H

s sa

LP LP
i a i i

a K
i i

 , 1,2,3aK i  (32)

 
T

,
, T

3 1, 3,

J M J
H

s sc

LP LP
i c i i

c K
i il

 , 1,2,3cK i      (33)

where,

1 1J J JLP
i i

 

1,
,

2,

M
M

M
a i

a i
a i

 
  
 

0

0

   T T T
3, 1, 3, 1, 4, 3, 1, 5,

1, T T
3 4, 2, 3 5, 2,

0 0

0 0 0

s n s s s s s s
M

s s s s

i i i i i i i i
a i

i i i il l

  
 
 
 

   

T
3 4, 1,

2, T
3 5, 3, 3, 1,

0

0

s n
M

s s s n

i i
a i

i i i i

l

l

 
 

 
  

  
 
 

1,
,

M
M c i
c i

 
  
 

0

0 0

T T T
3, 1, 4, 1, 5, 1,

1, T T
3 3 5, 3, 3 3, 1,

1

0

s n s n s n
M

s s s n
i i i i i i

c i
i i i il l l

    
  

    

Here, ,H
aa K ( ,H

cc K ) represents the thaK

( thcK ) layer of aH ( cH ). Then, substituting Eqs. (32) 

and (33) into Eqs. (18) and (19), the inverse and forward 
acceleration equations of the manipulator are

T Tq JA J HJt t $ $           (34)

 1 TA J q q Hq                  (35)

where,  
TT

aq q = 0 and  
T

1 2 3qa q q q    .

d) Coordinate transformation for numerical simulation
Numerical simulations for the inverse velocity 

and acceleration, require the explicit relationships of the 
velocity twist and accelerator to the first and second 
derivatives of three independent coordinates,  ,  , and 

z because they are used for path planning. 

Taking the time derivative of Eqs. (25) and (26) 
gives 



 

 

  

  

 

 

 

      

     

  

  

    

 

   

   

 

 

 

 

  

 

 

    

    

  

  

 

 

v r J gv c           

    

(36)

 

 

 

C2 1 C 0.5 S2 S 0
S2 1 C 0.5 C2 S 0

0 0 1
v

a ψ θ a ψ θ
a ψ θ a ψ θ

   
 

   
 
 

J , gc

ψ
θ
z

 
 

  
 
 






 

 

Then, taking the time

 

derivative of Eq. (36) 
results in

 

Tv J g g H gv c c v c         

    

(37)

 

 

where, 3 3 3Hv
 

 

is a three dimensional 

matrix with ,Hv i

 

( 1,2,3i  ) being its ith layer;

 

gc

ψ
θ
z

 
 

  
 
 






 

,

 

 

,1

2 S2 1 C C2 S 0
C2 S 0.5 S2 C 0

0 0 0
Hv

a ψ θ a ψ θ
a ψ θ a ψ θ

  
 

   
 
 

 

 

,2

2 C2 1 C S2 S 0
S2 S 0.5 C2 C 0

0 0 0
v

a ψ θ a ψ θ
a ψ θ a ψ θ

 
 

  
 
 

H

 

,3 3 3v H 0

 

 

The angular velocity vector of the platform, 

 
T

x y zω ω ωω , can be derived by recalling, e.g. 

(Angeles, 2003), the standard matrix expression for the 


 

operator

 

T
0

0
0

RR
z y

z x

y x

ω ω
ω ω
ω ω

 
  
 
  

                

  

(38)

 

and directly comparing elements, to give

 

ω J gω c           

     

(39)
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S S C 0
C S S 0
1 C 0 0

Jω

ψ θ ψ
ψ θ ψ
θ

 
 


 
  

Taking the time derivative of Eq. (39) gives 

Tω J g g H gω c c ω c            (40)

where, 3 3 3Hω
  is also a three dimensional 

matrix with ,Hω i ( 1,2,3i  ) being its ith layer;

,1

C S S 0
S C 0 0

0 0 0
Hω

ψ θ ψ
ψ θ

  
 

 
 
  

,2

S S C 0
C C 0 0

0 0 0
Hω

ψ θ ψ
ψ θ

 
 


 
  

,3

0 0 0
S 0 0
0 0 0

Hω θ
 
 


 
  

Then, given gc and gc ,  
T

1 2 3a q q qq   

and  
T

1 2 3qa q q q    can be evaluated using Eqs. 

(36)-(40), (6), and (18). 

Consider now a specific system having the 

geometry: 250 mma  , 312 5 mm.b  , and 3 540 mml 

Also, assume as an example that the path and 
motion rules of the platform are:

 

max 1

1 2

max 2 3

2sin 0

0
2sin

πψ t t t
T

ψ t t t t
πψ t t t t
T

  
  

 
  


    
  







       (41)

 

 

max
max 1

max 1 2

2 max
max 2 3

2cos 0
2 2

2
cos

2 2

ψT πψ t t t
π T

ψ t ψ t t t

π t t ψTψ t t t
π T

    
      

   


  


           




 




  (42)

 

 

 

2
max

max 1

max
max 1 2

2

max 2

2 3
max max

2

2sin 0
2 2

4

2sin
2

2 4

ψT πψ t t t t
π T
ψ

ψ t T t t t
ψ t

T πψ t t
π T t t t

ψ ψt t T

    
       

   

   


 
     
    

      
 
   
 









 

(43)

40θ   , 0 rad sθ  , 20 rad sθ  , 645 mmz  ,

0 m sz  , 20 m sz 

where, T is the cycle time; 10 t , 1 2t t and 

2 3t t are the times used for acceleration, uniform

motion, and deceleration. 

max

max

ψ πT
ψ





, 1 3 2 2

Tt t t   ,  3 2ψ t π                      (44)

Substituting into Eq. (44) the givens 

max 1.47 rad sψ  and 2
max 11.96 rad sψ  results in 

0.3852 sT  , 1 0.1926 st  , 2 4.2857 st  , 3 4.4783 st 

When the platform of the manipulator moves 
according to the preceding rules, the 
velocity/acceleration of the actuated joints, the linear 

velocity/acceleration of the reference point O , and the 



 

 
 

     

 

 

  

 

 

 

 

  

 

 

 

 

   

 

  

 

 

 

   

  

 

 

 

   

 

angular velocity/acceleration of the platform versus time 
can be evaluated using the proposed approach. These 
results, shown in Fig. 4, have been verified by a CAD 
model of the manipulator. There was no discernable 
difference between the results obtained using this 
approach and the CAD software. 

 

 

This paper presents a general and systematic 
approach for the forward and inverse velocity and 
acceleration analysis of lower mobility parallel 
manipulators using screw theory. With this approach, 
the process of acceleration modeling of serial and 
parallel kinematic chains can be integrated into the 
unified framework of the generalized Jacobian. It results 
in a new Hessian matrix being developed in a general 
and compact form. This allows rigid body dynamic 
modeling of lower mobility manipulators to be integrated 
into a single mathematical framework.
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