Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

1 2	RF Phase Shifter Using Coupled Microstrip Square Rings Tunable Bandpass Filter
3	M. Ould-Elhassen ^{1} and M. Mabrouk ^{2}
4	¹ SUPCOM, University of Carthage, Tunis
5	Received: 12 February 2012 Accepted: 1 March 2012 Published: 15 March 2012

7 Abstract

8 This paper presents a study, optimization and simulation of tunable bandpass filter centered

⁹ at 2.4GHz and used as phase shifter based on coupled microstrip square ring loaded by

¹⁰ varactor diodes. We have performed an electromagnetic simulation on Momentum software of

ADSTM; we have used the power of the Momentum software for the optimization and

¹² simulation of our circuit. A good results were obtained; the filter results in an insertion loss of

 $_{13}$ $0.35~\mathrm{dB}?0.26~\mathrm{dB}$ over tuning range and 3?dB b and width o f 3 00MHz?360MHz. W e c

¹⁴ ompute a f ractional bandwidth between 13

15

6

16 Index terms— Bandpass filter, Square ring, Phase shifter, Microstrip line, Varactor diode, Coupled line, RF 17 engineering.

18 1 INTRODUCTION

or almost three decades, tunable filters have been a popular choice to adapt multiple RF bands of operation using a single filter [1]. As consequence, tunable filter can replace the necessity of switching between several filters to have more than one filter response by introducing tuning elements embedded into a filter topology. Depending on type of tuning element, tunable filters can be classified in two categories with discrete and continuous tuning [2]. In this case we interest on continuous tuning device more precisely on varactor diodes, the use of this type of diode as capacitors has been the most popular choice to modify the effective electrical length of the resonator and tune the center frequency of the passband.

The coupling is carefully controlled by coupled microstrip square ring resonators and the tuning is performed by changing the bias on the varactor diodes. As the first step we begin by synthesizing bandpass filter from a prototype low pass filter, this process can be done by implementing frequency transformation and circuit conversions [1].

Bandpass filters can also be used as delay line [4], by using the correct amount of delay; the signal can be shifted for the intended amount of phase shift. In several applications of electronic it is often necessary to change the phase of signals, for this reason RF and microwave phase shifters have many applications in various equipments.

33 2 CIRCUIT DESIGN

In order to characterize our filter there are different types of approximation (Chebyshev, Butterworth, Elliptic and quasi-Elliptic) [3]. For this purpose we have studied the three cases of filter approximation by using our filter

36 characteristic given as following:

37 Center frequency F c = 2.4 GHz

$_{38}$ 3 Bandpass width BW = 200 MHz

Insertion loss IL ? 0.3 dB Stopband attenuation L As = 20.0 dB at normalized frequency ? s = 2.0.

a) Filter Synthesis 4 40

We start our filter synthesis by choosing the lowpass prototype; we discuss the design of passband filter described 41 by the specifications above. The figure ??, gives three examined filter response, the equation 1 determine the 42 filter n order of chosen Butterworth approximation [4]: () s L ? n As $\log 2 \ 1 \ \log 1 \ 0 \ ? = (1)$ 43

In this paper, we present a combining study design used for two functions as a phase shifter and as tunable 44

band pass filter in the same time. The filter configuration studied, is based on three square ring resonators. 45

Tunable bandpass filters are designed using half wavelength open loop resonators. A bandpass filter with 14.5%46 bandwidth centered at 2.4GHz was designed. In the following, a phase shifter is constructed with filter designed. 47

A good dynamic range of phase shifting of 90° at operating frequency is obtained. 48

By using equation 1 and the filter specifications, we can calculate the filter order as n = 3. The figure ?? gives 49 the transmission characteristics of different approximations Butterworth, Chebyshev and Elliptic. 50

Fig.1 : Transmission characteristics of different approxima-5 51 tions

52

We chose Butterworth approximation for satisfaction of our fixed filter characteristics. The figure 2 presents 53 Butterworth lowpass prototype [4] filter and the bandpass calculated filter. The parameters of the Butterworth 54 lowpass prototype [4] i.e. are g 0 = 1, g 1 = 1, g 2 = 2, g 3 = 1 and g 4 = 1 are determined by using the known 55 formulas in [4], this lowpass prototype is given by the figure 2-a and transformed to lumped element bandpass 56 filter given by figure 2-b when the series and shunt lumped elements were calculated as follows:, 0 0 i c s g ? 57 FBW ?? L = i c s g ? ? ? FBW C 0 0 1 = (2), g ? ? ? FBW L i c p 0 0 = 0 0 ? g FBW ?? C i c p = , 0 0 0 58 g Z ? = (3) L 1 =40nH, C 1 =0.1pF, L 2 =0.13nH, C 2 =32pF, L 3 =40nH and C 3 =0.1pF. 59

The figure ?? gives lowpass prototype obtained by impedance inverters. This figure consists of J-inverters and 60 shunt resonators only. The derived formulas [4] permitted to calculate the (B i, g i) lumped components that 61 are given by the equations (1-5).3 1 2 Input Ouput 0 Y 0 Y J01 J12 J23 J30 J13 B1 g1 B2 g2 B3 g3 62

Fig. ?? : Lowpass filter admittance inverter 63

The frequency transformation lowpassbandpass is given by the equation (??), B i is invariant susceptance.i i 64 i i C j L j jB g j? ? ? j? FBW ? ? 1 1 0 0 ? = +???????? + (4) i i i L ? C ? B 0 0 1 ? = (5) i i i L ? C 65 g? FBW 2 0 0 1 2 1 + = ? ? ? ? ? ? ? ? ? (6) ? ? ? ? ? ? ? + = 2 1 0 i i i B FBW g? C (7) 1 0 2 1 ? ? ? ? ? ? ? 66 ? = i i i B FBW g? L (8) 2 1 1 0 i i i i i i B FBW g B C L ? + ? = = (9) ? ? ? ? ? ? ? + = = 2 0 0 0 i i i i i i 67 68 B FBW g ? ? C ? b (10)

The external quality factor and the coupling coefficients can be found by the equation (?? b J M ext j i ij ij 69 70 ==(11)

With normalized cutoff frequency ? c = 1, the following figure 4 gives the general coupling graph of our filter, 71 while the parameters M ij are the inter-resonator coupling parameters. In the following part, we describe the 72 optimization methodology engineering of our circuit; its principle is given by the figure 5. In this engineering 73 process, we use the filter specifications to determine lumped elements of bandpass filter, and then we introduce 74 the coupling coefficient and the J-inverters. We have used the LinCalc program of Advanced Design System (ADS 75 TM) software to design the circuit and to calculate the geometrical parameters, and by using Momentum we can 76 compare the lumped components and coupled resonator model in order to get more efficient bandpass filter. The 77 proposed engineering method reduces the computational cost with respect to the theory filter synthesis. Moreover 78 the output EM simulation results could be feed back in order to adjust the parameters such resonator dimensions, 79 input feed positions and coupling distances for a better filter performances. The geometrical parameters of square 80 resonator can be determined by using the equation (10); the characteristic impedance of the resonator is given 81 82 by: M 13 M 32 M 12 Q ext Q ext L2/2 C 2 C 3 C 1 Input Output L2/2 L3/2 L3/2 L1/2 L1/2 i c C L Z = (10) The excitation inputs have been placed to get a maximum power transferring and have been matched to 83 reference impedance. To insure a maximum power transferring, we use a tapering input section. We change the 84 width of input transmission line to have the same width of main transmission line that constitutes the resonator. 85

c) Loaded square ring resonator 6 86

In this part, with the aim of moving the operating frequency of our circuit as to vary the phase, we load the ring 87 resonators with varactors diodes [5] To load the square ring resonator by the varactor diode, we use a via-hole 88 89 that allows to be connected to the ground through the substrate layer. In this study we have used a model given 90 by the ADS software constituted by serial inductance L and resistor R, this via-hole is defined by R=0.2? and 91 L=0.55nH [6,8].

The model of diode varactor has variable capacitance Cvar and a series resistance Rs=0.4?, parasitic series 92 inductance Ls=0.45nH, and parasitic parallel capacitance Cp=0.015pF [7]. 93

This section contains simulated results obtained for the proposed filter and phase shifter. This structure 94 has been designed using electromagnetic simulator Momentum of ADS TM . The bandpass filter is designed 95 at fundamental resonant frequency F C = 2.4GHz, and with bandwidth of 360MHz. It is built on a microwave 96 Rogers Duroid 4003 substrate having relative permittivity? r of 3.36 and height of 0.813mm. 97

For this filter, structure of passive filter is realized using microstrip ring resonator. Fig. 8 illustrates the transmission frequency response of bandpass filter III. The coupling parameters as: M 12 = M 23 = 0.058, M 13 = 0.083 and the quality factor Q in = Q out = 12.05.

7 RESULTS AND DISCUSSION

¹⁰² From 2.25GHz to 2.9GHz the obtained insertion loss is better than 0.18dB.

By choosing C i =5pF and using the equation (10) we can calculate L i =34nH, and Z c =82.46?, from 103 these parameters and by using LineCalc we can obtain W 1 =0.73mm, W=1.23mm, L=9.88mm, g=0.2mm and 104 coupling distance between two resonators 1 and 2 of S=0.4mm. With development of wireless communications 105 system (TX/RX), the bandpass filter is one of most important key components in TX/RX systems, and should 106 also be reconfigurable to meet the system requirements. The filter described previously can be modified to get 107 an electronically tunable filter using varactor diodes. The tunable filter is investigated, which implements with 108 varactor diodes placed inside of square ring resonator as shown in Fig. 7. The S 11 and S 21 simulation results 109 of this filter are shown in Fig. 8. The capacitances of varactor diodes C which are varied from 0.01 pF to 0.1 pF, 110 have a fundamental role to tune filter center frequency. To reach a fractional bandwidth range from 13% to 14.5%, 111 a variation of C is required. Fig. 9 shows bandwidth tuning was controlled by capacitance C, which modifies 112 the resonator capacitive coupling from the main transmission line. The filter center frequency from 2.48 GHz 113 to 2.32 GHz, is changing by Figure 10 shows the phase shift variation versus frequency, the capacitance varies 114 between 0.01pF and 0.07pF. A linear phase shift variation is performed by the phase shifter for different value of 115 capacitance. For C=0.01pF the maximum value of differential phase shift is about 10° while for C=0.07pF the 116 phase shift varies from 0° to -80° at the frequency 2.4GHz. Figure ??1 illustrates the linear variation of phase 117 versus capacitances at 2.4GHz.

Figure 1: F

119 .1 March

120 Fig. ??1 : Phase shifting in degrees at the operating frequency 2.4GHz versus variable capacitance.

By examining the figure above, we deduced that the phase dynamic at 2.4GHz is about 90° and linear behavior can be denoted.

123 .2 IV.

124 .3 CONCLUSION

A new type of tunable filter and phase shifter has been proposed. The varactor diodes have been applied to the design of tunable band pass filter where center frequency and bandwidth can be controlled. A capacitance bias from 0.01 to 0.1pF was applied to shift the filter's center frequency from 2.48GHz to 2.32GHz and its 3-dB fractional bandwidth from 13% to 14.5%. We mention also a good dynamic range of phase shifting about 90° at

operating frequency 2.4 GHz. In this study we have designed a circuit that could be used in the same time as tunable filter and phase shifter and good results was obtained.

- 131 [Dissertation and Fourier (2007)], Joseph Dissertation, Fourier. July 2007. Grenoble on.
- [Hong and Lancaster ()] 'A differential 4-bit 6.5-10-GHz RF MEMS Tunable Filter'. Jia-Sheng Hong , Michael J
 Lancaster . *IEEE Trans. Microwave Theory Tech* Martch 2005. 53 (3) p. .
- [Capacitance (pF) Phase shifting (Degree) References Références Références Referencias] Capacitance (pF) Phase shifting
 (Degree) References Références Références Referencias,
- [Ville et al. (2004)] Characterisation of European Millimetre-Wave Planar Diodes, S Ville , Juha Mottonen ,
 Antti V Mallat , Raisanen . October 2004. p. . (34th European Microwave Conference)
- [Darine] Conception et réalisation de filtres RF passe-bas à structures périodiques et filtres Ultra Large Bande,
 semi localisés en technologie planaire, Kaddour Darine . (unpublished-doctoral)
- [Bohorquez ()] Contribution à la conception de filtres reconfigurables sur la base de technologies planaires et sim",
 unpublished-doctoral-dissertation Bretagne Occidentale, J C Bohorquez . 2007. (on Juin)
- 142 [Hong and Lancaster (1996)] 'Couplings of Microstrip Square Open-Loop Renonators for Cross-Coupled Planar
- Microwave Filters'. Jia-Sheng Hong , Michael J Lancaster . *IEEE Trans. Microwave Theory Tech* December
 1996. 44 (12) p. .
- [Hong and Lancaster ()] Microstrip Filters for RF/Microwave Applications, J S Hong , M J Lancaster . 2001.
 New York, Willey.
- [Goldfarb and Pucel (1991)] 'Modeling via hole grounds in microstrip'. M Goldfarb , R Pucel . *IEEE Microwave Guided Wave Letters* June 1991. 1 (6) p. .
- [Hong and Lancaster (1997)] 'Theory and experiment of novel microstrip slow-wave openloop resonator filters'.
- 150 Jia-Sheng Hong , Michael J Lancaster . *IEEE Trans. Microwave Theory Tech* Dec. 1997. 45 p. .