Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

1	Adaptive Control for Structural Damage Mitigation
2	Dr. B. Dattaguru ¹
3	¹ Jain University
4	Received: 21 October 2011 Accepted: 11 November 2011 Published: 26 November 2011
-	

6 Abstract

7 Substantial progress has been made in analyzing the integrity of composite structures when

⁸ macro or nano sensors and actuators are embedded into it. The resulting structure in a

⁹ dynamic environment is said to be ?intelligent? if it performs a certain functional

 $_{10}$ $\,$ requirements related to vibrations, health, shape, etc. In health, after the damage has been

¹¹ detected, the subject of damage mitigation becomes important, so that in prognosis context

¹² (Farrar and Lieven, 2007), the remaining life of the structure is extended. The damage is said

¹³ to be mitigated if the sensor data of the damaged structure matches with the sensor data of

the healthy structure. This is done by applying an actuator loading. In this paper, Model

¹⁵ Reference Adaptive Control (Slotine and Li, 1991) is applied for structural damage mitigation.

A known finite element model resulting from the structural health monitoring and assessment techniques is adopted to determine the control parameters that mitigate the damage. An

¹⁷ techniques is adopted to determine the control parameters that mitigate the damage. An ¹⁸ example is illustrated using a spring-mass-damper model that depicts a structural model with

¹⁹ modal coordinates.

20

21 Index terms— mitigation, actuator, monitoring

22 1 INTRODUCTION

23 n the last several years, many developments have taken place in the areas of structural health monitoring (SHM). Majority of them not only determine the presence of damage in a structure but also attempt to find the status 24 25 of the structure through an accurate dynamic model that is uncertain when structural damage identification is 26 divided into high-and low-frequency based excitation methods. Stiffness, damping and mode shape parameter changes are modeled for a relatively broad inspection zone (Yan, Yam, Cheng, and Yu, 2006., Ma and Lui, 2005., 27 Tee, Koh, and Quek, 2005., Meng, Lin, Dong and Wei, 2006) but it applies to a specific frequency range. The 28 29 bandwidth of the sensor technologies such as fiberoptic sensor (Shivakumar and Bhargava, 2005) and piezoelectric sensors (Ghasemi-Nejhad, 2005) usually limits this frequency-range, model size as well as the damage size. When 30 size and location of the damage through SHM and assessment are known, damage prognosis ??Papazian, et 31 al., 2009) and structural health management (Xiaomo, 2010) studies assume a given sensor technology and 32 attempt to determine the remaining life of the material. In this effort, the dynamic loading is assumed to be 33 external and the actuator Author ?? : Department of Aerospace Engineering Jain University, Jakkasandra 34 Post, Kanakapura Taluk, Ramanagara District, Bangalore loading is completely ignored. Through the actuator 35 36 loads, Model Reference Adaptive Control (MRAC) can be used such that the sensor data from the damaged 37 structure can mimic the healthy structure. Although, damage prognosis study using similar sensor data for 38 healthy and damaged structures is difficult to distinguish, the damage with such actuator loads is then said to be mitigated (Maryam and Luciana, 2010). In this paper, MRAC in state feedback format is investigated for 39 structural damage mitigation (SDM). Some of the attributes of the MRAC are illustrated using the second order 40 spring-mass-damper model that represents a finite element model of structural material in modal coordinate 41 form. 42

43 MRAC has been recently investigated for Civil engineering structures (Tu, Jiang, and Stoten, 2010., Chu, Lo, 44 and Chang, 2010), where the response of the structure in real-time is minimized under an earthquake excitations.

To extend similar applications of MRAC for other aeronautical and mechanical structures, the SDM problem 45

proposed in this paper assumes integrity of the composite material when macro (Case and Carman, 1994., Mall, 46

2002 ??, Trease and Kota, 2009) or nano (Chunyu, Thostenson and Tsu-Wei, 2008) sensors and actuators are 47 48 embedded into it.

The paper is organized with the problem formulation in Section II. In Section III, adaptation law is explained. 49 In Section IV, a procedure to acquire damage and compute control parameters is briefed. In Section V, an 50 example with spring mass-damper system is illustrated. In Section VI, conclusions are presented. 51

$\mathbf{2}$ II. 52

3 PROBLEM FORMULATION 53

54 Consider a single input healthy material in control canonical form as follows:

Where r (t) is an exogenous input. The n th order differentiation with respect to time variable t is denoted 55 by y (n) 2011 V () August D -) () (0) 1 (1) (t r t u y y y m n m n n m ? ? ? ? ? ? ? ? ? ? ? (1) m n m n 56 y k y k t u 0) 1 (1) (? ? ? ? ? ? ? ? (2) Substituting (2) in (1),) (0) 1 (1) (t r y y y m n m n m m ? ? ? ? 57 ?????(2)(3 58

ADAPTATION LAW 4 59

Let the Laplace variable be s. Given a Hurwitz polynomial ,the control law u ?(is given by (Slotine and Li, 60 61 1991).

Where, v T refers the transpose of v and Let . Then the adaptation law is given by, Where, P, the symmetric 62 positive definite constant matrix, is the solution matrix to the Lyapunov equation given by, Q is any positive 63 definite matrix. Î?" is a positive definite diagonal matrix whose entries refer to an adaptation mechanism with 64 slow or fast parameter convergence depending upon the diagonal values one would like to choose. From Eq. (65 ??), it is further observed that, upon an appropriate numerical integration scheme, the sensor data and the vector 66 a~2011 Global August () Dnikininin? 2, 1, ????????????nikin? 2, 1, 0???) (0) 1 (1) (t 67

uyayaynnn????????(4)1?na,02,,aan??)1(,,?nyyy?????)1(,,,?nyyy?? 68 ??) 1 (,,,? n m m m y y y ?? measurable. 69

The SDM problem is posed as follows: 70

Find a control law u?(t) in Eq. (??) such that the sensor data mimics the sensor data of the healthy material 71 72 . In the process, acquire? ? 0 , , , 1 a a a ? 2 - n 1 - n , a ?

73 the parameters when applying u?(t) to the damaged material. MRAC is particularly attractive to address 74 this problem. However, to separate control parameters defining the control law u ?(t) from that of the system parameters a, a state and parameter estimation technique such as an extended Kalman filter (EKF) (Bauer 75 and Andrisani, 1990., Speyer and Crues, 1987) is required. Currently, all the state variables are assumed to 76 be available as the sensor data. Within this framework, the SDM problem is addressed using two design steps. 77 First, adaptation parameters in MRAC are selected such that the damaged response to an excitation load tracks 78 the healthy response of the material. Next, the adaptation parameters are fixed and this damaged response is 79 utilized as sensor data to find a procedure that acquires damage and determines control parameters. Finally, the 80 81 control parameters are verified to check if the damaged response is indeed tracking the healthy response.0 1 1 ? 82 ????????nnnss))()()(?0)1(1ttyayazatunnnavT?????????(5)

teeytznnnm0)1(1)()(?????????,)()()(tytytem??,??011,,,,?aaaann 83 ??a,??Tnyyytz,,,),()1(????v.aaa-?abvAxxT???,xc?e,(6a)Pxvb-Î?"aT? ? 84 ? ~(6b) ? ?) 1 () 1 (, ,) (? ? ? ? ? ? n m n m m y y y y y t ? ? ? T x , ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 85 86 ? ? ? ? ? ? ? ? ? 10..00b? ? 00..01? c. Q P A PA ? ? ? T ? ?) 1 (,,,? n y y y ? ? are 87

Clearly, the adaptation parameters in $\hat{I}?"$ adjusted in such a way that, obtained. are) () (t y t y m ? ,) 1 (88) 1 (,), () (? ? ? ? n m n m y y t y t y ? ? ? . 89

The response is coupled with the control parameters and system parameters a. In fact, when a is time invariant, 90 Eq. (6b) modifies to, a \tilde{a} ?Px vb - \hat{I} ?" a T ? ? ?. 91

In this paper, an EKF algorithm is applied to separate the control parameters from the system parameters a 92 93 appearing in a , where can be recalled as given by . It is interesting to observe that the MRAC is sensitive to 94 initial conditions (0), (0) and a (0). Accordingly, the time histories of a?(t) and a(t) vary with time. However, 95 u ?(t) in Eq. (5) is guaranteed to track .a ?a \tilde{a} - a a ? a ~a ?) () (t y t y m ? ,) 1 () 1 (,), () (? ? ? ? n m n m y y t y t y ? ? ?96

This attribute of MRAC is utilized to acquire damage, where an appropriate initial condition for a (t) is 97 selected such that lim a (t) converges to a damaged model which is assumed to be known through a damage 98 assessment techniques. This process is referred as the damage acquisition for SDM. Given a formulation to 99 compute by acquiring a is presented in the next section. 100 IV.

101

OF COMPUTATION CONTROL PARAMETERS 5 102 THROUGH DAMAGE ACQUISITION 103

Given obtained by integrating from the previous section, EKF is applied to separate and a appearing in a \sim . 104 The state equations compatible to the EKF will be of the form, Where is a vector with 3n+1 components, is the 105 measurement vector available at discrete time instants and F(t,?) is a system dynamic vector presented below. 106

Note that the sensor measurements for the EKF are the response of the damaged material computed in the 107 previous section using the adaptation parameters specified in the matrix \hat{I} ?". 108

Eq. (??) completely specifies the required formulation to apply an EKF algorithm ??19, ??0]. When Or 109 110 when .

The computed system (a) and control () parameters are used back again in Eq. (??) and the response of the 111 system is simulated to check if it matches with the sensor data for a given exogenous input r (t).If it matches, 112 as adopted by Maryam and Luciana, 2010, the resulting structure with damage is said to be mitigated under an 113 applied load from the actuator that is adaptive to the dynamic loads r(t) appearing in the control input u?(t). 114 Further, it is inferred that the MRAC adopts a certain trajectory for the system parameters a to compute 115

the control parameters such that the response of the damaged model in Eq. (??) tracks the reference model in 116 Eq. (3). Yet, the problem of finding a finite element model with parameters a, remains a fundamental problem 117 in composite materials whenever damage is present (Reddy, 2004). It is observed that the finite element model 118 by MRAC is given in transfer function framework. In the next section, an example is illustrated using a second 119 order spring-mass-damper system. 120

V. 121

EXAMPLE 6 122

Consider a second order spring-mass-damper system representing a structure in modal coordinates. The 123 undamaged model is taken with the parameters 1. August D t ?????) 1 (,,,? n y y y ?????) 124 125 ? k y y y n k n k k k k z (7a) (7b) ? ? 0 1 ?a a x n T T ? ? ? T a ? ? 2 , 1 , ? k k z ? 2 , 1 , ? k t k ? ? ? ? 126 ??????????????????00), (?Px Î?"vb - a by a by Ax?FTTT-tnikin?2,1,0???0)0() 127 0()0()1(?????nmmmyyy?? 128

for the control parameters can be selected as $a^{2}(0) 0$. However, for a, one has to select the initial conditions 129 a (0) to match the model of the damaged structure as stated in damage acquisition. 130

7 4 131

.11??10??) sin () (ttr?.) (01tuyayay????????2.1) (1??a8.0) (0??a 132

133 The objective in SDM is to find an initial condition for the system parameters and determine the control parameters such that the control law u? () given by] 0 () 0 (1 [01 a a T? a], [?01 2 a a a T? a y a y a 134 zatu012) (????? 135

mitigates damage by the tracking Performance and , where 136

In the first design step, the tracking performance is achieved through the adaptation parameters which were 137 found out to be \hat{I} ?" diag (10,1, 30). Integrating Eq. (??), with an initial condition for a ~as the responses t) (138) (tytym?) () (tytym???ym(t) 139

and y m (t) are the response of the undamaged material due to exogenous input r (t). Further a (t) converges 140 to . Here z (t) is selected that with and Note that the control law is adaptive to the exogenous r (t) through 141 142 the term.] 8.02.11[)(?? T a such e e y t z m 22)(??????21??2.0?? input m y????2. 03.01)0(~????Ta 143

damaged and undamaged material is shown in which suggest that and . 144

These responses of y(t) and y(t) are used as of the Fig. 1,) () (tytym?) () (tytym????? 145

measurements in EKF that is used to compute control and system parameters with damage acquisition in the 146 responses of a . In Fig. 2, the error responses of position and speed contained in x(t) are compared with the 147 Kalman filter estimates x? (t). 148

In Fig. 3, the parameters response and are provided. We observe that the steady state values of these 149 parameters represent the damaged state of the material. In Fig. 4, the control parameters, namely, and areVI. 150 CONCLUSIONS 2011 Global August () () a ?) () (tytym?) () (tytym????) (1ta) (0ta) (?2 151 ta,)(?1ta)(?0ta 152

153 verify that these parameters indeed performs SDM, the control law with these parameters in Eq. (??) are used to get the responses y s(t) and y s(t). The error responses y s(t) y m(t) and y s(t) y m(t) are 154 155 shown in Fig. 5. Clearly SDM is performed; however, the error build up in certain time intervals are due to the 156 choice of initial condition (0) that also governs the slow and fast adaptation rates.

presented. In order to Presently, damage prognosis and structural health management schemes assume a 157 given sensor technology and attempt to diagnose the data to predict the remaining life of the structure when an 158 exogenous input load in a damaged structure is present. Structural damage mitigation proposed in this paper 159 considers both sensor and actuator technologies embedded in a structure and modifies the actuator loading such 160 that the sensor data from the damaged structure mimics the sensor data from the healthy structure. Model 161

- 7 4
- Reference Adaptive Control is recognized to fulfill this objective. A damaged finite element model for the material is assumed through a structural damage assessment techniques and a technique to mitigate the effects of damage in an uncertain environment is proposed. A second order spring-mass-damper model that represents
- a finite element structural model in modal coordinates is considered to illustrate the foundations of SDM using MRAC.), (2 t a) (2

Figure 1:

166

 $^{^1 \}odot$ 2011 Global Journals Inc. (US)

Figure 2: Figure 1 :

Figure 3: Figure 2 :

Figure 4: ?

Figure 5: Figure 3 :

Figure 6: Figure 4 :

Where loss of generality, the open loop structure with an excitation load r (t) can be studied by assuming	Without
	. Let the finite element model
of a material with damage be,	
The parameters	are to
	be
acquired using a structural damage assessment	
technique [18]. The state variables	are
III.	
?	
Rural 562 112, INDIA.	Professor and Corresponding Author, Email :
chimpalthradi@gmail.com , ? Visiting Professor,	?
	Pro-
	fessor

[Note: ?]

4

Figure 7:

- [Bitaraf et al. ()] 'Adaptive Control to Mitigate Damage Impact on Structural Response'. Maryam Bitaraf ,
 Luciana R Barroso , Stefan Hurlebaus . Journal of Intelligent Material Systems and Structures 2010. 21 (6)
- 169 p. .
- [Case and Carman (1994)] 'Comparison Strength of Composites Containing Embedded Sensors and Actuators'.
 S W Case , G P Carman . Journal of Intelligent Material Systems and Structures January 1994. 5 (1) p. .
- [Farrar and Lieven (2007)] 'Damage Prognosis: The Future of Structural Health Monitoring'. Charles R Farrar
 , Nick A J Lieven . In Philosophical Transactions of Royal Society, Series A 15 Feb 2007. 365 p. .
- [Bauer (1990)] Estimating Short-Period Dynamics Using an Extended Kalman Filter, J E Bauer, Andrisani, D
 NASA-TM-101722. June 1990.
- [Mall ()] 'Integrity of Graphite/Epoxy Laminate Embedded with Piezoelectric Sensor/Actuator Under Mono tonic and Fatigue Loads'. S Mall . Smart Materials and Structures 2002. 11 (4) p. 527.
- IGhasemi-Nejhad ()] 'Manufacturing and Testing of Active Composite Panels with Embedded Piezoelectric
 Sensors and Actuators'. M N Ghasemi-Nejhad . Journal of Intelligent Material Systems and Actuators 2005.
 16 (4) p. .
- [Meng et al. ()] Guang Meng , Lin Ye , Dong , Xing-Jian , Wei , Ke-Xiang . Closed Loop Finite Element Modeling
 of Piezoelectric Smart Structures, Shock and Vibration, 2006. 13 p. .
- [Papazian et al.] John M Papazian , Elias L Anagnostou , Stephen J Engel , David Hoitsme , John Madsen ,
 Robert P Silberstein , Greg Welsh , James B Whiteside . A Structural Integrity Prognosis System,
- [Chu et al. (2010)] Real-Time Control Performance of a Model-Reference Adaptive Structural Control System
 Under Earthquake Excitation, Structural Control and Health Monitoring, Chu, Shi-Yu, Lo, Chang Shih Chieh, Ming-Chia. March 2010. 17 p.
- [Li et al. (2008)] 'Sensors and Actuators Based on Carbon Nano Tubes and Their Composites: A Review'.
 Chunyu Li , Erik T Thostenson , Tsu-Wei Chou . Composites Science and Technology May 2008. 68 (6)
 p. .
- [Ge and Lui (2005)] 'Structural Damage Identification Using System Dynamic Properties'. Ma Ge, Eric M Lui
 . Computers and Structures October 2005. 83 (27) p. .