Gravitomagnetics a Simpler Approach Applied to Dynamics within the Solar System

H. Ron Harrison

1 University of London

Abstract
Galileo studied bodies falling under gravity and Tycho Brahe made extensive astronomical observations which led Kepler to formulate his three famous laws of planetary motion. All these observations were of relative motion. This led Newton to propose his theory of gravity which could just as well have been expressed in a form that does not involve the concept of force. The approach in this paper extends the Newtonian theory and the Special Theory of Relativity by including relative velocity by comparison with electromagnetic effects as shown in section 1.4 based on the Lorentz force. It is also guided from the form of measured data. This enables the non-Newtonian effects of gravity to be calculated in a simpler manner than by use of the General Theory of Relativity (GR). Application to the precession of the perihelion of Mercury and the gravitational deflection of light gives results which agree with observations and are identical to those of GR. It also gives the accepted expression for the Schwarzschild Radius. This approach could be used to determine non-Newtonian variations in the trajectories of satellites.

Index terms—gravity, relativity, Lorentz force, speed of light.

1 a) Newtonian Gravity

Galileo studied bodies falling to Earth under gravity and concluded that all bodies fell with the same acceleration independent of size and material. Tycho Brahe made extensive astronomical observations which led Kepler to formulate his three famous laws of planetary motion relative to the Sun. All of these observations were of relative motion but the mass of one body was, in each case, much greater than that of the other. These led Newton to propose his theory of gravity using the concept of force and yielding an equation which gives the acceleration of a body relative to the centre of mass. He could just as well have presented it in the form ()2 / / A B B A A B rm m G a + ? = (1) without invoking the concept of force and only requiring one definition of mass. This means that the principal of equivalence does not appear.

That is, the acceleration of body B relative to A, in the radial direction, is proportional to the sum of their masses and inversely proportional to the square of their separation. G is the gravitational constant.

2 b) Gravitomagnetics

It is now proposed that equation (1) be extended to include the relative velocity. The axioms are.

a) It is assumed that in mass-free space light travels in straight lines. This defines a non-rotating frame of reference. b) Because all motion is relative there are no other restrictions on the frame of reference. c) Gravity propagates at the same speed as light. d) Mass, or rest mass, is simply the quantity of matter and is regarded as constant. It could be a count of the number of basic particles.
The initial proposed equation is based on comparisons with electromagnetics. This equation gives results which agree with the measured results of the precession of the perihelion of Mercury and the deflection of light grazing the Sun. Also it gives the correct definition for the Schwarzschild Radius. However, it suggests that the speed of light is constant. As a result it does not predict the Shapiro Time Delay. An extra term is then added which gives agreement with the time delay and also generates the accepted value for the Last Stable Orbit. See equations (2a), (3a), (4a) and (5a). The proposed equation is \((\text{equation} 1) \) where \(a = \) acceleration of body \(B \) relative to body \(A \), \(v = \) the relative velocity, \(r = \) the separation and \(\theta = \) the unit vector from body \(A \) to body \(B \). Also \(c = \) speed of light. \(K = G(m_A + m_B) \) and \(v_r \) is the radial component of velocity. Note that \(G \) is a constant which could be incorporated into the definition of the quantity of matter. These equations reduce to \((\text{equation} 1) \) when \(v \cdot c \leq 2 \). The accepted value for the Last Stable Orbit is the accepted value.

It should be noted that the velocities of the individual bodies do not appear in these equations, only the relative velocity. For two isolated bodies the relative motion is the only measureable value.

A convenient definition of force is \(2 1 2 2 2 2 r e v v e a P \times x + ? + ? + ? + ? = = c r m G m c v r m G m B A B A \mu (5) \)

\[\text{where} \] \(/ \) \((\text{value} \) \(A \) \(\mu \) \(= \) \(\mu \) \(. \) \(\text{the reduced mass.} \)

By definition of the centre of mass (or the centre of momentum) the total momentum is zero with reference to the centre of mass. It is now proposed that the motion of the centre of mass of two bodies is not affected by collision. From this it follows that for a group of particles the motion of the centre of mass is unaffected by internal impacts.

The relative acceleration is only radial when the relative velocity is either radial or tangential. In general the moment of momentum can be shown to be a function of the relative position. So, for an elliptic orbit it remains within bounds.

3 General inferences from equation (2).

Reverts to Newtonian form when \(v \leq c \). The second term of (2) is normal to the velocity.\n
Moment of velocity (or moment of momentum per total quantity of matter) is shown to be a function of \(r \).

The equivalence of inertial mass to gravitational mass does not arise.

4 c) Modified Equations

An extra term is added in the direction of the relative velocity. This will affect the speed of light but not its deflection. As the term is a function of \(c \) it only has a very small effect on the motion of large bodies in Solar orbits.

The new equation is \(3 2 2 2 2 t e v e a a a 2 r V N ? + + ? + + ? = = c r m G m c v r m G m B A B A \mu \) \((\text{equation} 2a) \) or \(2 \text{1 3 2 2 2 2} t e v e a ? + + ? + + ? + + ? + + ? + + = = c r m G m c v r m G m B A B A \mu (5a) \) \(\text{where} \) \(/ \) \((\text{value} \) \(A \) \(\mu \) \(= \) \(\mu \) \(. \) \(\text{the reduced mass.} \)

Equations (2 -5) will account for the precession of the perihelion of Mercury and will predict the observed value for the deflection of light grazing the Sun. These results were heralded as confirmation of Einstein’s General Theory of Relativity. They also give the accepted value for the Schwarzschild Radius.

Equations (2a -5a) will generate the same results as mentioned above but will also give the accepted value for the Shapiro Time Delay because the speed of light is now affected by gravity. Light is slowed down by gravity which is the opposite of mass particles. The value generated for the Last Stable Orbit is the accepted value.

5 d) Lorentz force

We shall look at the standard theory of electromagnetism, but this is only to obtain some guidance as to the possible form of a gravitomagnetic theory. The electromagnetic notation is based on reference \([7] \) for SI units.

The force on a charge \(q \) in an electromagnetic field \(\text{i} \) \(\text{s}\) \(\text{i} \) \(\text{B} \) \(\text{v} \) \(\text{E} \) \(\times + = 2 \text{2 2 2 q} \) \(\text{q} \) \((1.4.1) \)

\(B \) is the magnetic field and \(E \) is the electrostatic field and \(v \) is the velocity of the charge. This equation defines the Lorentz force. The magnetic field, due to a length of conductor \(dl \) carrying a current \(i \) is \(\text{e} \) \(\text{r} \) \(\text{v} \) \(\text{A} \)
For point charges, we can write for the force on charge 2 due to charge 1 as

\[F = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} \quad \text{or} \quad \mathbf{F}_2 = \frac{q_1 q_2}{4\pi\varepsilon_0} \hat{r} \]

where \(q_1 \) and \(q_2 \) are the charges, \(\varepsilon_0 \) is the permittivity of free space, and \(r \) is the distance between the charges. This equation is valid in the case of point charges and is the basis for many applications in electromagnetism.
where a is the semi-major axis and e is the eccentricity. This generates 42.89 arcsec/century.

For the binary pulsar PSR 1913+16, which was discovered by Hulse and Taylor in 1974, (see reference [22]), the accepted data is that the masses of the two stars are 1.441 and 1.387 times the mass of the Sun, the semi-major axis is 1,950,100 km, the eccentricity is 0.617131 and the orbital period is 7.751939106 hr. Using equation (8), we obtain the result 4.22 deg/yr, which is in agreement with the measured value and that predicted by General Relativity. The orbital decay, or inward spiralling, of binary pulsars is said to be simply due to energy loss caused by gravitational wave emission. This may be the case but energy loss alone will not account for the phenomenon.

The loss of mass

8 Global

9 c) Moment of Momentum

If the additional term is negligible then it can be shown that the moment of momentum is

$$\sum \frac{\mu r^2}{\mu_0} = \frac{\mu_0 R^2}{\mu_0}$$

which depends on separation but is constant when $c = \infty$.

10 d) Schwarzschild Radius

For a constant radius $r = 0$ and $v = v$ so equation (??) or (3a) becomes

$$\sum \frac{\mu r^2}{\mu_0} = \frac{\mu_0 R^2}{\mu_0}$$

so if $v = c$ then $g r c M c K = + = + = 2 2 2 0 2 2 2 2 2 2 2$ and

which is known as the Schwarzschild Radius.

11 e) Last Stable Orbit

Numerical integration of equation (3a) shows that the Last Stable Orbit occurs when the radius of the orbit is

3 times the Schwarzschild Radius, which is the accepted result based on General Relativity. If equation (??) is

used then a value of $2.62 r g$ may be calculated algebraically. However if Q is not unity, as shown in equation

(3a), then equation (12), with Q included is,

$$\sum \frac{\mu r^2}{\mu_0} = \frac{\mu_0 R^2}{\mu_0}$$

where the suffix 0 refers to circular motion when $u = u o$ Substituting in equation (8) for h, using equation

(12a), equation (??) becomes

$$\sum \frac{\mu r^2}{\mu_0} = \frac{\mu_0 R^2}{\mu_0}$$

so when the factor of $g o g$ in equation (13b) is zero, algebraic manipulation of (13b) gives $r o / r g = 3$, which is

the accepted value. It also gives a value of 0.5.

12 f) Deflection of Light

In equation (3a) terms 2 and 3 are parallel to the velocity so the component normal to the velocity is

With $K = \mu n s G$ and $R s$ being the radius of the Sun the deflection is 1.75 arcsec. This value agrees with the measured

value and with General Relativity. This confirms the assumption that the deflection of light grazing the Sun is small. For small variation of the speed of light assume that $v = c$. Also, for small deflections the scalar product

of $e r$ and n can be seen from Figure ?? to be $R s / r$. Then

$$c r K c c i i 2 0 = \sum c$$

Integration leads to

$$\sum c$$

where c is now the speed of light where r tends to infinity.

Consider the case of light grazing the Sun at a radius $R s$ and calculate the journey time. As an approximation

assume the path to be a straight line.

Then, $s c e r K c e r K c 2 0 = + = +$

where the speed of light is at its maximum then passing

though empty space it must reduce when moving into a gravitational field so assume that it depends on the
magnitude of the radial speed. From this it follows that the acceleration will be repulsive. Also, for circular orbits the speed remains constant, which is true when \(v_r = 0 \).

The additional term could be

\[\Delta \mathbf{a} = \mathbf{v} \times \mathbf{e} \]

where \(\mathbf{e} \) is a constant depending on application.

When applied to the Last Stable Orbit with \(\Delta \mathbf{a} = \mathbf{v} \times \mathbf{e} \), the value agrees with the generally accepted value. The constant seems reasonable, so

\[\Delta \mathbf{a} = \mathbf{v} \times \mathbf{e} \]

This is the form shown in equation (2a) which leads to predicting the speed of light due to gravity.

Consider the case when speed is very close to the speed of light in a gravity free vacuum.

16 Equation (2a) gives the acceleration parallel to the velocity

\[\Delta \mathbf{a} = \mathbf{v} \times \mathbf{e} \]

From equation (3a) the acceleration normal to the velocity

\[\Delta \mathbf{a} = \mathbf{v} \times \mathbf{e} \]

With \(\mathbf{e} \) being the angle between the radius from the gravity source and the velocity

\[\mathbf{v} \]

the value agrees with the generally accepted value. The constant seems reasonable, so

\[\Delta \mathbf{a} = \mathbf{v} \times \mathbf{e} \]

This is applicable to the passage of light through the Earth’s atmosphere.

Hence light passing through a strong gravity field will be affected in the same way as light passing through the atmosphere.

This result gives more confirmation of the applicability of the basic equation of the paper.

17 Thus

\[\mathbf{v} \times \mathbf{e} \]

as equation (a). This is applicable to the passage of light through the Earth’s atmosphere.

Hence light passing through a strong gravity field will be affected in the same way as light passing through the atmosphere.

18 III. Gravitomagnetics Applied to

Rotating Bodies

a) Basic Equations

When equation (**) is applied to two body systems the equation generated is identical to the de Sitter form and agrees with the measurement of precession of the perihelion of Mercury and of the Binary Pulsar PSR 1913+16. The equation is equally applicable if one spherical body is large and non-rotating.

\[\mathbf{r} \times \mathbf{e} \]

where \(\mathbf{e} \) is the unit vector from body A to body B.

\[\mathbf{c} = \text{the gravitational constant} \]

The calculations are made easier for multi-body systems by the use of a defined force as shown in equation (**).

\[\mathbf{c} = \text{is the reduced mass} \]

Gravity Probe B

The Earth is regarded as a uniform spherical body which can be regarded as a set of uniform spherical shells.

The sphere, of mass \(M \) and moment of inertia \(I \), rotates about the Z axis at a constant angular speed \(\omega \).

Consider a test body in orbit around the Earth performing an elliptical orbit where \(e \) is the eccentricity and \(a \) is the semi-major axis and a period of \(T \). The plane has an inclination (inc) relative to the equatorial XY plane of the Earth.

Again, based on equation (**), the rate of precession of the periastris, as seen from the plane of the orbit, in radians per orbit, is

\[\text{is}()) \text{ T inc e a c GI e a c GM P } \cos(1 2 1 6 2 / 3 2 3 2 2 2 ? ? ? ? ?) (19) \]
IV. DISCUSSION

20 d) Anti-Gravity

21 Anti-Gravity

22 Weight loss of a rotating ring.

23 Consider a ring rotating about a horizontal axis above a large body, such as the Earth. Using equation (3a) evaluate the component of the acceleration in the radial direction.\(\frac{2}{v^2} \frac{d}{dt} \frac{v}{v^2} \) where \(v \) is the velocity and \(v^2 \) is the speed. Noting that \(v/v_t = \) means that (3a) may be written

\[a = \frac{2}{v^2} \frac{d}{dt} \frac{v}{v^2} \]

as \(v e a r = \). However, the second term, the Lense-Thirring term, justified

24 Mercury and for the binary pulsar PSR 1913+16. However, the second term, the Lense-Thirring term, justified

25 by numerical integration, is only half of the generally accepted value.

26 The first term, the de Sitter precession, has been derived algebraically from equation \([2]\). It agrees exactly

27 with the generally accepted form and agrees with the measured results for the precession of the perihelion of

28 Mercury and for the binary pulsar PSR 1913+16. However, the second term, the Lense-Thirring term, justified

29 by numerical integration, is only half of the generally accepted value.

20 IV. Discussion

30 Equation (4a) is easier to apply than the theory of General Relativity (GR) and therefore leaves less room for

31 misinterpretation. That force is a secondary quantity was strongly advocated by H. R. Hertz who regarded force

32 as "a sleeping partner." Force is to dynamics as money is to commerce. Once force has been demoted to a defined

33 quantity then force fields and inertia are also defined quantities, similarly for work and energy. Equation (10)

34 is loosely modelled on the Lorentz force but this relationship is for guidance only in the same way that Maxwell

35 used a mechanical model to form his equations. However, he abandoned the reference in his final paper on the

36 subject once he had established that his equations predicted the then known observations.

37 As shown above, when the new approach is applied to two body systems it agrees with the well verified

38 observations of the precession of the perihelion of Mercury, deflection of light passing the Sun and the definition

39 of the Schwarzschild Radius. All agree with the results obtained from the General Theory of Relativity. The third

40 term in equation (4a) was added as it agrees with the measurements of the Shapiro Time Delay and generates a

41 value equal to the accepted value for the Last Stable Orbit.

42 The Gravity Probe B experiment testing the precession of gyroscopes in Earth orbit displays two equations,

43 one for the geodesic term and one for the frame-dragging effect. The geodesic term does not involve the rotation

44 of the Earth but the frame-dragging term does. The same form of equations have been generated algebraically

45 using equation \([5]\). The frame-dragging term is half of the published value, however, the geodesic term is about

46 two thirds of the published value.

47 The de Sitter effect agrees with the accepted results of analysis whether algebraically or by numerical

48 integration for two body systems or large non-rotating bodies. This is true whether using equation (2) or

49 equation \([5]\). However, for the Lense-Thirring terms there is an unresolved factor which affects the periapsis

50 precession. The published nodal precession test on the Earth satellites LAGEOS I & II, see reference \([28]\) appear

51 to agree with the accepted theory. The inclination of the satellites is approximately 90° ± 20°. The reason

52 for this is that the accepted Lense-Thirring term does not depend on the inclination but all other effects do and

53 therefore can be cancelled out. See also references \([10]\) and \([29]\).

54 The gravitational effect on the motion of light is still discussed but apart from the Shapiro Time Delay the effect

55 is negligible when dealing with the motion of bodies. The decrease of the speed of light grazing the Sun is only

56 4 parts per million. Gravitational Redshift it is sometimes regarded as a proof of GR, however, it can be derived
from other fundamental theories. As shown, light passing through a gravitational field refracts in accordance with Snell’s Law.

It has proved to be impossible, so far, to find any modification to equation (??) such that it gives the generally accepted value for the Lense-Thirring effect without changing the de Sitter effect applications. The de Sitter results have been obtained by several observations but the Lense-Thirring effect is very small compared to other effects. In the LAGEOS experiments for the precession of the periapsis the Lense-Thirring effect is less than 1% of the de Sitter effect, which makes it more difficult to evaluate. The GP-B test results have recently been published, reference [27]. There are four gyroscopes, two of which have original framedragging results which are close to that predicted by the new theory. The geodesic results are, on average, close to those of the accepted value. Nevertheless, over a one month period two of the gyroscopes precess at a rate close to the new theory predictions.

It is widely stated that the inward spiralling of a binary star system is due to gravitational radiation. The loss of energy alone is not the cause of this effect. Energy loss can be related to outward spiralling, as is the case for the Earth Moon system. However, radiation pressure could be the cause.

When general relativity is applied to multiple body systems several authors have produced slightly different results. Some results even do not return to the [2 3 3]
Newtonian form when the velocities are zero but only if the speed of light is taken to be infinite. This new
approach does not undermine the General Theory of Relativity but because it is a simpler method it leaves less
room for misinterpretation. Many of the extensions of GR are very complex mathematically, making errors more
likely.

[Iorio (2010)] Phenomenology of the Lense-Thirring effecting the Solar System, L Iorio . arXiv:1009.3225v2[gr-
[Davies ()] The Search for Gravity Waves, P C W Davies . 1980. Cambridge U. P.
[Theory and experiment in gravitational physics ()] Theory and experiment in gravitational physics, (Cam-