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5

Abstract6

In linear elastic fracture mechanics, the stress field is singular at the tip of a crack. Since the7

representation of this singularity in a numerical model raises considerable numerical8

difficulties, the paper uses a strategy that regularizes the elastic field, subtracting the9

singularity from the stress field, known as the singularity subtraction technique (SST). In this10

paper, the SST is implemented in a local mesh-free numerical model, coupled with modern11

optimization schemes, used for solving twodimensional problems of the linear elastic fracture12

mechanics.The mesh-free numerical model (ILMF) considers the approximation of the elastic13

field with moving least squares (MLS) and implements a reduced numerical integration. Since14

the ILMF model implements the singularity subtraction technique that performs a15

regularization of the stress field, the mesh-free analysis does not require a refined16

discretization to obtain accurate results and therefore, is a very efficient numerical analysis.17

18

Index terms— local mesh-free, singularity subtraction technique, stress intensity factors and genetic19
algorithm.20

In a linear elastic analysis, it is well known that, at the tip of a crack the stress field becomes infinite and21
thus, is singular. The strength of this singularity is measured by the SIF that is thus defined at the crack tip.22
The presence of the stress singularity in the numerical model raises considerable numerical difficulties, by virtue23
of the need of simultaneously representing the singular and the finite stresses in the numerical model. Instead of24
representing the stress singularity in the numerical model, Oliveira and Portela [26] used an elegant strategy that25
subtracts the singularity from the elastic field which is known as the singularity subtraction technique (SST).26
Hence, the SST performs a regularization of the stress field, which introduces the SIF as primary unknowns of the27
numerical method used in the analysis. These two features, which are the analysis of the regularized stress field28
and the direct computation of SIF, make very efficient the SST solution strategy. The paper considers the SST,29
a very efficient and accurate technique for solving twodimensional problems of linear elastic fracture mechanics,30
as reported by Oliveira et al. [27], implemented in the ILMF mesh-free model of numerical analysis.31

Mesh-free numerical methods eliminate the mesh of the discretization, an intrinsic feature of the finite32
element and finite difference numerical methods of the first-generation in computational mechanics. On the33
other hand, the development of the boundary element method, as a second-generation numerical method, was34
motivated by the reduction of the analysis dependency on the mesh discretization, I. Introduction used only35
on the boundary of the domain. Mesh-free methods are third-generation numerical methods which consider36
only a nodal discretization and completely overcome the difficulties posed by the mesh of the first and second-37
generation numerical methods in computational mechanics. This paper considers a domain mesh-free method of38
analysis, with the MLS approximation of the elastic field, coupled with a multi-objective optimization process39
that automatically generates optimal nodal arrangements of the mesh-free discretization, to compute the SIF of40
two-dimensional linear elastic fracture mechanics problems.41

Thorough reviews of mesh-free methods and their applications in science and engineering were recently42
presented by Chen et al. [6] and Huerta et al. [17]. The most popular of local mesh-free methods is the MLPG43
method, presented by Atluri and Zhu [2] to Atluri and Shen [1], which implements the MLS approximation.44
Other local mesh-free methods of reference are the LPIM method, see Liu and Gu [21] and the LRPIM method,45

10.34257/GJREIVOL21IS1PG23 1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

CrossRef DOI of original article: 10.34257/GJREIVOL21IS1PG23



Optimized Mesh-free Analysis for the Singularity Subtraction Technique of Linear
Elastic Fracture Mechanics

see Liu et al. [22]. The ILMF linearly integrated local mesh-free method, presented by Oliveira et al. [27],46
performs a linear reduced integration, which leads to an increase of the solution accuracy with high efficiency.47

Until now, the discretization process of local mesh-free methods has been heuristically implemented,48
which requires an expensive and time consuming calibration of the nodal arrangements or parameters of the49
discretization that refer to the size of the compact supports and the size of the integration domain of each node.50
This is a huge drawback since the definition of these discretization parameters is not unique and therefore cannot51
be easily implemented into an automatic process.52

Some researchers tried to overcome the drawback of heuristically defined meshfree discretization parameters,53
as is the case of Baradaran and Mahmoodabadi [4], Bagheri et al. [3] and Ebrahimnejad et al. [12]. The successful54
attempts of these authors required an analytical solution to be performed and therefore their modeling process55
is not efficient. Recently, Santana et al. [31] and Oliveira and Portela [26], presented a strategy that performs56
the optimization of the size of compact supports and the size of the local integration domain of given mesh-free57
nodal distributions.58

Thus, there is room for the alternative modeling strategy of this paper, that is the automatic generation59
of optimal mesh-free parameters and nodal discretization, through an optimization process that completely60
overcomes the issues of the heuristic process of discretization. As a consequence, the modeling strategy of this61
paper ensures robustness, accuracy and efficiency of the analysis, features required to be able to make reliable62
statements in the high fidelity modeling of engineering applications.63

The use of optimization has been applied in many different areas, such as elastostatics, see Denk et al. [10],64
Proos et al. [29] and Zolfagharian et al. [37], heat conduction, see Dede [8], Denk et al. [11], Gersborg-Hansen et65
al. [14] and Kim et al. [20], fluid mechanics, see Dede et al. [9], electrostatics, see Gupta et al. [15], or structural66
dynamics, see ??im et al. [20] and Proos et al. [29].67

The field of optimization is expansive, and the choice of a suitable algorithm is highly problem dependent, as68
reported by Zingg et al. [36]. The No free lunch theorems for optimization, presented by Wolpert and Macready69
[35], suggests that different algorithms are better than others for particular classes of problems. The multi-70
objective optimization of mesh-free numerical models deals with two main difficulties. The first one concerns71
the number of optimal solutions, generated by competing goals, instead of a single optimal solution. The second72
difficulty regards the large and complex search space that cannot be dealt with classic optimization methods.73
Consequently, to overcome these difficulties, non-gradient methods of optimization must be used, instead of classic74
methods. Evolutionary algorithms are non-gradient methods, quite robust in locating the global optimum, that do75
not require continuity or predictability over the design space. This paper considers the use of evolutionary genetic76
algorithms (GA), for the multi-objective optimization of nodal arrangements of the mesh-free discretization. GA77
perform a search and optimization procedure motivated by the principles of natural genetics and natural selection,78
originally proposed by Holland [16]. They are a robust and flexible approach that can be applied to a wide range79
of optimization problems, as as reported for instance by Kelner and Leonard [19], McCall [23] and Ebrahimnejad80
et al. [12].81

The paper organization is as follows. The modeling of the structural body and the local mesh-free method is82
presented in Section 2 that is followed by the implementation of the SST in the mesh-free formulation, presented83
in Section 3. Section 4 presents the multi-objective optimization implementation and algorithm formulation.84
Numerical results, obtained for benchmark problems, in order to illustrate the accuracy, efficiency and robustness85
of the strategies adopted in this work, are presented in Section 5. Finally, the concluding remarks are presented86
in Section 6.87

The local mesh-free numerical analysis of the structural body is carried out by the ILMF model presented by88
Oliveira et al. [27]. It is defined in a body with domain ? and boundary Î?” = Î?” u ? Î?” t , with constrained89
displacements u prescribed on the kinematic boundary Î?” u and loaded by an external system of distributed90
surface and body forces, with densities represented respectively by t, applied on the static boundary Î?” t , and91
b, applied in ?, as Figure 1 schematically represents. Assign to Mesh-free discretization of a body with domain ?92
and boundary Î?” = Î?” u ? Î?” t ; ? P , ? Q and ? R are local domains assigned to reference nodes P , Q and93
R; The work theorem is used to formulate the ILMF model. The mechanical equilibrium of the local domain ?94
Q can be defined through the rigid-body kinematic formulation of the work theorem, as presented by Oliveira et95
al. [27], which is II. Mesh-free Modeling of the Structural Body written, in the case of no body forces, as? Q has96
boundary Î?” Q = Î?” Qi ? Î?” Qt ? Î?” Qu , in which Î?” Qi is the interior local boundary and Î?” Qt ? Î?” t97
and Î?” Qu ? Î?” u . point Q an arbitrary local domain ? Q , such that Q ? ? Q ? ? ? Î?”, with boundary Î?”98
Q = Î?” Qi ? Î?” Qt ? Î?” Qu ,Î?” Q ?Î?” Qt t dÎ?” = ? Î?” Qt t dÎ?” (1)99

and describes the equilibrium of boundary tractions in ? Q . This equation, used to generate the stiffness100
matrix of each node of a mesh-free discretization, is integrated by Gauss quadrature. Finally, in order to allow101
for a unique solution of the elastic field, displacement boundary conditions must be enforced, on the kinematic102
boundary Î?” u , asu = u. (2)103

Since ILMF is a local model, each node of the discretization has assigned its local integration domain,104
as schematically represented in Figure 1, which has rectangular or circular shape, as Figure 2 schematically105
represents. Whenever a linear q (a) Rectangular q (b) Circular Schematic representation of local integration106
domains, with 1 integration point per boundary, or quadrant, of the local domain, for the computation of local107
equilibrium equations. variation of tractions is defined, along each segment of the boundary of the local domain,108
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equilibrium equations (1) can be exactly evaluated with 1 integration point, centered on each segment of the109
local boundary, as represented in Figure 2, which leads to a point-wise discrete form of mechanical equilibrium,110
represented byL i n i n i j=1 t x j = ? L t n t nt k=1 t x k ,(3)111

where the number of integration points, or segments, defined on, respectively the interior boundary Î?” Qi112
= Î?” Q ? Î?” Qt ? Î?” Qu , of length L i , and the static boundary Î?” Qt , of length L t , are denoted,113
respectively by n i and n t . The MLS approximation of variables is used with the ILMF model. Therefore,114
traction components are evaluated in terms of the unknown nodal parameters û and thus, equations (1) lead to115
the system of algebraic equations of the order 2 × 2n (n is the number of nodes of the influence domain of the116
reference node Q), given byÎ?” Q ?Î?” Qt nDB dÎ?” û = ? Î?” Qt t dÎ?”(4)117

represented by in which K Q is the stiffness matrixK Q û = F Q ,(5)K Q = Î?” Q ?Î?” Qt nDB dÎ?” (6)118
and F Q is the vector of forcesF Q = ? Î?” Qt t dÎ?”.(7)119
For a nodal arrangement with N nodes, in which M are interior and static-boundary nodes, the assembly of120

equations ( 5) leads to the system of equations of the order2M × 2N K û = F.(8)121
The remaining algebraic equations are generated from the N ? M kinematicboundary nodes, through the direct122

interpolation of the boundary condition (2) prescribed asu k = ? k û = u k ,(9)123
with k = 1, 2, where u k is the constrained displacement component. Equations ( 9) are directly assembled124

into the global system (8).125
For each node of a local mesh-free discretization there are two key parameters, respectively the size r ?s of the126

compact support ? s and the size r ?q of the local integration domain ? q that strongly affect the performance127
of the solution. For a generic node i, these parameters are defined through arbitrary constants, ? s and ? q ,128
respectively as r ?s = ? s c i (10) andr ?q = ? q c i ,(11)129

in which c i is the distance of the node i to the nearest neighboring node. Equations (10) and (11) show130
that the accuracy of a mesh free numerical application can be controlled through a proper specification of the131
discretization parameters ? s and ? q .132

It is important to enhance the different roles that these parameters play, in any numerical application. The133
size of the influence domain of a point, determined by the size of the compact support of each node, completely134
defines the number of nodes used to build MLS shape functions of that point. Consequently, the parameter ?135
s , sometimes referred to as MLS discretization parameter, is primarily linked to the accuracy of the numerical136
application. On the other hand, since the integration domain of each node is used to compute the respective nodal137
stiffness matrix, it must be entirely defined within the domain of the body, without intersecting the respective138
boundary. Consequently, the parameter ? q , sometimes referred to as the local domain parameter, is linked139
primarily to the efficiency of the application.140

Until now, these parameters have been heuristically defined with values that depend on the pattern of the141
nodal distribution of each mesh-free application. When changes are made to the nodal distribution of a problem,142
these parameters also change, becoming an interactive process. In general, they have been considered in the143
range, respectively of ? s > 1.0 and ? q < 1.0, as reported by Oliveira et al. [27]. In this paper, the appropriate144
values of ? s , ? q and the nodal distribution of nodes are obtained automatically, through a multi-objective145
optimization process.146

To overcome difficulties raised by the presence of unbounded stress in the numerical method, an alternative147
strategy which considers the subtraction of singularities from the original elastic field is used. The leading feature148
of this formulation is the regularization the elastic field, through the subtraction of the crack tip singularity from149
the original elastic field, which introduces the SIF as additional primary unknowns of the regularized numerical150
model.151

In the linear elastic fracture mechanics, the stress field is singular at a crack tip and therefore, it is convenient152
to modify the original problem before its solution by the ILMF numerical model. As the linear behavior allows153
the principle of superposition, the elastic field can be decomposed into a regular (R) and a singular (S) component154
as? ij = (? ij ? ? S ij ) + ? S ij = ? R ij + ? S ij(12)155

andu i = (u i ? u S i ) + u S i = u R i + u S i ,(13)156
where ? R ij = ? ij ?? S ij and u R i = u i ?u S i represent the regular parts, respectively of the stress157

and displacement of the initial problem; ? S ij and u S i denote, respectively the stress and displacement of a158
particular solution, of the initial problem, which represent the singular field. When suitable functions are used159
for the particular singular field, equations ( 12) and ( 13) regularize the initial problem, since the stress ? R160
ij become non-singular. With this regularization, the analysis of the initial problem can be performed with the161
regular elastic field only, since the components ? S ij and u S i automatically satisfy the field equations identically,162
because they represent a particular solution of the initial problem. Therefore, the elasticity equations are written163
asL T ? R = 0 (14) ? R = L u R (15) ? R = D ? R(16)164

in domain ?, with boundary conditionsu R = u ? u S on Î?” u (17) and t R = t ? t S on Î?” t .(18)165
Note that the boundary conditions ( 17) and ( 18) include additional terms, respectively u S and t S ,166

components of a singular particular solution of the initial problem.167
Components ? S ij and u S i of the particular solution, used in equations ( 12) and ( 13), represent the singular168

field around the crack tip, which can be defined through the first term of the William’s [34] eigen-expansion,169
derived for a semi-infinite edge crack. The stress components areIII. The Singularity Subtraction Technique -SST170
a) Regularized Elastic Field b) William’s Singular Solution ? S 11 = K I ? 2?r cos ? 2 1 ? sin ? 2 sin 3? 2 + K171
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II ? 2?r sin ? 2 2 + cos ? 2 cos 3? 2 ,(19)? S 22 = K I ? 2?r cos ? 2 1 + sin ? 2 sin 3? 2 ? K II ? 2?r sin ? 2172
cos ? 2 cos 3? 2(20)173

and? S 12 = K I ? 2?r cos ? 2 sin ? 2 cos 3? 2 + K II ? 2?r cos ? 2 1 ? sin ? 2 sin 3? 2(21)174
and the displacements areu S 1 = K I 4µ r 2? (2? ? 1) cos ? 2 ? cos 3? 2 + + K II 4µ r 2? (2? + 3) sin ? 2175

+ sin 3? 2(22)176
andu S 2 = K I 4µ r 2? (2? + 1) sin ? 2 ? sin 3? 2 + + K II 4µ r 2? (2? ? 3) cos ? 2 + cos 3? 2 ,(23)177
where K I and K II represent the SIF, respectively of the opening and sliding modes; the constant ? = 3 ? 4?178

is defined for plain strain and ? = (3 ? ?)/(1 + ?) for plain stress, in which ? is Poisson’s ratio; the constant µ is179
the shear modulus. A polar coordinate reference system (r, ?), centered at the crack tip, is defined such that ? =180
0 is the crack axis, ahead of the crack tip. Note that the order r ?1/2 of the stress field becomes singular when r181
tends to zero. Caicedo and Portela [5] demonstrated that the first term of the William’s eigen-expansion, derived182
for an edge crack, can also be used to represent the elastic field around the crack-tip, for the case of internal183
piecewise-flat multi-cracked finite plates, under mixed-mode deformation. At a boundary point, the singular184
stress components, of equations ( 19) to (21), are used in the definition of traction components ast S = t S 1 t S185
2 = ? S 11 ? S 21 ? S 12 ? S 22 n 1 n 2 = g 11 g 12 g 21 g 22 K I K II = g k,(24)186

where n i refers to the i-th component of the unit normal to the boundary, outwardly directed; functions g ij187
= g ij (r ?1/2 , ?) were introduced for a simple notation of equations ( 19) to (21) and the vector k contains the188
SIF components.189

The displacement field, of equations ( 22) and (23), can be similarly defined in a vector form asu S = u S 1 u190
S 2 = f 11 f 12 f 21 f 22 K I K II = f k,(25)191

where functions f ij = f ij (r 1/2 , ?) are a simple notation of equations ( 22) and (23). An approximate192
solution of the regularized problem, equations ( ??4) to ( 16) with boundary conditions ( 17) and ( 18), obtained193
with the ILMF numerical model, is now considered. The equilibrium equations (1), of the domain ? Q associated194
with the nodeQ ? ? Q ? Î?” Q , are now rewritten as Î?” Q ?Î?” Qt t R dÎ?” = ? Î?” Qt t ? t S dÎ?”,(26)195

in which the static boundary conditions (18), of the regularized problem, are considered. For a linear reduced196
integration, along each boundary segment of the local domain, equation ( 26) simply leads toL i n i n i j=1 t R197
x j = ? L t n t nt k=1 t x k + Î?” Qt t S dÎ?”,(27)198

in which n i and n t denote the total number of integration points, or boundary segments, defined on,199
respectively the interior local boundary 27) is done with the MLS approximation, see Oliveira et al. [25], in200
terms of the unknown nodal parameters ûR , which leads to the system of two linear algebraic equationsÎ?” Qi201
= Î?” Q ? Î?” Qt ? Î?” Qu ,L i n i n i j=1 n x j DB x j ûR = ? L t n t nt k=1 t x k + Î?” Qt g dÎ?” k(28)202

that can be written asK Q ûR + G Q k = F Q ,(29)203
in which the stiffness matrix K Q , of the order 2 × 2n (n is the number of nodes included in the influence204

domain of the node Q) is given byK Q = L i n i n i j=1 n x j DB x j ,(30)205
matrix G Q , of the order 2 × 2, computed from equations (24), is given byG Q = ? Î?” Qt g dÎ?”(31)206
and F Q is the force vector given byF Q = ? L t n t nt k=1 t x k . (32)207
Note that, in the case of an interior node, matrix G Q and vector F Q are null. For a problem with N nodes, the208

assembly of equations equations ( 29) for all M interior and static-boundary nodes generates the global system of209
2M ×(2N +2) equations The N ? M kinematic-boundary nodes, are used to generate the remaining equations of210
the discretization, implementing the kinematic boundary conditions of the regularized problem, equations (17).211
Thus, for a kinematic-boundary node, the boundary conditions of the regularized problem are enforced by a212
direct interpolation method asK ûR + G k = F.(33u R k = ? k ûR = u k ? u S k = u k ? f k k,(34)213

with k = 1, 2, where u k denotes the specified displacement component and u S k = f k k is the displacement214
component of the singular solution, obtained from equations (25). For the sake of simplicity, equations (34) are215
written in the same form of equations ( 29), for a point Q, asK Q k ûR + G Q k k = F Q k ,(35)216

in which 35) are assembled into the global system of equations ( 33) which, after this operation, is written asK217
Q k = ? k , while G Q k = f k and F Q k = u k . Local equations (K G ûR k = F ,(36)218

in which K is a matrix of the order 2N × 2N , G is a matrix of the order 2N × 2 and F is a vector of the order219
2N ; the unknowns are the vector ûR , of the order 2N , and the vector k of the order 2. Note that this global220
system of equations introduce the SIF K I and K II , in the vector k, as additional unknowns of the numerical221
method. Therefore, to have a well-posed problem, with a unique solution, it is necessary to specify additional222
constraint equations, one for each mode of deformation considered in the analysis. These additional constraint223
equations can be specified in two additional bottom rows in the system of equations (36).224

The required additional constraints enforce the singularity cancellation in the regularized problem and can be225
implemented by the cancellation of the regular regular stress components, as? R ij = 0 ? ? ij = ? S ij(37)226

which ensure that, at the crack tip, the initial problem is singular. In order to be effective, the additional227
constraints must be defined in terms of the unknown regularized nodal parameters of ûR . Conditions (37) can228
be redefined, in terms of the respective traction components at the crack tip, ast R j = ? R ij n i = 0 ? t j = t229
S j ,(38)230

where n i denotes the unit normal components of the crack faces. After the MLS approximation, conditions231
(38), defined at the crack tip x tip , are written ast R x tip = n x tip D B x tip ûR = 0,(39)232

orC ûR = 0,(40)233
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in which matrix C = n x tip D B x tip and can now be included in the global system of equations (36), leading234
to the final system of equations of the order(2N + 2) × (2N + 2) K G C 0 ûR k = F 0 ,(41)235

1 Additional Constraints d)236

which represents a generalized saddle point problem that can be solved, since the stiffness matrix K, of the ILMF237
local mesh free model is always non singular, with very low condition numbers, as reported by Oliveira and238
Portela [26].239

The optimization literature contains the basic concepts and terminology required to carry out the optimization240
process presented in this work, here formally represented by Sawaragi et al. [32], Hwang and Masud [18], Ringuest241
[30] and Steuer [33].242

Multi-objective optimization of the mesh-free model is carried out through an automated procedure that243
modifies the design or decision variables which are the mesh-free discretization parameters and the nodal244
distribution. Hence, the optimization process incrementally updates the design variables, carries out a meshfree245
numerical analysis of the updated model and scans the results of each increment to check if an optimized246
solution has been reached. In this process, the objective functions define the goal of the optimization, while247
constraints keep within bounds the value of a design response. The goal of the optimization aims to minimize248
the objective functions by finding feasible solutions, which are arrangements of mesh-free discretization satisfying249
the constraints of the problem. It is important to note that the optimizer never deals with solution errors of250
the generated arrangements of the mesh-free model. Genetic Algorithm (GA) belongs to a class of evolutionary251
algorithms, defined as a non-derivative global search heuristic, motivated by the principles of natural genetics252
and natural selection, presented by Holland [16]. GA is an optimization technique that can be applied to a wide253
range of problems, as seen in Kelner and Leonard [19] and McCall [23], and can also be applied to mesh-free254
methods, as seen in Bagheri et al. [3] and Ebrahimnejad et al. [12].255

The GA keep a population of P(t) individuals, for generation t. Each of these individuals contain a potential256
solution to the posed problem that need to be evaluated and its fitness measured. Some of these individuals257
are randomly selected to undergo a stochastic transformation and become new individuals (genetic operation).258
Likewise natural genetics, this transformation can be a mutation, which creates new individuals by making259
changes in a single individual, or crossover, which creates new individuals by combining parts from two others. The260
offspring from this process, the new individuals C(t), are evaluated and its fitness measured. A new population261
is created after selecting the more fit individuals from the parent and the offspring population. In the end, after262
several generations, the algorithm converges to the best individual, which is a possible optimal or sub-optimal263
solution to the problem, as stated by Gen and Cheng [13].264

The genetic algorithm components need to be carefully addressed in order to provide a good search space265
and exploit the best solution. A good balance between exploration and exploitation is a must for complex and266
real-world problems.267

In a mesh-free discretization, the size of the compact support, where nodal shape functions are defined, and268
the size of the domain of integration, where the nodal stiffness matrix of the numerical model is computed, must269
be conveniently defined in any application, since their values strongly affect the performance of the numerical270
solution. Therefore, the values of the size of the compact support and the values of the size of the local integration271
domain, are optimized in this paper. They are IV. Multi-Objective Optimization of the Mesh-free Model defined,272
respectively in Equations ( ??0) and (11) which show that the accuracy of a mesh-free numerical application can273
be controlled through a proper specification of the discretization parameters ? s and ? q . Therefore, parameters ?274
s and ? q are both set as design variables of the multi-objective optimization process, in order to be automatically275
defined with optimal values. Additionally, in order to facilitate and automate the pre-processing phase of the276
mesh-free modeling, the nodal distribution need to be addressed. Therefore, for a bi-dimensional problem, the277
number of divisions in x and y direction are chosen as design variables. When the number of divisions in both278
directions are provided, the mesh-free numerical model, can define the nodal coordinates and distribute the nodes279
along the problem domain and boundary, including crack nodes. For this case, only regular nodal distributions280
are considered.281

The use of efficient objective functions condition the overall performance of the multi-objective optimization282
process. The objective functions force, through meshfree numerical simulation, the minimum total mechanical283
energy of the structure and the conditioning of the final system of algebraic equations which, consequently enforce284
the solution accuracy of the mesh-free model. Note that solution errors of the mesh-free model are not included285
in any of the objective functions which, therefore are quite general and do not depend on any analytical solution.286

The standing challenge in the application of numerical simulations in the optimization process is the accurate287
evaluation of objective functions which obviously is dependent upon the automatically generated mesh-free288
discretization. Since multiple iterations are required during the optimization process, it is necessary to maintain289
a balance between efficiency and accuracy through constraints of the design variables.290

The definition of this objective function results from the features of the parameter ? s in combination with ?291
q . Considering a body with the actual elastic field in any state, the strain energy U , and the potential energy292
P , of external forces, respectively given byU = ? 1 2 ? T ? d?(42)293

andP = ? Î?”t t T u dÎ?”,(43)294
can be used to obtain the total potential energy T . The work theorem, when applied to the global domain295
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3 V. NUMERICAL RESULTS

of the body, for the actual elastic field settled in the body, leads to P = ?2U and therefore T = ?U , as well296
as T = P/2. These results show that the minimum value of the total potential energy of the body corresponds297
to a minimum value of the potential energy P or a maximum value of the strain energy U . The energy can298
be measure both by strain energy U or potential energy P , although evaluation of U is computationally more299
expensive, since requires the computation of the stress field for all nodal values and derivatives of shape functions.300
Therefore, the potential energy P is used instead, since it requires the evaluation of displacement fields only at301
static boundary nodes, the ones with no-null ap- plied loads, and does not require the computation of derivatives302
of shape functions, which is computationally efficient in comparison.303

Hence, the objective function can be defined with the structural compliance C,as C = 1 2 Î?”t t T u dÎ?” = ?304
1 2 P.(44)305

Consequently, the minimum value of the potential energy P corresponds to a maximum value of ?C that is306
equivalent to a minimum value of C.307

The numerical problem optimization aims to minimize the objective function using the mesh-free numerical308
model, by finding optimum values for the design variables, in this case the geometrical parameters ? s , ? q and309
the nodal distribution, also satisfying the problem constraints.310

The mathematical formulation of the multi-objective optimization scheme for linear elastic fracture mechanics311
problems is as follows minimize C(? s , ? q , n x , n y )312

CPU time(? s , ? q , n x , n y )subject to e(? s ) = ? s min ? ? s ? ? s max e(? q ) = ? q min ? ? q ? ? q313
max e(n x ) = n x min ? n x ? n x max e(n y ) = n y min ? n y ? n y max314

where ? s = (? s1 , ? s2 , ..., ? sn ) ? ? s ? q = (? q 1 , ? q 2 , ..., ? q n ) ? ? q n x = (n x1 , n x2 , ..., n xn315
) ? (x)n y = (n y 1 , n y 2 , ..., n y n ) ? (y) ,(45)316

in which C is the structural compliance, CPU time is the time required to generate and solve the global317
system of algebraic equations; ? s min /? q min and ? s max /? q max denote the minimum and the maximum318
allowable limits for the mesh free discretization parameters ? s and ? q , respectively. n min /n max denote the319
minimum and the maximum geometrical values for the number of divisions on both directions (x and y), limited320
by the geometrical constraint of the problem, for a regular nodal discretization of the posed problem. Therefore,321
the variable n also determine the total number of nodes for the problem and node coordinates, automatically322
defined for a regular nodal distribution. On this multi-objective optimization, the fitness function, that is the323
routine containing the mesh-free algorithm, define scalar values for ? s , ? q , n x and n y , yielding different324
objective function outputs. Since there are two objective functions, the Pareto front will be the final result of325
the optimization, which will provide non-dominant solutions.326

The ILMF is the only mesh free method implemented in this paper, but this process can be easily applied to327
any desired local mesh free method. The whole optimization process is summarized in the flowchart presented328
in Figure 3. This section presents numerical results to demonstrate the accuracy and efficiency of the mesh-free329
numerical method with optimization, through different linear fracture mechanics problems previously presented330
by Oliveira and Portela [26].331

2 d) Algorithm Formulation332

3 V. Numerical Results333

For a regular mesh-free discretization of n x x n y nodes, the size of the local support ? s and the size of the334
local integration domain ? q , are respectively parameters ? s and ? q . Good results can be obtained with a335
mesh-free model if r ?s , r ?q and the arrangement of nodes are properly refined.336

Usually, these parameters and the nodal distribution are heuristically defined. One key advantage of the337
ILMF modeling process is that it can provide appropriate Flowchart of the multi-objective optimization scheme338
for mesh-free numerical methods. values for ? s and ? q using genetic algorithms, as initially presented by339
Santana et al. [31], which greatly improves the model accuracy. Additionally, this work also optimize the nodal340
distribution, resulting in a fully automated optimization routine for the entire pre-processing phase of traditional341
numerical methods, which is the definition of the mesh.342

Three cases of edge-cracked square plates, respectively under mode-I, mode-II and mixed-mode deformation343
are considered.344

The discontinuity generated by the presence of the crack requires a special treatment in order to be carried out345
in this non-convex domain. Therefore, the crack faces are modeled with two lines of overlapping nodes, where the346
MLS approximation is acting only in their respective influence size, while the crack tip is modeled with one node347
that can influence both sides of the crack. The visibility criterion is implemented around the crack during the348
definition of the compact support of each node. Hence, the compact support and the local integration domain of349
each node of the crack faces are defined as in the case of a traction-free boundary node.350

The size of the local integration domain of the crack tip node is defined as ? k = ? q /2, to ensure the local351
aspect of the discretization of the crack. The computation of matrices g and f , of the Williams’ singular solution352
at each crack tip is carried out with Gaussian quadrature, with a single integration point.353

The results obtained with the ILMF using the multi-objective optimization are compared with the results354
originally obtained by Oliveira and Portela [26], without optimization, and by Portela and Aliabadi [28], using355
the DBEM with the J-integral (J-DBEM) technique, which proved to be a very accurate method. The DBEM356
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modeling strategy considers piecewise-straight cracks which are discretized with straight discontinuous quadratic357
boundary elements. Continuous quadratic boundary elements are used along the remaining boundaries of the358
problem, except at the intersection between a crack and an edge, where semi-discontinuous boundary elements359
are used on the edge. Self-point discontinuous boundary elements are integrated analytically, while Gaussian360
quadrature, with sub-element integration, is carried out for the remaining integrations.361

The GA is set to minimize the Compliance C and CPU time or computational effort, chosen as objective362
functions for this optimization process. The design variables of the optimization, the number of nodes and the363
node coordinate are defined within the problem geometry, and the parameters ? s = 1.5 ? 10 and ? q = 0.1 ?364
0.9, are defined as continuous in the intervals. Only the major computational cost that is the cost of generating365
and solving the global system of algebraic equations, was measured.366

On this optimization scheme, the initial population is randomly generated according to the predefined367
population size of 25 individuals. Then, the fitness function is calculated for each member of the population368
and scaled using a rank process, which is used later in the selection process. The reproduction operator is369
implemented based on a tournament selection. Both mutation and crossover are constraint dependent. The370
genetic algorithm described above generates a stochastic values sequence of design variables which are evaluated371
through the objective functions. Finally, the optimization process is terminated if the number of generations372
exceeds the predefined maximum number, which is selected as 150 in this scheme, or if the average change in373
fitness function is less than 1 × 10 ?6 . The improved accuracy of the optimization process can be clearly seen374
on this benchmark problem, regardless of the loading.375

A square edge-cracked plate, represented in Figure 4, is considered for the first analysis. The plate, with crack376
length a, width w and height h = w/2, is loadeda W 2 / W 2 / W377

Square plate with a single edge crack under mode-I loading (h/w = 0.5). by a uniform traction t = ?, applied378
symmetrically at the ends. All the results presented are for h/w = 0.5, to be compared with the highly accurate379
values introduced by Civelek and Erdogan [7]. Therefore, five cases were considered, with a/w = 0.2, 0.3, 0.4,380
0.5 and 0.6.381

The ILMF model was applied with rectangular local domains of integration, with discretization parameters382
and nodal configuration automatically defined though GA optimization. The MLS approximation considered a383
first-order polynomial basis with quartic spline weighting function. It is important to highlight that all nodal384
distributions were performed without considering any refinement of the discretization around the crack tip, always385
with regular distributions.386

Figure 5 show the Pareto front obtained from the optimization process, containing all feasible solutions for the387
posed problem. From the frontier solutions, The multi-objective Pareto front of the square plate with a single388
edge crack under mode-I loading, for a/w = 0.5; ILMF with the automatic parameters optimization routine. a389
set of solutions were selected and the results presented in Figure 6 and Table ??; where it can be seen that the390
optimization lead to accurate results for all points The multi-objective Pareto front results of selected feasible391
solutions for the square plate with a single edge crack under mode-I loading, for a/w = 0.5. in the Pareto front,392
with minimum values for compliance and SIF close to reference values. For this case, ? s greatly varies depending393
on the nodal distribution, but the best values for ? q are usually closer to 0.5. Table ?? show the results obtained394
for different a/w, where ILMF represents the values obtained in Oliveira and Portela [26], ILMF + represents395
the values presented in this work using the optimization routine, Portela and Aliabadi [28] represents the values396
obtained with Table ??: The multi-objective Pareto front of selected feasible solutions for a square plate with a397
single edge crack under mode-I loading (a/w = 0.5).398

4 i. Mode-I Loading399

Index400
Square plate with a single edge crack under mode-I loading.K I /(t ? ?a)401
% Error a/w ILMF ILMF + J-DBEM [28] Reference [7] ILMF + J-DBEM 0.2 1.520 [7]. In this analysis, the402

SIF values of the mode-II are always below 10 ?7 , since this is a mode-I loading crack problem.403
The results highlight the accuracy of ILMF, which was further improved after the optimization process, always404

very close to reference values and J-DBEM. Even for similar nodal distributions as originally conceived, like index405
1 of the Pareto front of selected solutions, the optimization of ? s was enough to improve the overall accuracy.406
The nodal distribution obtained by the GA optimization scheme and the respective deformed configuration of the407
plate is schematically represented in Figures 7 and 8. Regular nodal distribution resulting from the optimization408
scheme, with a regular nodal distribution of 20 × 18 = 360 nodes and additional overlapping nodes on the crack409
faces, for a/w = 0.5, under mode-II loading. The red line represents the crack faces.410

5 Table 2:411

A square edge-cracked plate, with ratio between the height and the width of the plate as h/w = 0.5, schematically412
represented in Figure 9, is considered for this analysis.413

The plate is loaded with a uniform traction t, parallel to the crack of length a and is applied anti-symmetrically414
on the sides which corresponds to a mode-II loading. There are no published benchmark results due to the415
complexity of the problem and, therefore, they are compared with the results obtained with the J-DBEM, using416
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6 INDEX CPU TIME

the software [28]. For this problem, five cases were considered, with corresponding ratios of a/w = 0.2, 0.3, 0.4,417
0.5 and 0.6. Rectangular local domains of integration, firstorder polynomial basis and quartic spline weighting418
function are considered on the ILMF model. Like the previous problem, the regular nodal configuration and419
discretization parameters are automatically defined though GA optimization, without any special refinement420
around the crack tip.421

The results obtained for this multi-objective optimization process are presented in Figure 10, Figure 11 and422
Table 3; with all point in the Pareto front leading to The multi-objective Pareto front of the square plate with423
a single edge crack under mode-II loading, for a/w = 0.5; ILMF with the automatic parameters optimization424
routine.425

The multi-objective Pareto front results of selected feasible solutions for the square plate with a single edge426
crack under mode-II loading (a/w = 0.5). accurate results and fast computations. It can be seen that SIF values427
are close to each other, depending on the minimum value of the compliance indicator. For this optimization,428
both ? s and ? q values are close to each other due to the similarity between nodal distributions obtained. Once429
more, ? q ? 0.5 and, for this case, ? s = 1.4 ? 4. The multi-objective Pareto front of selected feasible solutions430
for a square plate with a single edge crack under mode-II loading (a/w = 0.5).431

6 Index CPU Time432

For different values of a/w, Table ?? show the results obtained from the anal-Square plate with a single edge433
crack under mode-II loading. [28]. In this problem, the SIF values obtained for the mode-I are always below 10434
?3 , since this is a mode-II crack problem.K I /(t?435

Even though this problem is highly complex, accurate values were obtained after the optimization process,436
improving the previous results. The nodal distribution obtained by the GA optimization scheme and the437
respective deformed configuration of the plate is schematically represented in Figures 12 and 13.438

Consider now a plate with an edge slant crack, as represented in Figure 14 schematically, in mixed-mode439
deformation. The length of the crack is denoted by a, the width and height of the plate is denoted by w. The440
plate is loaded by a uniform traction t = ?, applied symmetrically at the ends.441

iii. Mixed-Mode Loading Table ??: tios of a/w = 0.2, 0.4 and 0.6, for ? = 30 ? and two cases, with442
corresponding ratios of a/w = 0.2 and 0.4, for ? = 60 ? , as originally presented by Murakami [24]. For MLS443
approximation of the elastic field, a first-order polynomial basis and a quartic spline weighting function were444
considered, along with rectangular local domains to perform the numerical integration of the ILMF model. The445
regular nodal configuration and discretization parameters are automatically defined though GA optimization,446
without any special refinement around the crack tip.447

All the results presented are compared with the accurate values provided by Murakami [24] and Portela and448
Aliabadi [28]. The multi-objective optimization process resulted in the Pareto front of Figure 15, where all449
feasible solutions are presented. The selected multi-objective optimization are presented in Figure 16 and Tables450
5 and 6; where a good accuracy can be seen related to minimum values The multi-objective Pareto front results451
of selected feasible solutions for the square plate with a single edge crack under mixed-mode loading, for a/w =452
0.4 and ? = 30 The multi-objective Pareto front of selected feasible solutions for the square plate with an edge453
slant crack under mixed-mode loading (a/w = 0.4).454

The multi-objective Pareto front results of selected feasible solutions for the square plate with a single edge455
crack under mixed-mode loading, for a/w = 0.4 and ? = 60 from the values obtained with the J-integral456
implemented in the DBEM, provided by Portela and Aliabadi [28], and Murakami [24]. The nodal distribution457
obtained by the GA optimization scheme and the respective deformed configuration of the plate is schematically458
represented in Figures 17 and 18.459

The compliance proved to be an efficient objective function for linear elastic fracture mechanics problems and460
complement the already efficient SST implementation, without any refinement around the crack tip due to the461
regularized stress field.462

Square plate with a single edge crack under mixed-mode loading, for ? = 60 ? and K I /(t ? ?a).463
K I /(t ? ?a) % Error a/w ILMF ILMF + J-DBEM [28] Reference [24] Deformed configuration of the plate464

resulting from the optimization scheme, for a/w = 0.6, under mixed-mode loading.465
The ILMF local mesh free numerical method, implemented with SST, was improved through an optimization466

scheme that automatically define the nodal distribution and the discretization parameters, for solving two-467
dimensional problems of the linear elastic fracture mechanics.468

The MLS and reduced numerical integrations are considered in the discretization of the elastic field, using a469
node-by-node process to generate the global system of equilibrium equations, which is very efficient and prone470
to parallel processing. Also, the reduced integration reduce the stiffness associated with local nodes, leading to471
an increase in the overall accuracy, without the well-known instabilities associated with the process.472

The SST implemented for linear elastic fracture mechanics applications performs a regularization of the stress473
field, introducing the SIF as additional primary unknowns of the problem. As a consequence, the analysis does474
not require refined nodal distributions around crack tips, in contrast to other numerical methods. The numerical475
results are evidence of the efficiency of the modeling strategy, since accurate results were obtained for edge-cracked476
square plates under mode-I, mode-II and mixed-mode, always without any refinement around the crack tip and477
relatively small nodal distributions, automatically obtained by the optimization algorithm.478
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Historically, the nodal distribution, the size of the compact support and the size of the local integration domain479
are heuristically defined and need to be addressed for every mesh-free application. The ILMF model has the480
capability of the automatic definition of the discretization parameters and the nodal distribution, through a481
multi-objective optimization process, based on GA.482

The definition of the objective function as a profound impact on the behavior of the optimization process483
and need to be carefully defined. In this paper, an appropriate objective function is derived from the classical484
structural theorem of the minimum total potential energy, carried out only at static boundary nodes that does not485
require the computation of derivatives of shape functions. Therefore, the optimization scheme is computationally486
very efficient and as the additional benefit of not requiring the analytical solution to be performed.487

7 VI. Conclusions488

The results obtained with the optimization algorithm are in agreement with those of the reference values, where489
low compliance values are associated with accurate SIF values, as expected. This result show that the local490
Pareto-optimal is always quite close to the global Pareto-optimal solutions, which is always desirable from a491
computational point of view. The structural compliance objective function effectively optimized the discretization492
parameters and the nodal distribution, properly defining these geometrical properties with fast computations and493
without any user input.494

This paper show that mesh-free methods, along with optimization processes, could provide stable and accurate495
solutions for fracture mechanics problems with minimal user input, contributing to a mainstream use of mesh-free496
numerical methods in the near future. 1

3

(s) Compliance K I /(t ? ?a) ? s ?
q

Nodes

1 0.394 9.87E-04 0.264 2.662 0.511 237
2 0.241 0.204 0.315 1.485 0.501 299
3 0.967 -0.115 0.281 3.903 0.503 251
4 0.886 0.791 0.231 3.885 0.828 359

Figure 1: Table 3 :

5

Ind. CPU T.(s) C K I /(t ? ?a) K II /(t ? ?a) ? s ?
q

N.

1 3.08 2.48E-04 1.667 0.505 5.821 0.617 301
2 6.614 -4.68E-02 1.518 0.455 9.769 0.612 455
3 0.329 4.46E-04 1.645 0.494 2.753 0.916 203
4 5.744 -1.34E-04 1.937 0.587 6.56 0.499 331
5 1.437 2.54E-04 1.579 0.479 4.25 0.501 267
for compliance.

[Note: ? .]

Figure 2: Table 5 :
497
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67

Ind. CPU T. (s) C K I /(t ? ?a) K II /(t ?
?a)

? s ?
q

N.

1 0.909 4.61E-
04

0.649 0.454 4.761 0.503 203

2 1.915 6.84E-
04

0.701 0.491 8.58 0.501 165

3 8.217 2.29E-
04

0.713 0.499 7.955 0.498 199

4 0.401 7.08E-
04

0.511 0.482 3.659 0.495 199

compared to other examples or ? Square plate with a single edge crack under mixed-mode loading, for ? ?a). ? = 30 ? and K I /(t K I /(t ? ?a) % Error
a/w ILMF ILMF + J-DBEM [28] Reference [24] ILMF + J-DBEM
0.2 1.164 1.1 1.082 1.100 0.009 0.016
0.4 1.513 1.579 1.545 1.550 0.018 0.003
0.6 2.732 2.743 2.572 2.550 0.08 0.009

[Note: ? .]

Figure 3: Table 6 :Table 7 :

ILMF + J-
DBEM

0.2 0.543 0.520 0.495 0.500 0.039 0.010
0.4 0.603 0.604 0.592 0.600 0.005 0.013

K II /(t ?
?a)

% Error

a/w ILMF ILMF + J-DBEM [28] Reference [24] ILMF + J-DBEM
0.2 0.327 0.373 0.356 0.360 0.035 0.011
0.4 0.439 0.422 0.413 0.420 0.005 0.017

0 0.25 0.5 0.75 1

Figure 4:

8910

Figure 5: Table 8 :Table 9 :Table 10 :
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