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Since the representation of this singularity in a numerical model raises considerable numerical 
difficulties, the paper uses a strategy that regularizes the elastic field, subtracting the singularity 
from the stress field, known as the singularity subtraction technique (SST). In this paper, the SST 
is implemented in a local mesh-free numerical model, coupled with modern optimization 
schemes, used for solving twodimensional problems of the linear elastic fracture mechanics.  

The mesh-free numerical model (ILMF) considers the approximation of the elastic field 
with moving least squares (MLS) and implements a reduced numerical integration. Since the 
ILMF model implements the singularity subtraction technique that performs a regularization of the 
stress field, the mesh-free analysis does not require a refined discretization to obtain accurate 
results and therefore, is a very efficient numerical analysis.   
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Optimized Mesh-free Analysis for the Singularity 
Subtraction Technique of Linear Elastic                

Fracture Mechanics
Tiago Oliveira* α& Artur Portela σ

Abstract- In linear elastic fracture mechanics, the stress field is singular at the tip of a crack. Since the representation of this 
singularity in a numerical model raises considerable numerical difficulties, the paper uses a strategy that regularizes the elastic 
field, subtracting the singularity from the stress field, known as the singularity subtraction technique (SST). In this paper, the SST 
is implemented in a local mesh-free numerical model, coupled with modern optimization schemes, used for solving two-
dimensional problems of the linear elastic fracture mechanics.

The mesh-free numerical model (ILMF) considers the approximation of the elastic field with moving least squares (MLS) 
and implements a reduced numerical integration. Since the ILMF model implements the singularity subtraction technique that 
performs a regularization of the stress field, the mesh-free analysis does not require a refined discretization to obtain accurate 
results and therefore, is a very efficient numerical analysis. 

Mesh-free numerical methods control the accuracy and efficiency of the model through the size of compact supports, 
the size of integration domains and the distribution of nodes in the body, which are usually heuristically determined through an 
expensive and time consuming calibration effort. The leading innovation of this paper is the automatic definition of these 
parameters and the nodal distribution by means of a multi-objective optimization, based on genetic algorithms (GA), with reliable 
and efficient objective functions. The optimization scheme effectively automates the whole pre-processing phase of a numerical 
analysis with mesh-free methods.

Benchmark problems were analyzed to assess the accuracy and efficiency of the modeling strategy. The results 
presented in the paper are in perfect agreement with those of reference solutions and therefore, make reliable and robust this 
mesh-free numerical analysis, coupled with a multi-objective optimization, for linear elastic fracture mechanics problems.
Keywords: local mesh-free, singularity subtraction technique, stress intensity factors and genetic algorithm.

In a linear elastic analysis, it is well known that, at the tip of a crack the stress field
becomes infinite and thus, is singular. The strength of this singularity is measured
by the SIF that is thus defined at the crack tip. The presence of the stress singular-
ity in the numerical model raises considerable numerical difficulties, by virtue of
the need of simultaneously representing the singular and the finite stresses in the
numerical model. Instead of representing the stress singularity in the numerical
model, Oliveira and Portela [26] used an elegant strategy that subtracts the singu-
larity from the elastic field which is known as the singularity subtraction technique
(SST). Hence, the SST performs a regularization of the stress field, which intro-
duces the SIF as primary unknowns of the numerical method used in the analy-
sis. These two features, which are the analysis of the regularized stress field and
the direct computation of SIF, make very efficient the SST solution strategy. The
paper considers the SST, a very efficient and accurate technique for solving two-
dimensional problems of linear elastic fracture mechanics, as reported by Oliveira
et al. [27], implemented in the ILMF mesh-free model of numerical analysis.

Mesh-free numerical methods eliminate the mesh of the discretization, an in-
trinsic feature of the finite element and finite difference numerical methods of the
first-generation in computational mechanics. On the other hand, the development
of the boundary element method, as a second-generation numerical method, was
motivated by the reduction of the analysis dependency on the mesh discretization,

I. Introduction
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used only on the boundary of the domain. Mesh-free methods are third-generation
numerical methods which consider only a nodal discretization and completely
overcome the difficulties posed by the mesh of the first and second-generation
numerical methods in computational mechanics. This paper considers a domain
mesh-free method of analysis, with the MLS approximation of the elastic field,
coupled with a multi-objective optimization process that automatically generates
optimal nodal arrangements of the mesh-free discretization, to compute the SIF of
two-dimensional linear elastic fracture mechanics problems.

Thorough reviews of mesh-free methods and their applications in science and
engineering were recently presented by Chen et al. [6] and Huerta et al. [17]. The
most popular of local mesh-free methods is the MLPG method, presented by Atluri
and Zhu [2] to Atluri and Shen [1], which implements the MLS approximation.
Other local mesh-free methods of reference are the LPIM method, see Liu and
Gu [21] and the LRPIM method, see Liu et al. [22]. The ILMF linearly integrated
local mesh-free method, presented by Oliveira et al. [27], performs a linear reduced
integration, which leads to an increase of the solution accuracy with high efficiency.

Until now, the discretization process of local mesh-free methods has been
heuristically implemented, which requires an expensive and time consuming cali-
bration of the nodal arrangements or parameters of the discretization that refer to
the size of the compact supports and the size of the integration domain of each
node. This is a huge drawback since the definition of these discretization param-
eters is not unique and therefore cannot be easily implemented into an automatic
process.

Some researchers tried to overcome the drawback of heuristically defined mesh-
free discretization parameters, as is the case of Baradaran and Mahmoodabadi [4],
Bagheri et al. [3] and Ebrahimnejad et al. [12]. The successful attempts of these au-
thors required an analytical solution to be performed and therefore their modeling
process is not efficient. Recently, Santana et al. [31] and Oliveira and Portela [26],
presented a strategy that performs the optimization of the size of compact supports
and the size of the local integration domain of given mesh-free nodal distributions.

Thus, there is room for the alternative modeling strategy of this paper, that is
the automatic generation of optimal mesh-free parameters and nodal discretiza-
tion, through an optimization process that completely overcomes the issues of the
heuristic process of discretization. As a consequence, the modeling strategy of this
paper ensures robustness, accuracy and efficiency of the analysis, features required
to be able to make reliable statements in the high fidelity modeling of engineering
applications.

The use of optimization has been applied in many different areas, such as elas-
tostatics, see Denk et al. [10], Proos et al. [29] and Zolfagharian et al. [37], heat
conduction, see Dede [8], Denk et al. [11], Gersborg-Hansen et al. [14] and Kim
et al. [20], fluid mechanics, see Dede et al. [9], electrostatics, see Gupta et al. [15],
or structural dynamics, see Kim et al. [20] and Proos et al. [29].

The field of optimization is expansive, and the choice of a suitable algorithm
is highly problem dependent, as reported by Zingg et al. [36]. The No free lunch
theorems for optimization, presented by Wolpert and Macready [35], suggests that
different algorithms are better than others for particular classes of problems. The
multi-objective optimization of mesh-free numerical models deals with two main
difficulties. The first one concerns the number of optimal solutions, generated by
competing goals, instead of a single optimal solution. The second difficulty regards
the large and complex search space that cannot be dealt with classic optimization
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methods. Consequently, to overcome these difficulties, non-gradient methods of
optimization must be used, instead of classic methods. Evolutionary algorithms
are non-gradient methods, quite robust in locating the global optimum, that do not
require continuity or predictability over the design space. This paper considers the
use of evolutionary genetic algorithms (GA), for the multi-objective optimization
of nodal arrangements of the mesh-free discretization. GA perform a search and
optimization procedure motivated by the principles of natural genetics and natural
selection, originally proposed by Holland [16]. They are a robust and flexible ap-
proach that can be applied to a wide range of optimization problems, as as reported
for instance by Kelner and Leonard [19], McCall [23] and Ebrahimnejad et al. [12].

The paper organization is as follows. The modeling of the structural body and
the local mesh-free method is presented in Section 2 that is followed by the imple-
mentation of the SST in the mesh-free formulation, presented in Section 3. Section
4 presents the multi-objective optimization implementation and algorithm formu-
lation. Numerical results, obtained for benchmark problems, in order to illustrate
the accuracy, efficiency and robustness of the strategies adopted in this work, are
presented in Section 5. Finally, the concluding remarks are presented in Section 6.

The local mesh-free numerical analysis of the structural body is carried out by the
ILMF model presented by Oliveira et al. [27]. It is defined in a body with domain
Ω and boundary Γ = Γu ∪ Γt, with constrained displacements u prescribed on
the kinematic boundary Γu and loaded by an external system of distributed surface
and body forces, with densities represented respectively by t, applied on the static
boundary Γt, and b, applied in Ω, as Figure 1 schematically represents. Assign to

Mesh-free discretization of a body with domain Ω and boundary Γ =
Γu ∪ Γt; ΩP , ΩQ and ΩR are local domains assigned to reference nodes P , Q and
R; ΩQ has boundary ΓQ = ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is the interior local
boundary and ΓQt ∈ Γt and ΓQu ∈ Γu.

point Q an arbitrary local domain ΩQ, such that Q ∈ ΩQ ∈ Ω ∪ Γ, with boundary
ΓQ = ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is the interior local boundary and ΓQt and
ΓQu are local boundaries that share respectively the global boundaries Γt and Γu,
as Figure 1 schematically represents.

The work theorem is used to formulate the ILMF model. The mechanical equi-
librium of the local domain ΩQ can be defined through the rigid-body kinematic
formulation of the work theorem, as presented by Oliveira et al. [27], which is

II. Mesh-free Modeling of the Structural Body

Figure 1:
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written, in the case of no body forces, as∫
ΓQ−ΓQt

t dΓ = −
∫

ΓQt

t dΓ (1)

and describes the equilibrium of boundary tractions in ΩQ. This equation, used
to generate the stiffness matrix of each node of a mesh-free discretization, is inte-
grated by Gauss quadrature. Finally, in order to allow for a unique solution of the
elastic field, displacement boundary conditions must be enforced, on the kinematic
boundary Γu, as

u = u. (2)

Since ILMF is a local model, each node of the discretization has assigned its
local integration domain, as schematically represented in Figure 1, which has rect-
angular or circular shape, as Figure 2 schematically represents. Whenever a linear

q

(a) Rectangular

q

(b) Circular

Schematic representation of local integration domains, with 1 integration
point per boundary, or quadrant, of the local domain, for the computation of local
equilibrium equations.

variation of tractions is defined, along each segment of the boundary of the lo-
cal domain, equilibrium equations (1) can be exactly evaluated with 1 integration
point, centered on each segment of the local boundary, as represented in Figure 2,
which leads to a point-wise discrete form of mechanical equilibrium, represented
by

Li

ni

ni∑
j=1

txj = −Lt

nt

nt∑
k=1

txk
, (3)

where the number of integration points, or segments, defined on, respectively the
interior boundary ΓQi = ΓQ − ΓQt − ΓQu, of length Li, and the static boundary
ΓQt, of length Lt, are denoted, respectively by ni and nt.

The MLS approximation of variables is used with the ILMF model. Therefore,
traction components are evaluated in terms of the unknown nodal parameters û and
thus, equations (1) lead to the system of algebraic equations of the order 2× 2n (n
is the number of nodes of the influence domain of the reference node Q), given by∫

ΓQ−ΓQt

nDB dΓ û = −
∫

ΓQt

t dΓ (4)

represented by

KQ û = FQ, (5)

Figure 2:
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in which KQ is the stiffness matrix

KQ =

∫
ΓQ−ΓQt

nDB dΓ (6)

and FQ is the vector of forces

FQ = −
∫

ΓQt

t dΓ. (7)

For a nodal arrangement withN nodes, in whichM are interior and static-boundary
nodes, the assembly of equations (5) leads to the system of equations of the order
2M × 2N

K û = F. (8)

The remaining algebraic equations are generated from the N − M kinematic-
boundary nodes, through the direct interpolation of the boundary condition (2)
prescribed as

uk = Φk û = uk, (9)

with k = 1, 2, where uk is the constrained displacement component. Equations (9)
are directly assembled into the global system (8).

For each node of a local mesh-free discretization there are two key parameters,
respectively the size rΩs of the compact support Ωs and the size rΩq of the local
integration domain Ωq that strongly affect the performance of the solution. For a
generic node i, these parameters are defined through arbitrary constants, αs and
αq, respectively as

rΩs = αs ci (10)

and
rΩq = αq ci, (11)

in which ci is the distance of the node i to the nearest neighboring node. Equa-
tions (10) and (11) show that the accuracy of a mesh free numerical application
can be controlled through a proper specification of the discretization parameters
αs and αq.

It is important to enhance the different roles that these parameters play, in any
numerical application. The size of the influence domain of a point, determined by
the size of the compact support of each node, completely defines the number of
nodes used to build MLS shape functions of that point. Consequently, the parame-
ter αs, sometimes referred to as MLS discretization parameter, is primarily linked
to the accuracy of the numerical application. On the other hand, since the integra-
tion domain of each node is used to compute the respective nodal stiffness matrix,
it must be entirely defined within the domain of the body, without intersecting the
respective boundary. Consequently, the parameter αq, sometimes referred to as the
local domain parameter, is linked primarily to the efficiency of the application.

Until now, these parameters have been heuristically defined with values that de-
pend on the pattern of the nodal distribution of each mesh-free application. When
changes are made to the nodal distribution of a problem, these parameters also
change, becoming an interactive process. In general, they have been considered in
the range, respectively of αs > 1.0 and αq < 1.0, as reported by Oliveira et al.
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[27]. In this paper, the appropriate values of αs, αq and the nodal distribution of
nodes are obtained automatically, through a multi-objective optimization process.

To overcome difficulties raised by the presence of unbounded stress in the numeri-
cal method, an alternative strategy which considers the subtraction of singularities
from the original elastic field is used. The leading feature of this formulation is
the regularization the elastic field, through the subtraction of the crack tip singular-
ity from the original elastic field, which introduces the SIF as additional primary
unknowns of the regularized numerical model.

In the linear elastic fracture mechanics, the stress field is singular at a crack tip and
therefore, it is convenient to modify the original problem before its solution by the
ILMF numerical model. As the linear behavior allows the principle of superpo-
sition, the elastic field can be decomposed into a regular (R) and a singular (S)
component as

σij = (σij − σSij) + σSij = σRij + σSij (12)

and
ui = (ui − uSi ) + uSi = uRi + uSi , (13)

where σRij = σij−σSij and uRi = ui−uSi represent the regular parts, respectively of
the stress and displacement of the initial problem; σSij and uSi denote, respectively
the stress and displacement of a particular solution, of the initial problem, which
represent the singular field. When suitable functions are used for the particular
singular field, equations (12) and (13) regularize the initial problem, since the stress
σRij become non-singular.

With this regularization, the analysis of the initial problem can be performed
with the regular elastic field only, since the components σSij and uSi automatically
satisfy the field equations identically, because they represent a particular solution

of the initial problem. Therefore, the elasticity equations are written as

LTσR = 0 (14)

εR = L uR (15)

σR = D εR (16)

in domain Ω, with boundary conditions

uR = u− uS on Γu (17)

and
tR = t− tS on Γt. (18)

Note that the boundary conditions (17) and (18) include additional terms, respec-
tively uS and tS , components of a singular particular solution of the initial prob-
lem.

Components σSij and uSi of the particular solution, used in equations (12) and (13),
represent the singular field around the crack tip, which can be defined through the
first term of the William’s [34] eigen-expansion, derived for a semi-infinite edge
crack. The stress components are

III. The Singularity Subtraction Technique - SST

a) Regularized Elastic Field

b) William’s Singular Solution
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σS11 =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
+

KII√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
,

(19)

σS22 =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
− KII√

2πr
sin

θ

2
cos

θ

2
cos

3θ

2
(20)

and

σS12 =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+

KII√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(21)

and the displacements are

uS1 =
KI

4µ

√
r

2π

[
(2κ− 1) cos

θ

2
− cos

3θ

2

]
+

+
KII

4µ

√
r

2π

[
(2κ+ 3) sin

θ

2
+ sin

3θ

2

]
(22)

and

uS2 =
KI

4µ

√
r

2π

[
(2κ+ 1) sin

θ

2
− sin

3θ

2

]
+

+
KII

4µ

√
r

2π

[
(2κ− 3) cos

θ

2
+ cos

3θ

2

]
, (23)

whereKI andKII represent the SIF, respectively of the opening and sliding modes;
the constant κ = 3 − 4ν is defined for plain strain and κ = (3 − ν)/(1 + ν) for
plain stress, in which ν is Poisson’s ratio; the constant µ is the shear modulus. A
polar coordinate reference system (r, θ), centered at the crack tip, is defined such
that θ = 0 is the crack axis, ahead of the crack tip. Note that the order r−1/2 of
the stress field becomes singular when r tends to zero. Caicedo and Portela [5]
demonstrated that the first term of the William’s eigen-expansion, derived for an
edge crack, can also be used to represent the elastic field around the crack-tip, for
the case of internal piecewise-flat multi-cracked finite plates, under mixed-mode
deformation.

At a boundary point, the singular stress components, of equations (19) to (21),
are used in the definition of traction components as

tS =

[
tS1
tS2

]
=

[
σS11 σS21

σS12 σS22

] [
n1

n2

]
=

[
g11 g12

g21 g22

] [
KI

KII

]
= g k, (24)

where ni refers to the i-th component of the unit normal to the boundary, outwardly
directed; functions gij = gij(r

−1/2, θ) were introduced for a simple notation of
equations (19) to (21) and the vector k contains the SIF components.

The displacement field, of equations (22) and (23), can be similarly defined in
a vector form as

uS =

[
uS1
uS2

]
=

[
f11 f12

f21 f22

] [
KI

KII

]
= f k, (25)

where functions fij = fij(r
1/2, θ) are a simple notation of equations (22) and (23).
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An approximate solution of the regularized problem, equations (14) to (16) with
boundary conditions (17) and (18), obtained with the ILMF numerical model, is
now considered.

The equilibrium equations (1), of the domain ΩQ associated with the node
Q ∈ ΩQ ∪ ΓQ, are now rewritten as∫

ΓQ−ΓQt

tR dΓ = −
∫

ΓQt

(
t− tS

)
dΓ, (26)

in which the static boundary conditions (18), of the regularized problem, are con-
sidered. For a linear reduced integration, along each boundary segment of the local
domain, equation (26) simply leads to

Li

ni

ni∑
j=1

tRxj
= −Lt

nt

nt∑
k=1

txk
+

∫
ΓQt

tS dΓ, (27)

in which ni and nt denote the total number of integration points, or boundary
segments, defined on, respectively the interior local boundary ΓQi = ΓQ − ΓQt −
ΓQu, with length Li, and the local static boundary ΓQt, with length Lt.

Discretization of the local form (27) is done with the MLS approximation, see
Oliveira et al. [25], in terms of the unknown nodal parameters ûR, which leads to
the system of two linear algebraic equations

Li

ni

ni∑
j=1

nxjDBxj û
R = − Lt

nt

nt∑
k=1

txk
+

∫
ΓQt

g dΓ k (28)

that can be written as

KQ ûR + GQ k = FQ, (29)

in which the stiffness matrix KQ, of the order 2 × 2n (n is the number of nodes
included in the influence domain of the node Q) is given by

KQ =
Li

ni

ni∑
j=1

nxjDBxj , (30)

matrix GQ, of the order 2× 2, computed from equations (24), is given by

GQ = −
∫

ΓQt

g dΓ (31)

and FQ is the force vector given by

FQ = − Lt

nt

nt∑
k=1

txk
. (32)

Note that, in the case of an interior node, matrix GQ and vector FQ are null. For a
problem with N nodes, the assembly of equations equations (29) for all M interior
and static-boundary nodes generates the global system of 2M×(2N+2) equations

K ûR + G k = F. (33)

c) Mesh-Free Model Equations
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The N −M kinematic-boundary nodes, are used to generate the remaining equa-
tions of the discretization, implementing the kinematic boundary conditions of the
regularized problem, equations (17). Thus, for a kinematic-boundary node, the
boundary conditions of the regularized problem are enforced by a direct interpola-
tion method as

uR
k = Φk ûR = uk − uS

k = uk − fk k, (34)

with k = 1, 2, where uk denotes the specified displacement component and uS
k =

fk k is the displacement component of the singular solution, obtained from equa-
tions (25). For the sake of simplicity, equations (34) are written in the same form
of equations (29), for a point Q, as

KQk ûR + GQk k = FQk, (35)

in which KQk = Φk, while GQk = fk and FQk = uk. Local equations (35) are
assembled into the global system of equations (33) which, after this operation, is
written as [

K G
] [ ûR

k

]
=
[
F
]
, (36)

in which K is a matrix of the order 2N × 2N , G is a matrix of the order 2N × 2
and F is a vector of the order 2N ; the unknowns are the vector ûR, of the order
2N , and the vector k of the order 2. Note that this global system of equations
introduce the SIF KI and KII , in the vector k, as additional unknowns of the nu-
merical method. Therefore, to have a well-posed problem, with a unique solution,
it is necessary to specify additional constraint equations, one for each mode of de-
formation considered in the analysis. These additional constraint equations can be
specified in two additional bottom rows in the system of equations (36).

The required additional constraints enforce the singularity cancellation in the regu-
larized problem and can be implemented by the cancellation of the regular regular
stress components, as

σRij = 0 ⇒ σij = σSij (37)

which ensure that, at the crack tip, the initial problem is singular.
In order to be effective, the additional constraints must be defined in terms of

the unknown regularized nodal parameters of ûR. Conditions (37) can be rede-
fined, in terms of the respective traction components at the crack tip, as

tRj = σRijni = 0 ⇒ tj = tSj , (38)

where ni denotes the unit normal components of the crack faces. After the MLS
approximation, conditions (38), defined at the crack tip xtip, are written as

tRxtip
= nxtipD Bxtip ûR = 0, (39)

or
C ûR = 0, (40)

in which matrix C = nxtipD Bxtip and can now be included in the global system
of equations (36), leading to the final system of equations of the order (2N + 2)×
(2N + 2) [

K G
C 0

] [
ûR

k

]
=

[
F
0

]
, (41)

Additional Constraintsd)
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which represents a generalized saddle point problem that can be solved, since the
stiffness matrix K, of the ILMF local mesh free model is always non singular, with
very low condition numbers, as reported by Oliveira and Portela [26].

The optimization literature contains the basic concepts and terminology required to
carry out the optimization process presented in this work, here formally represented
by Sawaragi et al. [32], Hwang and Masud [18], Ringuest [30] and Steuer [33].

Multi-objective optimization of the mesh-free model is carried out through an
automated procedure that modifies the design or decision variables which are the
mesh-free discretization parameters and the nodal distribution. Hence, the opti-
mization process incrementally updates the design variables, carries out a mesh-
free numerical analysis of the updated model and scans the results of each incre-
ment to check if an optimized solution has been reached. In this process, the ob-
jective functions define the goal of the optimization, while constraints keep within
bounds the value of a design response. The goal of the optimization aims to mini-
mize the objective functions by finding feasible solutions, which are arrangements
of mesh-free discretization satisfying the constraints of the problem. It is impor-
tant to note that the optimizer never deals with solution errors of the generated
arrangements of the mesh-free model.

Genetic Algorithm (GA) belongs to a class of evolutionary algorithms, defined
as a non-derivative global search heuristic, motivated by the principles of natural
genetics and natural selection, presented by Holland [16]. GA is an optimization
technique that can be applied to a wide range of problems, as seen in Kelner and
Leonard [19] and McCall [23], and can also be applied to mesh-free methods, as
seen in Bagheri et al. [3] and Ebrahimnejad et al. [12].

The GA keep a population of P(t) individuals, for generation t. Each of these
individuals contain a potential solution to the posed problem that need to be eval-
uated and its fitness measured. Some of these individuals are randomly selected
to undergo a stochastic transformation and become new individuals (genetic op-
eration). Likewise natural genetics, this transformation can be a mutation, which
creates new individuals by making changes in a single individual, or crossover,
which creates new individuals by combining parts from two others. The offspring
from this process, the new individuals C(t), are evaluated and its fitness measured.
A new population is created after selecting the more fit individuals from the parent
and the offspring population. In the end, after several generations, the algorithm
converges to the best individual, which is a possible optimal or sub-optimal solu-
tion to the problem, as stated by Gen and Cheng [13].

The genetic algorithm components need to be carefully addressed in order to
provide a good search space and exploit the best solution. A good balance between
exploration and exploitation is a must for complex and real-world problems.

In a mesh-free discretization, the size of the compact support, where nodal shape
functions are defined, and the size of the domain of integration, where the nodal
stiffness matrix of the numerical model is computed, must be conveniently defined
in any application, since their values strongly affect the performance of the numeri-
cal solution. Therefore, the values of the size of the compact support and the values
of the size of the local integration domain, are optimized in this paper. They are

IV. Multi-Objective Optimization of the Mesh-free Model

a) Genetic Algorithm Search Space and Decision Making

b) Design Variables
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defined, respectively in Equations (10) and (11) which show that the accuracy of
a mesh-free numerical application can be controlled through a proper specification
of the discretization parameters αs and αq. Therefore, parameters αs and αq are
both set as design variables of the multi-objective optimization process, in order to
be automatically defined with optimal values.

Additionally, in order to facilitate and automate the pre-processing phase of the
mesh-free modeling, the nodal distribution need to be addressed. Therefore, for a
bi-dimensional problem, the number of divisions in x and y direction are chosen
as design variables. When the number of divisions in both directions are provided,
the mesh-free numerical model, can define the nodal coordinates and distribute the
nodes along the problem domain and boundary, including crack nodes. For this
case, only regular nodal distributions are considered.

The use of efficient objective functions condition the overall performance of the
multi-objective optimization process. The objective functions force, through mesh-
free numerical simulation, the minimum total mechanical energy of the structure
and the conditioning of the final system of algebraic equations which, consequently
enforce the solution accuracy of the mesh-free model. Note that solution errors
of the mesh-free model are not included in any of the objective functions which,
therefore are quite general and do not depend on any analytical solution.

The standing challenge in the application of numerical simulations in the opti-
mization process is the accurate evaluation of objective functions which obviously
is dependent upon the automatically generated mesh-free discretization. Since
multiple iterations are required during the optimization process, it is necessary
to maintain a balance between efficiency and accuracy through constraints of the
design variables.

The definition of this objective function results from the features of the parame-
ter αs in combination with αq. Considering a body with the actual elastic field
in any state, the strain energy U , and the potential energy P , of external forces,

respectively given by

U =

∫
Ω

1

2
σTε dΩ (42)

and

P = −
∫
Γt

t
T
u dΓ, (43)

can be used to obtain the total potential energy T . The work theorem, when applied
to the global domain of the body, for the actual elastic field settled in the body, leads
to P = −2U and therefore T = −U , as well as T = P/2. These results show
that the minimum value of the total potential energy of the body corresponds to a
minimum value of the potential energy P or a maximum value of the strain energy
U .

The energy can be measure both by strain energy U or potential energy P , al-
though evaluation of U is computationally more expensive, since requires the com-
putation of the stress field for all nodal values and derivatives of shape functions.
Therefore, the potential energy P is used instead, since it requires the evaluation
of displacement fields only at static boundary nodes, the ones with no-null ap-

c) Objective Functions

i. Structural Compliance
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plied loads, and does not require the computation of derivatives of shape functions,
which is computationally efficient in comparison.

Hence, the objective function can be defined with the structural compliance C,
as

C =
1

2

∫
Γt

t
T
u dΓ = −1

2
P. (44)

Consequently, the minimum value of the potential energy P corresponds to a
maximum value of −C that is equivalent to a minimum value of C.

The numerical problem optimization aims to minimize the objective function us-
ing the mesh-free numerical model, by finding optimum values for the design vari-
ables, in this case the geometrical parameters αs, αq and the nodal distribution,
also satisfying the problem constraints.

The mathematical formulation of the multi-objective optimization scheme for
linear elastic fracture mechanics problems is as follows

minimize C(αs,αq,nx,ny)

CPU time(αs,αq,nx,ny)

subject to e(αs) = αs
min ≤ αs ≤ αs

max

e(αq) = αq
min ≤ αq ≤ αq

max

e(nx) = nx
min ≤ nx ≤ nxmax

e(ny) = ny
min ≤ ny ≤ nymax

where αs = (αs1, αs2, ..., αsn) ∈ αs

αq = (αq1, αq2, ..., αqn) ∈ αq

nx = (nx1, nx2, ..., nxn) ∈ (x)

ny = (ny1, ny2, ..., nyn) ∈ (y) ,

(45)

in which C is the structural compliance, CPU time is the time required to generate
and solve the global system of algebraic equations; αs

min/αq
min andαs

max/αq
max

denote the minimum and the maximum allowable limits for the mesh free dis-
cretization parameters αs and αq, respectively. nmin/nmax denote the minimum
and the maximum geometrical values for the number of divisions on both directions
(x and y), limited by the geometrical constraint of the problem, for a regular nodal
discretization of the posed problem. Therefore, the variable n also determine the
total number of nodes for the problem and node coordinates, automatically defined
for a regular nodal distribution.

On this multi-objective optimization, the fitness function, that is the routine
containing the mesh-free algorithm, define scalar values for αs, αq, nx and ny,
yielding different objective function outputs. Since there are two objective func-
tions, the Pareto front will be the final result of the optimization, which will provide
non-dominant solutions.

The ILMF is the only mesh free method implemented in this paper, but this
process can be easily applied to any desired local mesh free method. The whole
optimization process is summarized in the flowchart presented in Figure 3.

This section presents numerical results to demonstrate the accuracy and efficiency
of the mesh-free numerical method with optimization, through different linear frac-
ture mechanics problems previously presented by Oliveira and Portela [26].

d) Algorithm Formulation

V. Numerical Results
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For a regular mesh-free discretization of nx x ny nodes, the size of the local
support Ωs and the size of the local integration domain Ωq, are respectively param-
eters αs and αq. Good results can be obtained with a mesh-free model if rΩs , rΩq

and the arrangement of nodes are properly refined.
Usually, these parameters and the nodal distribution are heuristically defined.

One key advantage of the ILMF modeling process is that it can provide appropriate

Start GA optimization

Objective Function:
C and CPU Time
Design variables:
αs, αq, nx and ny

Create initial population

Run Meshfree model and
evaluate objective functions

Selection (Tournament)

Crossover (constrained)

Mutation (constrained)

Stop
conditions

met?

Optimized parameters
and nodal distribution

End GA optimization

No

Yes

Flowchart of the multi-objective optimization scheme for mesh-free nu-
merical methods.
Figure 3:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
 

  

36

Y
e
a
r

20
21

Vo
lu
m
e 

 X
xX
I 
 I
ss
ue

 I
 V
 e

rs
io
n 

I 
 

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)

© 2021 Global Journals

I
Optimized Mesh-free Analysis for the Singularity Subtraction Technique of Linear Elastic 

Fracture Mechanics

values for αs and αq using genetic algorithms, as initially presented by Santana
et al. [31], which greatly improves the model accuracy. Additionally, this work also
optimize the nodal distribution, resulting in a fully automated optimization routine
for the entire pre-processing phase of traditional numerical methods, which is the
definition of the mesh.

Three cases of edge-cracked square plates, respectively under mode-I, mode-II and
mixed-mode deformation are considered.

The discontinuity generated by the presence of the crack requires a special
treatment in order to be carried out in this non-convex domain. Therefore, the
crack faces are modeled with two lines of overlapping nodes, where the MLS ap-
proximation is acting only in their respective influence size, while the crack tip is
modeled with one node that can influence both sides of the crack. The visibility
criterion is implemented around the crack during the definition of the compact sup-
port of each node. Hence, the compact support and the local integration domain of
each node of the crack faces are defined as in the case of a traction-free boundary
node.

The size of the local integration domain of the crack tip node is defined as
αk = αq/2, to ensure the local aspect of the discretization of the crack. The
computation of matrices g and f , of the Williams’ singular solution at each crack
tip is carried out with Gaussian quadrature, with a single integration point.

The results obtained with the ILMF using the multi-objective optimization are
compared with the results originally obtained by Oliveira and Portela [26], without
optimization, and by Portela and Aliabadi [28], using the DBEM with the J-integral
(J-DBEM) technique, which proved to be a very accurate method. The DBEM
modeling strategy considers piecewise-straight cracks which are discretized with
straight discontinuous quadratic boundary elements. Continuous quadratic bound-
ary elements are used along the remaining boundaries of the problem, except at
the intersection between a crack and an edge, where semi-discontinuous boundary
elements are used on the edge. Self-point discontinuous boundary elements are
integrated analytically, while Gaussian quadrature, with sub-element integration,
is carried out for the remaining integrations.

The GA is set to minimize the Compliance C and CPU time or computational
effort, chosen as objective functions for this optimization process. The design
variables of the optimization, the number of nodes and the node coordinate are
defined within the problem geometry, and the parameters αs = 1.5 ∼ 10 and
αq = 0.1 ∼ 0.9, are defined as continuous in the intervals. Only the major compu-
tational cost that is the cost of generating and solving the global system of algebraic
equations, was measured.

On this optimization scheme, the initial population is randomly generated ac-
cording to the predefined population size of 25 individuals. Then, the fitness func-
tion is calculated for each member of the population and scaled using a rank pro-
cess, which is used later in the selection process. The reproduction operator is
implemented based on a tournament selection. Both mutation and crossover are
constraint dependent. The genetic algorithm described above generates a stochas-
tic values sequence of design variables which are evaluated through the objective
functions. Finally, the optimization process is terminated if the number of gener-
ations exceeds the predefined maximum number, which is selected as 150 in this
scheme, or if the average change in fitness function is less than 1× 10−6.

a) Edge-Cracked Plate
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The improved accuracy of the optimization process can be clearly seen on this
benchmark problem, regardless of the loading.

A square edge-cracked plate, represented in Figure 4, is considered for the first
analysis. The plate, with crack length a, width w and height h = w/2, is loaded

a

W 2/

W 2/
W

Square plate with a single edge crack under mode-I loading (h/w = 0.5).

by a uniform traction t = σ, applied symmetrically at the ends. All the results
presented are for h/w = 0.5, to be compared with the highly accurate values
introduced by Civelek and Erdogan [7]. Therefore, five cases were considered,
with a/w = 0.2, 0.3, 0.4, 0.5 and 0.6.

The ILMF model was applied with rectangular local domains of integration,
with discretization parameters and nodal configuration automatically defined though
GA optimization. The MLS approximation considered a first-order polynomial ba-
sis with quartic spline weighting function. It is important to highlight that all nodal
distributions were performed without considering any refinement of the discretiza-
tion around the crack tip, always with regular distributions.

Figure 5 show the Pareto front obtained from the optimization process, con-
taining all feasible solutions for the posed problem. From the frontier solutions,

i. Mode-I Loading

Figure 4:
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The multi-objective Pareto front of the square plate with a single edge
crack under mode-I loading, for a/w = 0.5; ILMF with the automatic parameters
optimization routine.

a set of solutions were selected and the results presented in Figure 6 and Table 1;
where it can be seen that the optimization lead to accurate results for all points

The multi-objective Pareto front results of selected feasible solutions for
the square plate with a single edge crack under mode-I loading, for a/w = 0.5.

Index CPU Time (s) Compliance KI/(t
√
πa) αs αq Nodes

1 0.15 -0.0016 3.534 1.440 0.670 179
2 2.19 -0.0020 3.045 5.459 0.195 203
3 1.07 -0.0010 3.010 3.2 0.505 379
4 0.13 -0.0019 3.010 1.778 0.125 155
5 0.11 -0.0022 3.367 1.563 0.604 131

in the Pareto front, with minimum values for compliance and SIF close to refer-
ence values. For this case, αs greatly varies depending on the nodal distribution,
but the best values for αq are usually closer to 0.5. Table 2 show the results ob-
tained for different a/w, where ILMF represents the values obtained in Oliveira
and Portela [26], ILMF+ represents the values presented in this work using the op-
timization routine, Portela and Aliabadi [28] represents the values obtained with

Table 1:

Figure 5:
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The multi-objective Pareto front of selected feasible solutions for a square
plate with a single edge crack under mode-I loading (a/w = 0.5).

Square plate with a single edge crack under mode-I loading.

KI/(t
√
πa) % Error

a/w ILMF ILMF+ J-DBEM [28] Reference [7] ILMF+ J-DBEM
0.2 1.520 1.488 1.495 1.488 9.672E-7 0.005
0.3 1.967 1.848 1.858 1.848 3.53E-6 0.005
0.4 2.413 2.324 2.338 2.324 3.93E-4 0.006
0.5 2.973 3.010 3.028 3.010 1.85E-4 0.006
0.6 3.991 4.152 4.184 4.152 3.12E-5 0.008

the J-integral implemented in the DBEM. Percentage errors are measured from the
values of reference provided by Civelek and Erdogan [7]. In this analysis, the SIF
values of the mode-II are always below 10−7, since this is a mode-I loading crack
problem.

The results highlight the accuracy of ILMF, which was further improved after
the optimization process, always very close to reference values and J-DBEM. Even
for similar nodal distributions as originally conceived, like index 1 of the Pareto
front of selected solutions, the optimization of αs was enough to improve the over-
all accuracy. The nodal distribution obtained by the GA optimization scheme and
the respective deformed configuration of the plate is schematically represented in
Figures 7 and 8.

Table 2:

Figure 6:
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x
2

Regular nodal distribution resulting from the optimization scheme, with
a regular nodal distribution of 20 × 18 = 360 nodes and additional overlapping
nodes on the crack faces, for a/w = 0.5, under mode-II loading. The red line
represents the crack faces.

A square edge-cracked plate, with ratio between the height and the width of the
plate as h/w = 0.5, schematically represented in Figure 9, is considered for this
analysis.

The plate is loaded with a uniform traction t, parallel to the crack of length
a and is applied anti-symmetrically on the sides which corresponds to a mode-
II loading. There are no published benchmark results due to the complexity of
the problem and, therefore, they are compared with the results obtained with the
J-DBEM, using the software [28].
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x
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Deformed configuration of the plate resulting from the optimization
scheme, for a/w = 0.5, under mode-I loading.

ii. Mode-II Loading

-

Figure 7:

Figure 8:
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a

2h

h

h

Square plate with a single edge crack under mode-II loading (w = 2h).

For this problem, five cases were considered, with corresponding ratios of
a/w = 0.2, 0.3, 0.4, 0.5 and 0.6. Rectangular local domains of integration, first-
order polynomial basis and quartic spline weighting function are considered on the
ILMF model. Like the previous problem, the regular nodal configuration and dis-
cretization parameters are automatically defined though GA optimization, without
any special refinement around the crack tip.

The results obtained for this multi-objective optimization process are presented
in Figure 10, Figure 11 and Table 3; with all point in the Pareto front leading to
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The multi-objective Pareto front of the square plate with a single edge
crack under mode-II loading, for a/w = 0.5; ILMF with the automatic parameters
optimization routine.

The multi-objective Pareto front results of selected feasible solutions for
the square plate with a single edge crack under mode-II loading (a/w = 0.5).

Index CPU Time (s) Compliance KI/(t
√
πa) αs αq Nodes

1 0.394 9.87E-04 0.264 2.662 0.511 237
2 0.241 0.204 0.315 1.485 0.501 299
3 0.967 -0.115 0.281 3.903 0.503 251
4 0.886 0.791 0.231 3.885 0.828 359

Table 3:

Figure 9:

Figure 10:
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accurate results and fast computations. It can be seen that SIF values are close to
each other, depending on the minimum value of the compliance indicator. For this
optimization, both αs and αq values are close to each other due to the similarity
between nodal distributions obtained. Once more, αq ≈ 0.5 and, for this case,
αs = 1.4 ∼ 4.
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The multi-objective Pareto front of selected feasible solutions for a
square plate with a single edge crack under mode-II loading (a/w = 0.5).

For different values of a/w, Table 4 show the results obtained from the anal-

Square plate with a single edge crack under mode-II loading.

KI/(t
√
πa) % Error

a/w ILMF ILMF+ J-DBEM [28] ILMF+

0.2 0.416 0.436 0.435 0.00309
0.3 0.338 0.359 0.358 0.00360
0.4 0.296 0.309 0.304 0.01686
0.5 0.248 0.264 0.262 0.00932
0.6 0.218 0.224 0.223 0.00397

ysis. Percentage errors are measured from the values obtained with the J-integral
implemented in the DBEM provided by Portela and Aliabadi [28]. In this prob-
lem, the SIF values obtained for the mode-I are always below 10−3, since this is a
mode-II crack problem.

Even though this problem is highly complex, accurate values were obtained af-
ter the optimization process, improving the previous results. The nodal distribution
obtained by the GA optimization scheme and the respective deformed configura-
tion of the plate is schematically represented in Figures 12 and 13.

Consider now a plate with an edge slant crack, as represented in Figure 14 schemat-
ically, in mixed-mode deformation. The length of the crack is denoted by a, the
width and height of the plate is denoted by w. The plate is loaded by a uniform
traction t = σ, applied symmetrically at the ends.

iii. Mixed-Mode Loading

Table 4:

Figure 11:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Global Journals

  
  
 

  

43

Y
e
a
r

20
21

Vo
lu
m
e 

 X
xX
I 
 I
ss
ue

 I
 V
 e

rs
io
n 

I 
 

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
I

Optimized Mesh-free Analysis for the Singularity Subtraction Technique of Linear Elastic 
Fracture Mechanics

For this problem analysis, three cases were considered with corresponding ra-
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Regular nodal distribution resulting from the optimization scheme, with
a regular nodal distribution of 14 × 16 = 224 nodes and additional overlapping
nodes on the crack faces, for a/w = 0.5, under mode-II loading. The red line
represents the crack faces.
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Deformed configuration of the plate resulting from the optimization
scheme, for a/w = 0.5, under mode-II loading.

Figure 12:

Figure 13:
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a

W 2/

W 2/
W

Square plate with an edge slant crack, under remote stress σ loading.

tios of a/w = 0.2, 0.4 and 0.6, for α = 30◦ and two cases, with corresponding
ratios of a/w = 0.2 and 0.4, for α = 60◦, as originally presented by Murakami
[24]. For MLS approximation of the elastic field, a first-order polynomial basis
and a quartic spline weighting function were considered, along with rectangular
local domains to perform the numerical integration of the ILMF model. The reg-
ular nodal configuration and discretization parameters are automatically defined
though GA optimization, without any special refinement around the crack tip.

All the results presented are compared with the accurate values provided by
Murakami [24] and Portela and Aliabadi [28]. The multi-objective optimization
process resulted in the Pareto front of Figure 15, where all feasible solutions are
presented. The selected multi-objective optimization are presented in Figure 16
and Tables 5 and 6; where a good accuracy can be seen related to minimum values

The multi-objective Pareto front results of selected feasible solutions for
the square plate with a single edge crack under mixed-mode loading, for a/w = 0.4
and α = 30◦.

Ind. CPU T.(s) C KI/(t
√
πa) KII/(t

√
πa) αs αq N.

1 3.08 2.48E-04 1.667 0.505 5.821 0.617 301
2 6.614 -4.68E-02 1.518 0.455 9.769 0.612 455
3 0.329 4.46E-04 1.645 0.494 2.753 0.916 203
4 5.744 -1.34E-04 1.937 0.587 6.56 0.499 331
5 1.437 2.54E-04 1.579 0.479 4.25 0.501 267

for compliance. For α = 30◦, more point in the Pareto front were found when

Table 5:

Figure 14:
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(a) α = 30◦
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(b) α = 60◦

The multi-objective Pareto front of the square plate with an edge slant
crack under mixed-mode loading, for a/w = 0.4; ILMF with the automatic pa-
rameters optimization routine.
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(b) α = 60◦

The multi-objective Pareto front of selected feasible solutions for the
square plate with an edge slant crack under mixed-mode loading (a/w = 0.4).

The multi-objective Pareto front results of selected feasible solutions for
the square plate with a single edge crack under mixed-mode loading, for a/w = 0.4
and α = 60◦.

Ind. CPU T. (s) C KI/(t
√
πa) KII/(t

√
πa) αs αq N.

1 0.909 4.61E-04 0.649 0.454 4.761 0.503 203
2 1.915 6.84E-04 0.701 0.491 8.58 0.501 165
3 8.217 2.29E-04 0.713 0.499 7.955 0.498 199
4 0.401 7.08E-04 0.511 0.482 3.659 0.495 199

compared to other examples or α = 60◦ due to the high difference between KI

and KII , which generates more feasible solutions if no trade-off is established.
For different values of a/w, the results are presented in Tables 7 and 8 for α =

30◦, and Tables 9 and 10, for α = 60◦. Percentage errors presented are measured

Square plate with a single edge crack under mixed-mode loading, for
α = 30◦ and KI/(t

√
πa).

KI/(t
√
πa) % Error

a/w ILMF ILMF+ J-DBEM [28] Reference [24] ILMF+ J-DBEM
0.2 1.164 1.1 1.082 1.100 0.009 0.016
0.4 1.513 1.579 1.545 1.550 0.018 0.003
0.6 2.732 2.743 2.572 2.550 0.08 0.009

Table 6:

Table 7:

Figure 15:

Figure 16:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
 

  

46

Y
e
a
r

20
21

Vo
lu
m
e 

 X
xX
I 
 I
ss
ue

 I
 V
 e

rs
io
n 

I 
 

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)

© 2021 Global Journals

I
Optimized Mesh-free Analysis for the Singularity Subtraction Technique of Linear Elastic 

Fracture Mechanics

Square plate with a single edge crack under mixed-mode loading, for
α = 30◦ and KII/(t

√
πa).

KII/(t
√
πa) % Error

a/w ILMF ILMF+ J-DBEM [28] Reference [24] ILMF+ J-DBEM
0.2 0.325 0.353 0.351 0.350 0.008 0.003
0.4 0.471 0.478 0.474 0.470 0.017 0.009
0.6 0.580 0.748 0.700 0.700 0.07 0.000

from the values obtained with the J-integral implemented in the DBEM, provided
by Portela and Aliabadi [28], and Murakami [24]. The nodal distribution obtained
by the GA optimization scheme and the respective deformed configuration of the
plate is schematically represented in Figures 17 and 18.

The compliance proved to be an efficient objective function for linear elastic
fracture mechanics problems and complement the already efficient SST implemen-
tation, without any refinement around the crack tip due to the regularized stress
field.

Square plate with a single edge crack under mixed-mode loading, for
α = 60◦ and KI/(t

√
πa).

KI/(t
√
πa) % Error

a/w ILMF ILMF+ J-DBEM [28] Reference [24] ILMF+ J-DBEM
0.2 0.543 0.520 0.495 0.500 0.039 0.010
0.4 0.603 0.604 0.592 0.600 0.005 0.013

Square plate with a single edge crack under mixed-mode loading, for
α = 60◦ and KII/(t

√
πa).

KII/(t
√
πa) % Error

a/w ILMF ILMF+ J-DBEM [28] Reference [24] ILMF+ J-DBEM
0.2 0.327 0.373 0.356 0.360 0.035 0.011
0.4 0.439 0.422 0.413 0.420 0.005 0.017
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Regular nodal distribution resulting from the optimization scheme, with
a regular nodal distribution of 16 × 16 = 256 nodes and additional overlapping
nodes on the crack faces, for a/w = 0.6, under mixed-mode loading. The red line
represents the crack faces.

Table 8:

Table 9:

Table 10:

Figure 17:
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Deformed configuration of the plate resulting from the optimization
scheme, for a/w = 0.6, under mixed-mode loading.

The ILMF local mesh free numerical method, implemented with SST, was im-
proved through an optimization scheme that automatically define the nodal distri-
bution and the discretization parameters, for solving two-dimensional problems of
the linear elastic fracture mechanics.

The MLS and reduced numerical integrations are considered in the discretiza-
tion of the elastic field, using a node-by-node process to generate the global system
of equilibrium equations, which is very efficient and prone to parallel processing.
Also, the reduced integration reduce the stiffness associated with local nodes, lead-
ing to an increase in the overall accuracy, without the well-known instabilities as-
sociated with the process.

The SST implemented for linear elastic fracture mechanics applications per-
forms a regularization of the stress field, introducing the SIF as additional primary
unknowns of the problem. As a consequence, the analysis does not require refined
nodal distributions around crack tips, in contrast to other numerical methods. The
numerical results are evidence of the efficiency of the modeling strategy, since ac-
curate results were obtained for edge-cracked square plates under mode-I, mode-II
and mixed-mode, always without any refinement around the crack tip and relatively
small nodal distributions, automatically obtained by the optimization algorithm.

Historically, the nodal distribution, the size of the compact support and the size
of the local integration domain are heuristically defined and need to be addressed
for every mesh-free application. The ILMF model has the capability of the auto-
matic definition of the discretization parameters and the nodal distribution, through
a multi-objective optimization process, based on GA.

The definition of the objective function as a profound impact on the behavior
of the optimization process and need to be carefully defined. In this paper, an
appropriate objective function is derived from the classical structural theorem of
the minimum total potential energy, carried out only at static boundary nodes that
does not require the computation of derivatives of shape functions. Therefore, the

VI. Conclusions

Figure 18:
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optimization scheme is computationally very efficient and as the additional benefit
of not requiring the analytical solution to be performed.

The results obtained with the optimization algorithm are in agreement with
those of the reference values, where low compliance values are associated with
accurate SIF values, as expected. This result show that the local Pareto-optimal
is always quite close to the global Pareto-optimal solutions, which is always de-
sirable from a computational point of view. The structural compliance objective
function effectively optimized the discretization parameters and the nodal distri-
bution, properly defining these geometrical properties with fast computations and
without any user input.

This paper show that mesh-free methods, along with optimization processes,
could provide stable and accurate solutions for fracture mechanics problems with
minimal user input, contributing to a mainstream use of mesh-free numerical meth-
ods in the near future.
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