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Machine Learning in Public Health: A Review 
Md. Asadullah α, Mamunar Rashid σ, Priyanka Bosu ρ, Emon Ahmed Ѡ & Sabeha Tamanna ¥ 

Abstract- In recent years Machine learning has been used for 
disease diagnosis and prediction in the public healthcare 
sector. It plays an essential role in healthcare and is rapidly 
being applied to education. It is one of the driving forces in 
science and technology, but the emergence of big data 
involves paradigm shifts in the implementation of machine 
learning techniques from traditional methods. Computers are 
now well equipped to diagnose many health issues with large 
health care datasets and progressions in machine learning 
techniques. Researchers have been used several machine 
learning techniques in public health. Several methods, 
including Support Vector Machines (SVM), Decision Trees 
(DT), Naïve Bayes (NB), Random Forest (RF), and K-Nearest 
Neighbors (KNN), are widely used in predictive model design 
research, resulting in effective and accurate decision-making. 
The predictive models discussed here are based on different 
supervised ML techniques and various input characteristics 
and data samples. Therefore, the predictive models can be 
used to support healthcare professionals and patients globally 
to improve public health as well as global health. Finally, we 
provide some problems and challenges which face the 
researcher in public health. 
Keywords: machine learning, prediction, classification, 
public health, disease. 

I. Introduction 

achine learning, a method of developing a 
prototype that learns to enhance its quality 
through experience, belongs to the context of 

artificial intelligence and is increasingly being used in 
various fields of science [1]. Such algorithms can be 
applied to help track the progress of a person, what 
variables make their symptoms worse, predict how long 
they would take etc. [2]. It is likely to deliver technically 
superior results, but it is not going to be perfect. While 
machine learning can deliver technical performance, 
inequities can be compounded [3]. The intervention was 
particularly among the group with a moderate likelihood 
of participation. Targeting the results of the prediction 
model using the machine-learning method has been 
identifying suitable intervention targets [4]. Traditional 
machine-learning approaches have been successful 
because the complexity of molecular interactions has 
been reduced by investigating only one or two 
dimensions of the molecular structure in the feature 
descriptors. Several different ML classifiers are 
experimentally validated into the data set in  the  present 
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study [5]. Machine learning is involved in many of these, 
but streaming data is only addressed in a few plays. The 
machine learning library consists of common learning 
algorithms such as classification, clustering, 
collaborative sorting, etc. useful when dealing with 
problems with machine learning [6]. 

Machine learning typically extends these 
methods to cope with high dimensionality and 
nonlinearity, which in wearable sensor data is of 
particular importance. It overlaps with artificial 
intelligence, but traditional biomedical statistics usually 
recognize the problems it seeks to solve. Extraction of 
the function renders machine-learning traceable 
because it reduces the number of data dimensions [7]. 
These techniques can help enhance the ability to 
discriminate by combining multiple metabolites' 
predictive abilities. However, these methods are 
monitor, and therefore, various validations are key 
factors in preventing over fitting [8]. In this paper, a new 
approach is proposed to automatically identify fund us 
objects. The method uses pre-processing techniques 
for images, and data to improve the performance of 
classifiers for machine learning [9]. Machine learning 
techniques are applied to these data, which are useful 
for data analysis and are used in specific fields [10]. 
Recently it can use to analyze medical data, and for 
medical diagnosis to identify various complex diagnostic 
problems. We can improve the accuracy, speed, 
reliability, and performance of the diagnosis on the 
current system by using machine learning classification 
algorithms for any particular disease [11]. It is used to 
estimate vegetation parameters and to detect disease, 
with less consideration give to the effects of disease 
symptoms on their performance [12].  

II. Machine Learning in Public        
Health 

Machine learning plays a role in the healthcare 
field and it is rapidly apply to healthcare, including 
segmentation of medical images, authentication of 
images, a fusion of multimodal images, computer-aided 
diagnosis, image-guided therapy, image classification, 
and retrieval of image databases, where failure could be 
fatal [15]. Statistical models developed using machine-
learning methods can view in many ways as extensions 
from epidemiology and health econometrics of more 
conventional health services research methodologies 
[16]. Given the wide availability of free packages to 
support this work, many researchers have been 
encouraged to apply deep learning to any data mining, 
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and pattern recognition topic related to health 
informatics [17]. In medical fields, machine learning has 
also shown promise when the aim is to discover clusters 
in the data, such as therapeutic choice imaging 
research. Here, the new features can check with a 
radiologist or neurologist expert assessment which 
varies from the prediction environment where observed 
marks exist in the data [18]. Screening and prognosis of 
patients with cancer use methods for pattern recognition 
and identification such as machine learning [19]. 

The repository should highlight the 
specifications of clinical machine learning tasks and 
motivate the ML community by providing a platform for 
the publication, collection of data sets, benchmarking of 
statistical evaluators, and methods for challenging 
machine learning problems [19]. The main of applying 
the classification method is to allow healthcare 
organizations to provide accurate medication quantities 
[20]. At every stage of development and application of 
machine learning in advancing health, ethical design 
thinking is essential. To this end, honesty and innovation 
physicians will work closely with software and data 
scientists to re-imagine clinical medicine and foresee its 
ethical implications. It is crucial that data from mobile 
health and consumer-facing technologies be 
systematically validated, especially when dynamic 
intervention is provided [22]. Three developments in 
machine learning may be of interest to public health 
researchers and practitioners [25]. Machine Learning 
techniques have shown success in the prediction and 
diagnosis of numerous critical diseases. Some sets of 
features use in this strategy to represent each instance 
in any dataset [26]. Research comparing the quality of 
different prediction methods to predict disease, disease 
etiology, or disease subtype is minimal. For many types 

of medical diagnoses, a good machine learning 
approach to classification will apply [27]. 

III. Challenges in Public Health 

Overall, health systems face multiple 
challenges: rising disease burden, multimorbidity, and 
disability drove by aging and epidemiological transition, 
increased demand for health services, higher social 
expectations, and increased health spending [3]. 
Healthcare offers unique machine learning challenges 
where the requirements for explaining ability, model 
fidelity, and performance, in general are much higher 
than in most other fields. Ethical, legal, and regulatory 
challenges are unique to health care since health care 
decisions can have an immediate impact on a person's 
well-being or even life [28]. The primary focus in health 
informatics is on computational aspects of big data, 
including challenges, current Big Data Mining 
techniques, strengths and limitations of works, and an 
outline of directions for future work. A challenge is pose 
the high volume of healthcare data, the need for flexible 
processing, and support for decentralized queries 
across multiple data sources. Global health as an 
approach to the current situation and challenges, and 
the use of digital health as an ideal way to address 
health challenges associated with conflict-affected 
environments [30]. There are several ways in which the 
proposed models of machine learning can help address 
public health challenges. The regularity, reliability, and 
granularity of available data is a challenge in tracking 
population health. Model estimates can play a role in 
strategic decision-making if they can achieve sufficient 
precision, and machine learning models can provide a 
route to this required level of precision [31]. Several 
writers describe different challenges in public health. 

Table 1: Public health Challenges 

Challenges Description References 

Development Challenges in the acquisition of talent and growth capital [64] 

Data schema 
Increasing the burden of disease, multimorbidity and disability 

driven by aging and epidemiological transition 
[3] 

Ethics, laws and 
regulations 

Health care choices can have an immediate impact on a person's 
well-being or even life. 

[28] 

Epidemic 
Social health inequalities, a small number of local healthcare 

professionals, and a weak infrastructure for healthcare. 
[13] 

Big Data 
Data mining methods, advantages and weaknesses of current 

works and recommendations for future work 
[29][32][19][61] 

Treatment effect 
Treatment of patient outcomes in order to select the correct 

treatment 
[16] 

Clinical Data 
Real clinical information environment, incomplete and erroneous 

data. 
[65] 

Data regularity, timing 
and reliability 

 

The regularity, pacing and granularity of available data is the control 
of population health. 

[31] 

Characteristics 
identifying 

The features of communities, ecosystems and policies are defined 
in population health 

[47] 
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Health Tackling Health as an approach to the existing situation and challenges. [30] 

Dataset imbalance 
Forming an ensemble of multiple models with matched numbers of 

positive and negative slides trained on data subsets. 
[66] 

Biomarkers identify Build diagnostic, prognostic or guided therapy predictive models [19][59] 

Screening 
The area of early detection of cancer is packed with highlighting 

cautionary tales. 
[67] 

Diagnosis The nuanced essence of the disease and its patient heterogeneity [68][69] 

Image data 
Modern imaging technology will surpass the capabilities of human 

pattern recognition 
[70] 

Diagnosis, treatment and 
monitoring 

The growing number of patient data in the form of medical images [9] 

Decision making 
Prediction of disease is one of the most important medical 
problems because it is one of the leading causes of death.. [26] 

Monitoring of disease 
The progression of the disease and the estimate of the level of 

fibrosis of the patient [71] 

High- dimension image 
data 

Imaging evidence was a problem in the treatment of diseases 
based on brain imaging. 

[72] 

Accurate prediction Things that recur within a binary outcome [69] 

IV. Problem Statement 

In public health, they are reducing constraints 
such as lack of resources (human and logistic) in 
healthcare centers, high population dispersion, and lack 
of infrastructure. One problem with the concept of "data 
health" is the lack of a practical idea of effective and 
efficient healthcare programs: each insurer has sought 
effective strategies through trials and errors [4].The main 
problem is the unstructured of the medical reports. High 
complexity and noise issues result from the multisource 
and multimodal nature of healthcare data. Additionally, 
the high-volume data also has problems with impurity 
and missing values. These issues are to handle in terms 

of both size and reliability, although a range of methods 
has developed to improve data accuracy and usability 
[29].Machine learning methods are the leading option 
for achieving a better result in classification and 
prediction problems. In a wide range of machine 
learning (ML) problems, classification plays a role. 

Another major issue with the collection of data is the 
potential lack of label accuracy.  Overfitting is a potential 
problem in machine learning. The general problem is 
that several  existing datasets are difficult to use in terms 
of permission [34]. Table 2 displays the numerous 
public health issues facing them. 

Table 2: Problem Statement in Public Health 

Problem Description References 

Classification The situation was linear in nature for all armed and 
unarmed group datasets 

[57][33][42][50][19][5] 

[21][55][73][74][60][75][76] 

[77][69] 

Scalability Exists with two of the most widely used interpretable 
machine learning models [28] 

Lack of infrastructure Lack of resources in health care centers (human and 
logistic), high population dispersion [13] 

Effective and Efficient 
Through trial and error, every insurer tried effective 

strategies [4][78] 

Exchange health 
information securely 

Scientists and clinicians across institutional, 
provincial, or even national jurisdictional boundaries 

across a given healthcare organization. 
[29] 

Overfitting 
Because of its storage limitation, it may not be 
appropriate for very large datasets with high 

dimensional features 
[29][32][17][34][24][79][80] 

Data Imbalanced Which are commonly used to resolve big data clinical 
databases. 

[29][81][27]]82][83] 

Clinical unstructured 
notes 

The multisource and multimodality of health care data 
leads to high complexity and noise problems [29] 

Impurity and missing The high-volume data also has problems with impurity 
and missing values [29] 

Missing variables This results in the normal multivariate methods, while [16] 
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machine-learning approaches can still be appealing 
for other reasons 

Prediction 
The computer is equipped with a set of data to 

improve the classification model after it can be used 
for future predictions 

[33][82] 

Mobility 
The problem of visual, hearing, flexibility also affects 

the disease. 
[50] 

Dose management 
Use machine learning approaches to the SCD drug 

problem 
[20] 

Segmentation 
That pixels can be marked as belonging to a 

particular segment or category 
[84] 

Multicollinearity 
Reduction of measurements and management of 

experimental data 
[73][80] 

Dimensionality 
Less likely than other classifiers to suffer from this 

problem. 
[60][11][72] 

Class imbalance 
The number of samples from one class outweighs the 

other classes significantly 
[59][83] 

Sampling Data collection is a possible lack of label accuracy [7] 

Scoring Functions for use in models of prognosis estimation [85][82] 

Diagnosis  [86] 

Missing data and 
Class imbalance 

For the context, the performance metrics selected are 
most often inappropriate. 

[46] 

V. Dataset 

To generate the most effective results, machine 
learning algorithms use to analyze data repeatedly. 

Machine learning currently provides the machine for 
scrutinizing imaginative information. Today, medical 
clinics very well equippe with fully automatic machines, 
and these machines produce tremendous amounts of 
data, then collect, and exchange these data with 
information systems or doctors to take the necessary 
steps. Machine learning methods can used to examine 

  

  
 

 

Table 3: Summary for data used in various research paper 

Data Description References 

Patient data [2] 

Parkinson’s Disease  Data [35] 

Clinical Data [3][87][88][55][24][89][10][71][90][91][38][92] 

RGB-D Data [8] 

Diabetes Data [54][93][52][81][23][36][86][43] 

Malaria Data [1] 

TB Data [13] 

Health Data [4][29] 

Biomedical Data [94] 

Heart Disease Data [62][95][48] 

EMR data [16] 

Chronic Disease Data [96] 

Breast Cancer Data [33][42][46] 

Stress Data [65] 

S1,BRFSS & ACS Data [31] 
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medical data and various technical diagnostic 
conditions in medical diagnosis. Using machine 
learning, systems take patient data as an input such as 
symptoms, laboratory data, and some of the at tributes 
and produce reliable diagnostic results. Depending on 
the reliability of the test, the computer must determine 
the information for the future reference will be used as a 
learning and qualified dataset [11]. Different Authors are 
used to several data determine the quality of the 
proposed classifiers which display as.



Cleveland Data [47] 
GDS Data [50] 
EHR Data [97][18][39][98][56][99][100][77] 

Medical Data [30][20][75][24][61][11] 
Meta Data [66][19] 

Image Data [101][84][102][103][34][104][70][9][105] 
TCGA Data [67] 
CKD Data [5][51][106][26][69] 

Physiological Data [107][53] 
Health Care Data [6][108][79] 

OASIS Data [44] 
Sensor Data [40][7] 

IMU Data [74] 
ADNI Data [60][59] 
RNA Data [68] 

UCI Cardiac Data [41] 
CAD Data [85] 
AF Data [109] 

Metabolites Data [57] 
MRI Data [110][111][72] 

Social Media Data [112] 
Thyroid Data [76] 

Dengue Case Data [113] 
NHANES Data [80] 
Dementia Data [37] 

DIARE-TDBI Data [58] 
ECG Data [114] 

Wisconsin Breast Cancer Data [115] 
SW Data [116] 

Genomics Data [82] 
Clinical & Image Data [117] 

PH2 Data [118] 
WBC Data [119] 

Spectral Data [120] 
ISIC Data [72] 

ILPD Data [83][45] 

NHA-NES Data [121] 

VI. Classification Technique 

In many real-world issues, classification is one 
of the most decision-making techniques. The higher 
number of samples selected for many classification 
problems, but does not lead to higher classification 
accuracy [35]. Supervised machine-learning algorithms 
are mainly use for classification or regression issues 
where the patient sample class label is already available 
[19]. Classification tasks are found in a various decision-
making tasks in various fields such as medicine, 

science, industry, etc. Several approaches are suggest
 

in the literature on how to solve classification problems 
[5]. In the medical context, the identification quality of 
commonly used machine learning models, including k-

 

Nearest Neighbors, Nave Bayes, Decision Tree, 
Random Forest, Support Vector Machine, and Logistic 
Regression [36]. In this research paper, we conclude 
various research papers in a tabular form (Table-4) 
showing different methodologies and compare the 
accuracy

 

Table 4: Techniques are used in Public Health 

Technique Disease Name Highest Accuracy References 
SVM,RF,KNN,DT Parkinson’s SVM=97.22% [2] 

NB,KNN,C4,5DT,RF,SVM Liver Disease KNN=98.6% [57] 
LR,Adaboost,SVM,DT, DB SVM=94.4% [54] 

SVM,ANN Malaria SVM=89% [63] 
DNN Diabetes DNN=83.67% [62] 

MLP, KNN, CART, SVM, NB. Breast cancer MLP=96.70% [33] 

© 2021 Global Journals
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NB,LS-SVM,Adabag,Adaboost, 
RF,SVM,Logit,LDA 

Breast cancer Adaboost=99.08% 
 

[42] 
BN,LR,MLP,SMO,DT Liver cancer SMO=93.33% [50] 
NB,SVM,RF,LR,ANN Heart disease. SVM=97.53% [39] 

MLP,SVM,KNN,C4.5,RF Cancer RF=99.45% [5] 
LR,NN,VM Chronic kidney VM=97.8% [51] 

,FR,MVS,NNKAdaboost Heart Disease =FR95.24 % ]21[  
,MVS-ACP,NNK-ACP EM-PCA-Fuzzy 

Rule-Based 
Breast Cancer EM-PCA-Fuzzy Rule-

Based =93.6 % 
]73[  

SVM, GEPSVM, TSVM Alzheimer’s TSVM=92.75% [44] 
SVM,L1-Logistic,L2-Logistic,RF,RUSRF Alzheimer’s SVM=73.33% [59] 

RF,SVM,AB,BT,GL Diabetes RUSRF=90.60% [52] 
LR,RF,SVM,SGB Heart Disease RF=89.97% [41] 

LR,KNN,BaggedTree,CNN CHD LR=86.51% [85] 
SVM,KNN,DT,NB,LR Diabetes KNN=85.29% [23] 

SVM,RF,ANN 
Post-Traumatic 

stress 
LR=77.61% [109] 

RF,C5.0,SVM,KNN Glaucoma RF=97.17% [89] 
RF,NB,SMO,RBF,MLPC,SLG CKD RF=98.00% [26] 

NB,KNN.ANN,DT 
 

Diabetes RF=99.35% ]36[  

BN,NNK 
 Thyroid NB=88% ]10[  

PLM,NB,BN,BNB,FR,RL,MVS Dementia =NNK93.44 % ]37[  
C4.5NNK,BN,MVS,  Breast Cancer =MVS73.98 % ]115[  

FBR,MVS,BN Suspicious 
Thyroid 

=BN95.99 % ]91[  

MVS,BN,NNK,NN Brain Tumor =FBR83.92 % ]111[  
MVS,NNK,FR,BN,RL Diabetes =MVS98 % ]100[  
TD,NNK,MVS,NNA Skin Lesion =FR98 % ]118[  

MVS,BN,RL Kidney =NNA92.50 % ]38[  
,tsooBadA,MVS,RL4TRL-  Heart diseases =MVS76.70 % ]77[  

MVS,BN Liver Disease =MVS82 % ]45[  
BN,FR,TD,MVS,NNA Cancer =MVS79.66 % [92] 

VII. Cross-Validation Technique 

The predictive performance of the models is 
evaluated using the Cross-Validation technique to 
estimate how each model performs outside the sample 
to a new dataset also identified as to test data. The 
reason for using the cross-validation techniques is to fit 
it into a training dataset when we fit a model [33].Cross-
validation was applied to achieve the best results to 
measure the numerical performance of a learning 
operator [10]. This was not achieved to properly isolate 
and compare the performance of the different methods 

concering the weighting of the propensity score. 
Through several steps, we measured the quality of the 
various propensity score matching methods [53].The 
classifier's accuracy calculation is the average accuracy 
of k-folds. Subsampling is done in bootstrap validation 
with equivalent substitution from the training dataset 
[59]. Effective use of the 10-fold cross-validation was 
found to be a good and reasonable compromise 
between offering accurate performance estimates and 
being computationally feasible and preventing overfitting 
[57].

 

Table 5: Summary of validation Technique in Public Health 

Disease Name 
Validation 
Methods 

References 

Parkinson Disease 10 fold [35] 

Liver Disease 10 fold [57][45] 

Diabetes Disease 10 fold [54][52][23] 

Malaria Disease 5 fold [1] 

Heart Disease 5 fold [7] 

Breast cancer Disease 10 fold [33][73][115] 
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Breast cancer Disease 5 fold [42] 

Liver cancer Disease 10 fold [50] 

Heart disease 10 fold [39][41][77] 

Cancer Disease 5 fold [5] 
Chronic kidney disease 10 fold [51] 

Heart Disease 5 fold ]21[  

Alzheimer’s Disease 10 fold [44][59] 
CHD 5 fold [85] 

Post-traumatic stress Disease 10 fold [109] 

Glaucoma Disease 10 fold [89] 
CKD 10 fold [26] 

Diabetes Disease 5 fold [36] 

Thyroid disease 10 fold ]10[  

Dementia Disease 10 fold ]37[  

SuspiciousThyroid Disease 5 fold ]91[  

Brain Tumor Disease 10 fold ]111[  

Diabetes Disease 5 fold ]100[  

Skin Lesion Disease 10 fold ]118[  

Kidney Disease 5 fold ]38[  

Cancer Disease 10 fold ]92[  

VIII. Model Evaluation Technique 

After the estimation, the performance of the 
predictive models is evaluate in terms of accuracy, 
accuracy, and recall of unseen data using the k-fold 
cross-validation technique to test their abilities [33]. 
Classification performance is evaluating the precision, 
sensitivity, and specificity of each system as it is a 

widely accepted tool of classification performance 
evaluation and generalization error estimation [60]. It is 
mention that the F1 score can be affect distorted class 
ratios when used as a quality indicator. Both AUC and 
F1 scores are compared using paired t-tests to updated 
Bonferroni inference thresholds [59].Here we can 
summarize different methods of performance evaluation 
as below, 

Table 6: Summary of Performance Evaluation Methods 

Performance Evaluation Method References 
Specificity, Sensitivity, F-Measure, Accuracy, Precision, 

Cohen-Kappa Statistic 
[8] 

RMSE,ROC [10] 
Specificity, Sensitivity, F-Score,Accuracy,ROC,K-S Test [18] 

Accuracy, Precision, Recall [24] 
MSE,MAE,NMSE [44] 

RMSE,RSE,RAE,MSE [45] 
Specificity, Sensitivity,PLR,NLR,DP.PPV,NPV [57] 

Specificity, Sensitivity, Accuracy [60] 
AUC, Specificity, Sensitivity,F1-Score,Precision,Recall [61] 

Specificity, Sensitivity,ROC [63][68] 
Fishers  Exact Test [64] 

ROC [69][115][98][75] 
Accuracy, Recall, Precision, TP rate, Precision, NPV, FP rate, 

RME, F1-measure, G-mean 
[70] 

MAE,RAE,RMSE,RSE [71] 
FROC [74] 

Accuracy, Specificity, Sensitivity, Precision, (ROC) [75] 
F1 score, Precision, and Recall,NPV [81] 

DR, Specificity, Sensitivity [95] 
RRSE,Accuracy [96] 
RMSE,R-Square [114][91] 

© 2021 Global Journals
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IX. Limitations 

While the application of machine learning 
approaches to healthcare problems is unavoidable 
given the complexity of processing massive amounts of 
data, the need to standardize standards of interpretable 
ML in this field is critical [28]. Although very broad, these 
data sets can also be very limited (e.g., system data can 
only be accessible for a small subset of individuals). 
Several machine learning methods effectively address 
these restriction but are still subject to the usual sources 
of bias commonly found in experimental studies [62]. 
The limitation of using SVM is its interpretation, 
computational costs for larger datasets, and SVM is 
essentially a binary classifier. A Simplified decision tree 
with four attributes for a multi-class decision problem 
[16]. A model that is overfitted is more complicated than 
the data can explain. For a genuine disease-related 
structure, an overfitted model may have too many free 
parameters and thus risk confusing random noise or 
another confounding in the training data. This is a 
pervasive problem in numerical machine learning 
because it is often possible to set the complexity of the 
model as high as required to achieve arbitrarily high 
prediction accuracy [7]. Some limitations of traditional 
medical scoring systems are the presence of the input 
set of intrinsic linear combinations of variables, therefore 
they are not able to model complex nonlinear 
interactions in medical domains. In this study, this 
weakness is addressed by using classification models 
that can implicitly detect complex nonlinear associations 
between independent and dependent variables as well 
as the ability to identify any potential correlations 
between predictor variables [63]. 

X. Conclusion 

To inform clinicians and policymakers, systems 
powered by machine learning will have to deliver results 
of interest in action through clinical trials or real-world 
performance observations. Eventually, classification 
approaches such as clustering and artificial neural 
networks would require a complete set of experiments. 
Most of the researchers used the traditional machine 
learning algorithm to analyze public health data like 
SVM, RF, NB, LR, NN, KNN, ANN, and DT and 10-fold 
cross-validation provide the better results. But in public 
health, the challenge is pose the high volume of 
healthcare data. As a result, the challenge in public 
health to handle big data. Besides, there are a lot of 
public health researchers facing problems. Most of that 
found in a different research paper are classification 
problems in public health data. Overfitting and data 
imbalances are problems in public health. In our review 
paper, we find some challenges which keep in mind 
every public health researcher because most of the 
research paper discussed these problems, and most of 
the researchers have faced these problems. 
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