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Implementation of an Associative Memory using 
a Restricted Hopfield Network 

Tet Yeap 

Abstract- A trainable analog restricted Hopfield Network is 
presented in this paper. It consists of two layers of nodes, 
visible and hidden nodes, connected by weighted directional 
paths forming a bipartite graph with no intralayer connection. 
An energy or Lyapunov function was derived to show that the 
proposed network will converge to stable states. The 
proposed network can be trained using either the modified 
SPSA or BPTT algorithms to ensure that all the weights are 
symmetric. Simulation results show that the presence of 
hidden nodes increases the network’s memory capacity. 
Using EXOR as an example, the network can be trained to be 
a dynamic classifier. Using A, U, T, S as training characters, 
the network was trained to be an associative memory. 
Simulation results show that the network can perform perfect 
re-creation of noisy images. Its recreation performance has 
higher noise tolerance than the standard Hopfield Network 
and the Restricted Boltzmann Machine. Simulation results also 
illustrate the importance of feedback iteration in implementing 
associative memory to re-create from noisy images. 
Keywords: hopfield network, restricted boltzmann 
machine, energy function, lyapunov function, restricted 
hopfield network, trainable networks, hidden nodes, 
basin of attraction, attractors. 

I. Introduction 

n 1982, based on his studies of collective dynamical 
computation in neural networks, Hopfield [1, 2, 3] 
proposed an influential recurrent neural network with 

many potential applications such as content 
addressable memory and optimization engine for the 
traveling-salesman problem. He formulated an Energy 
function for the network using the Lyapunov Direct 
Method showing that the network converges to a stable 
state if it has symmetric weights. Each network node 
does not have self-feedback. 

Hopfield network comes in two forms: analog or 
discrete. However, in either format, the network can only 
be programmed to memorize patterns using the 
Hebbian Rule and has a limited memory capacity to 
store 0.15N patterns where N is the network’s number of 
nodes.   Many have tried   to improve the network’s 
memory capacity problem and trainability issue [4, 5]. 
For example, instead of trying to memorize the patterns 
in one presentation cycle, Gardner [6, 7, 8] improved the 
network by presenting the training patterns repeatedly 
and using the perceptron convergence procedure to 
train each node to generate the correct  state  given  the 
 

 

states of all the other nodes for a particular training 
vector. 

A Boltzmann machine is a stochastic recurrent 
neural network with interconnected visible and hidden 
nodes introduced by Hinton [9, 10]. Like a Hopfield 
network, a Boltzmann has a similar energy function 
when the weights are symmetric and converges to a 
stable state when an input vector is presented to the 
visible nodes. A Boltzmann machine takes a long time to 
train. As a result, a restricted Boltzmann machine (RBM) 
was introduced [11, 12, 13]. It consists of two layers of 
nodes, L visible and M hidden nodes, connected by 
symmetric weights with no intralayer connection. Each 
node makes probabilistic decisions to be either on or 
off. The connection restriction allows for more efficient 
training algorithms, notably the gradient-based 
contrastive divergence algorithm, to be developed. The 
network is capable of learning the probabilistic pattern 
of a set of inputs. 

An analog restricted Hopfield network (RHN) is 
proposed in this paper to solve the memory capacity 
and the trainability issue of the Hopfield network. Like an 
RBM, the architecture consists of two layers of nodes, 
visible and hidden nodes, connected by directional 
weighted connection paths. The network is a fully-
connected bipartite graph and has no intralayer 
connection. The visible nodes are classified into either 
input or output nodes to manage the flow of information 
to/from the visible nodes. An energy or Lyapunov 
function was derived to prove that the proposed network 
always converges to stable states when an input vector 
is presented. The proposed network iterates, sending 
signals back and forth between the two layers until all its 
nodes reach an equilibrium state based on the 
corresponding basin of attraction, generating the 
desired output vector. 

Two training algorithms were used to train the 
proposed network: Simultaneous Perturbation 
Stochastic Approximation (SPSA) [14, 15] and Back 
propagation Through Time (BPTT) [16, 17]. The SPSA 
algorithm was introduced by Spall and is simple to 
implement. It can estimate the gradient of the error 
function using only two final error values of the function. 
Therefore, the merit of this training rule was 
demonstrated to train the proposed network. The BPTT 
algorithm, on the other hand, is based on the fact that 
the temporal operation of an RHN may be unfolded into 
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− 

a multilayer perceptron so that a standard back 
propagation algorithm could be applied. 

Simulation results show that the proposed 
network can be trained to implement a dynamic 
classifier implementing an EXOR function. Using A, U, T, 
S as training characters, the network was trained to be 
an associative memory. Simulation results show that the 
network performs perfect re-creation of these images 
even when the input image is noisy. The results also 
show that the proposed network performs better than 
the standard Hopfield Network and RBM. 

The paper is organized as follows. Section 2 
presents the background work on Hopfield Network and 

Restricted Boltzmann Machine. An RHN with hidden 
nodes function is presented in section 3. In section 4, 
two algorithms to train the network are introduced. 
Section 5 presents some simulation results on the 
performance of the RHN. 

II. Background 

a) Hopfield Network 
An analog Hopfield network consists of fully 

interconnected nodes modeled as amplifiers, in con- 
junction with feedback circuits comprises of wires, 
resistors, and capacitors, as shown in Figure 1. 

 

Figure 1: An analog Hopfield network 

The dynamics of the network can be described 
by the following differential equations: 

 
 
 
 
 
 
 

Where N is the number of nodes in the network, ui is the 
input voltage of the amplifier, Tij is the weight or 
conductance connecting the output of node j to the 
input of node i, Vj is the output of node j, RC is the time 
constant of the network, Ii is the input to node i, and g() 
is the output function of a node. 

The following energy function for the network 
was derived by Hopfield using the Lyapunov Direct 
Method if the network has symmetric weights and each 
network node does not have self-feedback. For the 
initial-value problem, Ii input is applied to node i at t = 0 
and then allow the network to evolve. The integration of 
the above differential equations provides the network 

states’ evolution. With the energy function’s existence, 
the network will always converge to a stable state. 

 
 
 
 
 

Hopfield networks can only be programmed to 
memorize patterns using the Hebbian Rule. When the 
output function g() is a sigmoid function, the network 
transforms the initial input vector it- eratively and 
continuously into the output vector in the range [0, 1]. To 
program the network to memorize specific binary input 
vectors (S(p), p = 1 . . . P ), the weight or conductance 

Tij
 is deter- mined by the following formula: 

 
 
 
 
 

When the output function g() is a hyperbolic tangent 
function, the network transforms the initial input vector 

dui
dt

=
N∑
j=1

Tijvj −
ui
τ

+ Ii

τ = RC

Vi = g(ui)

(1) E = −1

2

N∑
i=1

N∑
j=1

TijViVj −
N∑
i=1

Vi
ui
τ
−

N∑
i=1

ViIi (2)

Tij =
P∑

p=1

(2Si(p)− 1)(2Sj(p)− 1) (3)
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i 

iteratively and continuously into the output vector in the 
range [ 1, 1]. To program the network to memorize 
specific binary input vectors (S(p), p = 1 . . . P ), the 
weight or conductance Tij is determined by the following 
formula: 

 
 
 
 
 

b) Restricted Boltzmann Machine (RBM) 
A restricted Boltzmann machine (RBM) is a 

stochastic recurrent neural network [4, 9, 10] consisting 
of two layers of nodes, L visible and M hidden nodes, 
connected by symmetric weights with no intralayer 
connection. Each node makes probabilistic decisions to 
be either on or off. The network is capable of learning 
the probabilistic pattern of a set of inputs. 

The following differential equations can 
describe the dynamics of the network:  
In the forward path: 

 
 
 
 

 
 

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝐻𝐻  is the sum of all inputs to the hidden node 

i, 𝑤𝑤𝑖𝑖𝑖𝑖𝐻𝐻  is the weight connecting the output of visible node 
j to the input of hidden node i, 𝑉𝑉𝑗𝑗𝑣𝑣   is the output of visible 
node j, 𝜃𝜃𝑖𝑖𝐻𝐻  is the threshold of hidden node i, 𝑉𝑉𝑖𝑖𝐻𝐻  is the 
output of hidden node i, g() is the Sigmoid logistic 
output function of hidden node i. 
In the backward path: 

 
 
 
 
 
 

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗
𝑣𝑣  is the sum of all inputs to the visible node i, 

𝑤𝑤𝑗𝑗 𝑖𝑖𝑣𝑣 the weight connecting the output of hidden node i 
to the input of visible node j, 𝑉𝑉𝑖𝑖𝐻𝐻  is the output of hidden 
node i, 𝜃𝜃𝑗𝑗𝑉𝑉 is the threshold of visible node j, 𝑉𝑉𝑗𝑗𝑉𝑉  is the 
output of visible node j, g() is the Sigmoid logistic output 
function of hidden node j.  

For symmetric weights configuration, the energy 
or Lyapunov function of an RBM is given by: 

 
 
 
 
 

With the existence of energy function, the 
network will always converge to a stable state when an 
input vector is presented to the visible nodes. 

During the training of the network, an input 
vector p is presented. Let 𝑒𝑒𝑖𝑖𝑖𝑖+  (p) =𝑉𝑉𝑖𝑖𝐻𝐻𝑉𝑉𝑗𝑗𝑣𝑣  denotes the 
correlation of hidden node i and visible node j in the 

forward direction, and 𝑒𝑒𝑖𝑖𝑖𝑖−  (p) = 𝑉𝑉𝑖𝑖𝐻𝐻𝑋𝑋𝑗𝑗𝑉𝑉  denotes the 
correlation in the backward direction, where 𝑋𝑋𝑗𝑗𝑉𝑉  is the 
value of visible unit j of pattern p that is estimated by the 
network. The weight is updated during a training 
process by: 

 
 

 
Where β is a small positive number. 

III. Proposed Restricted Hopfield 
Network(RHN) 

An analog restricted Hopfield network (RHN) is 
proposed to solve the memory capacity and train- ability 
issues of the Hopfield network. Like an RBM, the 
architecture consists of two layers of nodes, L visible 
and M hidden nodes, connected by directional weighted 
connection paths, as shown in Figure 2. The network is 
a connected bipartite graph and has no intralayer 
connection. 

 

 

 

 

 

 

 

Tij =
P∑

p=1

Si(p)Sj(p) (4)

sumH
i =

L∑
j=1

wH
ij V

V
j + θHi (5)

V H
i = g(sumH

i )

sumV
j =

M∑
i=1

wV
jiV

H
i + θVj

V V
j = g(sumV

j )

(6)

E = −
M∑
i=1

L∑
j=1

wH
ij V

H
i V V

j −
L∑

j=1

θVj V
V
j −

M∑
i=1

θHi V
H
i (7)

wij(k + 1) = wij(k) + β(e+ij(p)− e−ij(p)) (8)
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Figure 2: A Restricted Hopfield Network 

The following differential equations describe the 
dynamics of the network: In the forward path: 

 
 
 
 
 
 Initial conditions:

 
 
 
 
 Where 𝑢𝑢𝑖𝑖𝐻𝐻

 

is the sum of all inputs to the hidden nodes, 
𝑊𝑊𝑖𝑖𝑖𝑖

𝐻𝐻

 

is the weight connecting the output of visible node j

 to the input of hidden node i, 𝑉𝑉𝑗𝑗𝑉𝑉

 

is the output of visible 
node j, 𝜃𝜃𝑖𝑖𝐻𝐻

 

is the threshold of hidden node i, 𝑉𝑉𝑖𝑖𝐻𝐻

 

is the 
output of hidden node i, g() is the output function of 
hidden node I, and Ij

 

is the initial input presented to the 
visible node j.

 In the backward path:

 
 
 
 

 
 

Where 𝑢𝑢𝑗𝑗𝑉𝑉  is the sum of all inputs to the visible nodes, 
𝑤𝑤𝑗𝑗𝑗𝑗𝑉𝑉  is the weight connecting the output of hidden node i 
to the input of visible node j, 𝑉𝑉𝑖𝑖𝐻𝐻  is the output of hidden 
node i, 𝜃𝜃𝑗𝑗𝑉𝑉  is the threshold of output node j, 𝑉𝑉𝑗𝑗𝑉𝑉  is the 
output of visible node j, and g() is the output function of 
visible node j. 

The network input can be either digital or 
analog, taking a value between 0 and 1. Using a 
Sigmoid function as output function g() for all the nodes, 
the output of all the nodes takes the value between 0 
and 1. The proposed network will also work when the 
hyperbolic tangent function is used as the output 
function. In such a case, the output of all the nodes 
takes the value between 1 and 1.  The proposed RHN 
always generates analog outputs between 0 and 1 using 
the Sigmoid output function or between −1 and 1 using 
the hyperbolic tangent output function. 

Based on the Lyapunov Direct Method, it can 
be shown that Eqn. 11 is the energy or a Lyapunov 
function of the proposed network. 
 

 
 
 

Differentiating E, we get: 
 
 
 

 

Expanding all the above terms in Eqn. 12, we get:
 

 
 
 
 
 

duHi
dt

=
L∑

j=1

wH
ij V

V
j + θHi

V H
i = g(ui)

(9)

V V
j (0) = Ij

V H
i (0) = 0

duVj
dt

=
M∑
i=1

wV
jiV

H
i + θVj (10)

V V
j = g(uVj )

E = −1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i V H

j −
1

2

L∑
j=1

M∑
i=1

wV
jiV

H
j V V

i −
M∑
i=1

V H
i θHi −

L∑
i=1

V V
i θ

V
i (11)

dE

dt
= − d

dt
(
1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i V H

j )− d

dt
(
1

2

L∑
j=1

M∑
i=1

wV
jiV

H
j V V

i )− d

dt
(

M∑
i=1

V H
i θHi )− d

dt
(

L∑
i=1

V V
i θ

V
i )

(12)

d

dt
(
1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i V H

j ) =
1

2

M∑
i=1

L∑
j=1

wH
ij

dV H
i

dt
V V
j +

1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i

dV V
j

dt
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Now consider the forward path: 
Because the outputs of visible nodes are constant in the forward path, then: 

 
 

Assume that all the weights are symmetric, then: 
 
 

Therefore, Equation 12 can be reduced to the following: 
 
 
 

and can be simplified to:
 

 
 
 

Further simplified to:
 

 
 
 

Using Chain Rule:
 

 
 
 
 
 
 

 

Since:
 

 
 

If the output function is a Sigmoid or hyperbolic tangent function, then:
 

 
 
 

Then:
 

 
 
 

Now consider the backward path:
 

Because the outputs of hidden nodes are constant in the backward path, then:
 

 
 
 

 
 
 

d

dt
(
1

2

∑
j=1

L

M∑
i=1

wV
jiV

H
j V V

i ) =
1

2

L∑
j=1

M∑
i=1

wV
ji

dV V
j

dt
V H
i +

1

2

L∑
j=1

M∑
i=1

wV
jiV

V
j

dV H
i

dt

d

dt
(

M∑
i=1

V H
i θHi ) =

M∑
i=1

dV H
i

dt
θHi

d

dt
(

L∑
i=1

V V
i θ

V
i ) =

L∑
i=1

dV V
i

dt
θVi

(13)

dV V
i

dt
= 0 (14)

wH
ij = wV

ji (15)

dE

dt
= −

M∑
i=1

L∑
j=1

wH
ij

dV H
i

dt
V V
j −

M∑
i=1

dV H
i

dt
θHi (16)

dE

dt
= −

M∑
i=1

dV H
i

dt
(

L∑
j=1

wH
ij V

V
j + θHi ) (17)

dE

dt
= −

M∑
i=1

dV H
i

dt

duHi
dt

(18)

dE

dt
= −

M∑
i=1

dV H
i

duHi

duHi
dt

duHi
dt

dE

dt
= −

M∑
i=1

dV H
i

duHi
(
duHi
dt

)2

(19)

V H
i = g(uHi ) (20)

dV H
i

duHi
is always positive

dE

dt
is always negative in the forward path

dV H
i

dt
= 0 (21)
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Assume that all the weights are symmetric, then: 
 
 

 
 
 
Therefore, Equation 12 can be reduced to

 

the following:

 
 
 
 and can be simplified to:

 
 
 
 Further simplified to:

 
 
 
 Using Chain Rule:

 
 
 
 
 
 
 

Since: 
 
 

If the output function is a Sigmoid or hyperbolic tangent function, then: 
 
 
 

Then: 
 
 
 
 

 
The proposed RHN is a dynamic system. 

Therefore, it has attractors toward which a system tends 
to evolve for a wide variety of the system’s initial 
conditions. The existence of a basin of attraction for 
each attractor guarantees that any initial condition in the 
nearby region will iterate to the attractor. When an input 
vector in a specific basin of attraction is presented, the 
proposed network sends signals back and forth 
between the hidden and visible layers until all the nodes 
reach an equilibrium state minimizing the energy 
function above, generating the desired output vector. 

The visible nodes can be divided into either A 
input and B output nodes, as shown in Figure 3. In the 
forward computation path, each node in the hidden 
layer receives the weighted output of both the input and 
output nodes of the visible layer. In the backward 
computation direction, only the output nodes receive the 

weighted output of the hidden nodes. Therefore, when 
an input vector is presented to the input nodes, signals 
are sent back and forth between the hidden and output 
nodes until an equilibrium state is reached. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

wH
ij = wV

ji (22)

dE

dt
= −

L∑
j=1

M∑
i=1

wV
ji

dV V
j

dt
V H
i −

L∑
j=1

dV V
j

dt
θVj (23)

dE

dt
= −

L∑
j=1

dV V
j

dt
(

M∑
j=1

wV
jiV

H
i + θVj ) (24)

dE

dt
= −

L∑
i=1

dV V
j

dt

duVj
dt

(25)

dE

dt
= −

L∑
j=1

dV V
j

duVj

duVj
dt

duVj
dt

dE

dt
= −

L∑
j=1

dV V
j

duVj
(
duVj
dt

)2

(26)

V V
j = g(uVj ) (27)

dV V
j

duVj
is always positive

dE

dt
is always negative in the backward path
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Therefore, combining the forward and backward 
path, the energy function E of Eqn.11 is a Lyapunov 
function if and only if all the weights are symmetric.



 

Figure 3: A Restricted Hopfield Network with Inputs and Outputs Nodes 

The following differential equations describe the 
dynamics of the network: 
In the forward path: 

 
 
 
 
 

Initial conditions: 
 
 
 

Where 𝑢𝑢𝑖𝑖𝐻𝐻   is the sum of all inputs to the hidden nodes, 
𝑊𝑊𝑖𝑖𝑖𝑖

𝐻𝐻  is the weight connecting the output of output node j 
to the input of hidden node i, 𝑉𝑉𝑗𝑗𝑂𝑂 is the output of output 
node j, 𝑊𝑊𝑖𝑖𝑖𝑖

𝐻𝐻  is the weight connecting the output of input 
node k to the input of hidden node i, Ik is the output of 
input node k, 𝜃𝜃𝑖𝑖𝐻𝐻  is the threshold of hidden node i, 𝑉𝑉𝑖𝑖𝐻𝐻  is 
the output of hidden node i, and g() is the output 
function of hidden node i. 

In the backward path: 
 
 
 
 
 

Where 𝑢𝑢𝑗𝑗𝑂𝑂  is the sum of all inputs to the output nodes, 
𝑤𝑤𝑗𝑗𝑗𝑗𝑂𝑂  is the weight connecting the output of hidden node i 
to the input of output node j, 𝑉𝑉𝑖𝑖𝐻𝐻  is the output of hidden 
node i, 𝜃𝜃𝑗𝑗𝑂𝑂  is the threshold of output node j, 𝑉𝑉𝑗𝑗𝑂𝑂  is the 
output of output node j, and g() is the output function of 
output node j. 

The proposed RHN always generates analog 
outputs between 0 and 1 when g() is a sigmoid function 
or between −1 and 1 when g() is a hyperbolic tangent 
function. 

Using the Lyapunov Direct Method, it can be 
shown that Eqn. 31 is the energy or Lyapunov functions 
of the proposed network. 

 
 
 
 
 
 

Differentiating E, we get:

 
 
 
 
 
 
 

Expanding all the above terms in Eqn.32, we get:

 
 
 
 

duHi
dt

= −
B∑
j=1

wH
ij V

O
j +

H∑
k=1

wH
ikIk + θHi

V H
i = g(uHi )

(28)

V O
j (0) = 0

V H
i (0) = 0

(29)

duOj
dt

=
M∑
i=1

wO
jiV

H
i + θOj

V O
j = g(uOj )

(30)

E = −1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i V O

j −
1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j V

H
i

−
M∑
i=1

A∑
k=1

wH
ikV

H
i Ik −

M∑
i=1

V H
i θHi −

B∑
i=1

V O
i θ

O
i

(31)

dE

dt
= − d

dt
(
1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i V O

j )− d

dt
(
1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j V

H
i )

− d

dt
(

M∑
i=1

A∑
k=1

wH
ikV

H
i Ik)− d

dt
(

M∑
i=1

V H
i θHi )− d

dt
(

B∑
i=1

V O
i θ

O
i )

(32)
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For constant input Ik:

 
 
 

Then:

 
 
 
 

For the rest

 

of the terms, we get:

 
 
 
 
 
 
 

Now consider the forward path:

 

Because the outputs of visible nodes are constant in the backward path, then:

 
 
 
 

Assume that all the weights are symmetric, then:

 
 
 

Therefore, Equation 32 can be reduced to:

 
 
 
 

and can be simplified to:

 
 
 
 

Further simplified to:

 
 
 
 

Using Chain Rule:

 
 
 
 
 
 
 

Since:

 
 
 

 
 

If the output function is a sigmoid or hyperbolic tangent function, then:
 

 
 
 

d

dt
(
1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i V O

j ) =
1

2

M∑
i=1

B∑
j=1

wH
ij

dV H
i

dt
V O
j +

1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i

dV O
j

dt

d

dt
(
1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j V

H
i ) =

1

2

B∑
j=1

M∑
i=1

wO
ji

dV O
j

dt
V H
i +

1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j

dV H
i

dt

d

dt
(

M∑
i=1

A∑
k=1

wH
ikV

H
i Ik) =

M∑
i=1

A∑
k=1

wH
ik

dV H
i

dt
Ik +

M∑
i=1

A∑
k=1

wH
ikV

H
i

dIk
dt

(33)

dIk
dt

= 0 (34)

d

dt
(

M∑
i=1

A∑
k=1

wH
ikV

H
i Ik) =

M∑
i=1

A∑
k=1

wH
ik

dV H
i

dt
Ik (35)

d

dt

M∑
i=1

V H
i θHi =

M∑
i=1

dV H
i

dt
θHi

d

dt

B∑
i=1

V O
i θ

O
i =

B∑
i=1

dV O
i

dt
θOi

(36)

dV O
j

dt
= 0 (37)

wH
ij = wO

ji (38)

dE

dt
= −

M∑
i=1

B∑
j=1

wH
ij

dV H
i

dt
V O
j −

M∑
i=1

A∑
k=1

wH
ik

dV H
i

dt
Ik −

M∑
i=1

dV H
i

dt
θHi (39)

dE

dt
= −

M∑
i=1

dV H
i

dt
(

B∑
j=1

wH
ij V

O
j +

A∑
k=1

wH
ikIk + θHi ) (40)

dE

dt
= −

M∑
i=1

dV H
i

dt

duHi
dt

(41)

dE

dt
= −

M∑
i=1

dV H
i

duHi

duHi
dt

duHi
dt

dE

dt
= −

M∑
i=1

dV H
i

duHi
(
duHi
dt

)2

(42)

V H
i = g(uHi ) (43)

dV H
i

duHi
is always positive (44)
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Now consider the backward path:

 
Because the outputs of hidden nodes are constant in the backward path, then:

 
 
 
 

Assume all the weights are symmetric:

 
 
 

Therefore,

 
 
 
 and can be simplified to:

 
 
 
 

Further simplified to: 
 
 
 

Using Chain Rule: 
 
 
 
 
 
 

Since:

 
 
 

If the output function is a sigmoid or hyperbolic tangent function, then:

 
 
 
 

Then

 
 
 
 
 
 

 
 

Therefore, combining the forward and backward 
path, the energy function E of Eqn.31 is a Lyapunov 
function if and only if all weights are symmetric. 

The proposed RHN is a dynamic system. When 
an input vector is presented to the input nodes, and the 
input vector is in a specific basin of attraction, the 
proposed network sends signals back and forth 
between the hidden and output nodes until the network 

reaches an equilibrium state or the corresponding 
attractor. 

IV. Training of Proposed RHN 

The proposed network can be trained using 
either the modified SPSA or BPTT algorithms to ensure 
that all the weights are symmetric, as described in the 
following. 

dV H
i

dt
= 0 (46)

wO
ji = wH

ij (47)

dE

dt
= −

B∑
j=1

M∑
i=1

wO
ji

dV O
j

dt
V H
i −

B∑
j=1

dV O
j

dt
θOj (48)

dE

dt
= −

B∑
j=1

dV O
j

dt
(

M∑
i=1

wO
jiV

H
i + θOj ) (49)

dE

dt
= −

B∑
j=1

dV O
j

dt

duOj
dt

(50)

dE

dt
= −

B∑
j=1

dV O
j

duOj

duOj
dt

duOj
dt

dE

dt
= −

B∑
j=1

dV O
j

duOj
(
duOj
dt

)2

(51)

V O
j = g(uOj ) (52)

dV O
j

duOj
is always positive (53)

dE

dt
is always negative in the backward path (54)

Then:
dE

dt
is always negative in the forward path (45)
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a) SPSA Algorithm 
As mentioned earlier (Equations 3 and 4), the 

conventional Hebbian rule is not suitable for training the 
proposed network because the outputs of the hidden 
nodes are unknown, and the equations cannot handle 
analog quantities. 

The simultaneous perturbation stochastic 
approximation (SPSA) algorithm uses a gradient 

approximation that requires only 2N objective function 
measurements over all N iterations regardless of the 
optimization network’s dimension [4, 9]. Therefore, the 
SPSA algorithm, as shown in the following formulae, is 
suited for a high-dimensional optimization problem of 
minimizing an objective function dependent on multiple 
adjustable symmetric weights. 

 
 
 
 
 

At each iteration, a simultaneous perturbation 
delta vector with mutually independent zero-mean 
random variables is generated; each element ∆ ij(k) in 
∆(k) matrix is generated with a probability of 0.5 of being 
either +1 or 1. Two weight matrices W + and W  are 
calculated by adding and subtracting the ∆(k) matrix 
scaled by gain sequence c(k) to/from the current weight 
matrix W (k) to compute their respective contributions 
J(W +) and J(W ) to the objective function. Dependent 
on the outcome of the evaluation and scaled by gain 
sequences a(k) and c(k), the current weight matrix W is 
updated accordingly. The gain sequences a(k) and c(k) 
decrease as the number of iterations k increases, will 
converge to 0 as k approaches ∞. 

The objective function J used for the 
optimization of the proposed RHN is: 

 
 

 

Where 𝐷𝐷� ij

 
is the jth

 
element of the desired output vector i, 

𝑉𝑉𝑖𝑖𝑖𝑖𝑂𝑂
 
(k) is the output value of the jth

 
output node when 

training pattern i is presented, B is the number of output 
nodes, and P is the number of training patterns.

 

b)
 

Backward Propagation Through Time (BPTT) 
Algorithm

 

For simplicity and the ability to apply BPTT 
training algorithm, the proposed network in Figure 3 can 
be transformed into a discrete-time system and 
unfolded in time, as shown in Figure 4.

 
 

 

  

 

 

  
 

 

 
 
 
 

∆Wij =
J(W (k) + c(k)∆(k))− J(W (k)− c(k)∆(k))

2c(k)∆ij(k)

Wij(k + 1) = Wji(k + 1) = Wij(k)− a(k)∆Wij(k)

(55)

J =
P∑
i=1

B∑
j=1

(D̂ij − V O
ij (k))2 (56)

Figure 4: Unfolded RHN in 2-time steps

W represents all the weights in the proposed RHN. V O(T) 
and V O(T − 1) are the outputs of the output nodes at T 
and T − 1, respectively. The structure of the block is 
presented in Figure 5.

The error function J used for the optimization of 
the proposed RHN is:

Where 𝐷𝐷�pj is the jth element of the desired output vector 
k, V O(T ) is the output value of the jth output node when 

training pattern p is presented, B is the number of output 
nodes, and P is the number of training patterns.

J =
1

2

P∑
p=1

B∑
j=1

(D̂pj − V O
pj (T ))2 (57)
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Applying the BPTT algorithm, 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Structure of block W in Figure 4 

Where the deltas are: 
 
 
 
 
 
 
 
 
 
 
 
 

Since the weights are symmetric, then: 
 
 
 

V. Simulation Results 

a) Comparison of Hopfield Network and RHN 
Let us consider storing 3 vectors ([1100], [0110], [0101]) in a Hopfield network. Hopfield network can be 

programmed to memorize these three vector patterns using Hebbian Rule, and the weight matrix is: 
 

∆WO
ji = ε(δOpjV

H
pj (T ) + δH2

pj V
H
i (T − 1)) (58)

For j = 1 . . . A:
∆WH

ij = ε(δH1
pi + δH3

pi )IOpj (59)

For j = A+ 1 . . . A+B, k = 1 . . . B:

∆WH
ij = ε(δH1

pi V
O
pk(T − 1) + δH3

pi V
O
pk(T − 2)) (60)

δOpj = g
′
(uOpj(T ))(D̂pj − V O

pj (T ))

δH1
pi = g

′
(uHpi(T ))

B∑
j=1

δOpjW
O
ji

δH2
pj = g

′
(uOpj(T − 1))

M∑
i=1

δH1
pj W

H
ij

δH3
pi = g

′
(uHpj(T − 1))

B∑
i=1

δH2
pj W

O
ji

(61)

WO
ji (T + 1) = wH

ij (T + 1) = wO
ji(T ) + ∆WO

ji + ∆WH
ij (62)
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The weight matrix will generate the correct 
output vector when the corresponding input vector with 
noise is provided. 

Let us consider storing the fourth vector [1111] 
in the network. The weight matrix to store vector [1111] 
is: 

 
 
 
 

 Adding this new weight matrix to the previous 
weight matrix of the Hopfield network programmed to 
store 3 vectors ([1100], [0110], [0101]) yields a weight 
matrix with zero elements, erasing all the previous 
programming, as shown in the following. Therefore, the 
Hopfield network cannot be programmed to remember 
all four vectors ([1100], [0110], [0101], [1111]) using 
Hebbian rule.

 

 
 
 
 
 

However, by introducing five hidden nodes in 
the proposed RHN, all the vectors can be easily stored 
and recalled correctly. The simulation shows that it is 
possible to increase the Hopfield network’s memory 
capacity by using more hidden nodes. By increasing the 
number of hidden nodes to 50, the proposed network 
can remember all 16 binary vectors.

 

b)

 

EXOR Problem

 

The EXOR or exclusive-or problem is a classical 
problem in neural network research. It is a problem of 
using a neural network to predict EXOR logic gates’ 
outputs given two binary inputs. The network should 
return a ”1” if the two inputs are not equal and a ”0” if 

they are similar. The EXOR problem appears to be 
simple. However, Minksy and Papert in 1969 showed 
that this was a big problem for neural network 
architectures of the 1960s, providing

 

a good test for the 
proposed network [18].

 

Using an RHN with input and output nodes, as 
shown in Figure 3, is used. An RHN with 2 input nodes, 
one output node, and four hidden nodes was created. It 
was trained to learn the EXOR problem. Figure 6 shows 
the

 

training curve of the network using the SPSA 
algorithm described earlier. The network is trained after 
1000 training iterations.

 

 

Figure 6:

 

The training plot of square error J

 

Figures 7 and 8 show the basin

 

of attraction and the network’s energy profile, indicating four attractors, one 
attractor for each input pair.

 


0 1 −1 −1
1 0 −1 −1
−1 −1 0 1
−1 −1 1 0

 +


0 −1 −1 1
−1 0 1 −1
−1 1 0 −1
1 −1 −1 0

 +


0 −1 1 −1
−1 0 −1 1
1 −1 0 −1
−1 1 −1 0

 =


0 −1 −1 −1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




0 −1 −1 −1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

 +


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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Figure 7: Basin of attraction of an RHN implementing EXOR function 

Table 1 illustrates the effect of feedback as the 
output of an RHN network evolves when an initial input 

is presented. The EXOR output takes 3 to 4 feedback 
iterations to settle on the correct result. 

 

Figure 8: The energy function of an RHN implementing EXOR function 

Table 1: The evolution of the RHN’s output 

Input 
Output at each iteration 

T = 0 T = 1 T = 2 T = 3 T = 5 T = 6 
0 0 0 0.004 0.004 0.004 0.004 0.004 
0 1 0 0.258 0.510 0.638 0.847 0.997 
1 0 0 0.316 0.521 0.851 0.990 0.995 
1 1 0 0.003 0.003 0.003 0.003 0.003 

c) Associative Memory Problem 

An RHN with 35 input nodes, 35 output nodes, 
and ten hidden nodes is created. The network is then 
trained to perform auto-encoding of A, U, T, S 
characters, each with 5 7 pixels. The input characters 
are distorted by changing some of the pixels to test the 
network’s ability to re-create the characters in the 
presence of noise. 

In Figure 9, the distorted images of A, U, T, S 
are on the left and re-created images are on the right. 
The figure shows that the network can perform perfect 
re-creation of these images even when distorted images 
with the Hamming distance of 13 are presented. 
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Figure 9: Distorted and re-created images of A, U, T, and S 

As shown in Figure 10, an RHN trained with the 
BPTT algorithm can re-create the images with an 
average error rate of 2.4% when the Hamming distance 
is 5. The result is significantly improved compared with 
the RHN trained with the SPSA algorithm resulting in an 
error pattern of more than 4.4% for the same input. The 
classical Hopfield network and RBM can only achieve an 
error rate of 22.6% and 13.4%, respectively, for input 
vectors with the same Hamming distance. The RHN 
performs better compared to the Hopfield network and 
RBM. 

d) Creating an Associative Memory Model of Hand 
Written Digits 

The MNIST handwritten digit classification 
problem is a standard dataset used in computer vision 

and deep learning. The dataset contains 60,000 images, 
typically split into 50,000 training images and 10,000 
validation images. 

In this example, instead of performing 
handwritten classification, some of the 50,000 MNIST 
images are used as training inputs to associate with 3 5 
pixel models representing handwritten digits, as shown 
in Figure 11. All 10,000 validation MNIST images will be 
used as test images to verify the network’s associative 
function 
 
 
 
 

 

Figure 10: Performance comparison of the Hopfield Network and RBM with RHN 
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Figure 11: 3 × 5 pixel model of digits
 

The architecture to process MNIST images is 
inspired by a Convolution Neural Network architecture 
[19, 20], as shown in Figure 12. It consists of several 
layers: Input, 2D-Convolution, ReLU (Rectified Linear 
Unit), Max-pooling, Matrix to Vector, and RHN. The 
function of each layer in more detail is presented as 
follows: 

• The Input layer will hold the raw pixel values of the 
image, in this case, an image of width 28, height 28; 

• The 2D-Convolution layer will compute the output of 
nodes that are connected to local re- gions in the 
input image, each computing a dot product 
between their weights and a small area they are 
connected to in the input. Since four filters 
(horizontal line, vertical line, 45-degree line, and 
135-degree line detection) are used in the 
architecture, this results in a volume equal to [26 × 
26 × 4]; 

• The ReLU layer will apply an elementwise activation 
function, max(0,x), thresholding at zero. The layer 

leaves the size of the volume unchanged ([26 × 26 
× 4]). 

• The Max-pooling layer will perform a downsampling 
operation along the spatial dimensions (width, 
height), resulting in a smaller volume of [7 × 7 × 4]. 

• The Matrix to Vector layer will convert a volume of 

 
• An RHN with 196 input nodes, 100 hidden nodes, 

and 15 output nodes will be trained using the BPTT 
algorithm to associate an input image with a digit 
model of 3 × 5 pixels. 

The network architecture was inspired by the 
visual cortex’s organization, having a similar connectivity 
pattern of the retina, ganglion cells, and neurons in a 
human brain. Individual neurons respond to stimuli only 
in a restricted region of the visual field known as the 
receptive field. A collection of such fields overlap to 
cover the entire image area. 

 

Figure 12: Image Processing and RHN 

An RHN was trained with 1 percent of the 
50,000 training images. Figure 13 shows the responses 
of an RHN when different input images are presented at 
zero, one, and two feedback iterations. 

An RHN with zero feedback iteration is a feed-
forward multilayer perceptron (MLP) acting as a 
mapping function. When input images ”0” and ”4” are 
presented, models of ”0” and ”4” with 1-bit error were 
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data (in this case [7 × 7 × 4] elements) into a linear 
vector of 196 elements.



created as outputs at iteration 0. The network generated 
correct models of ”0” and ”4” after the first iteration. 
When input image ”1” is presented, it takes two 
feedback iterations to generate the correct model of ”1”. 

When input image ”6” is presented, the network first 
generated a wrong model of ”5” and then corrected its 
output to generate the correct model of ”6” after the first 
feedback iteration. 

 

Figure 13: RHN’s sample output at different iterations 

The effect of feedback iterations on the 
performance of an RHN is illustrated in Figure 14. The 
figure shows that the network can re-create half of the 
models correctly without any feedback iteration. 
However, the network’s performance can be improved 
by applying one or more feedback iterations. This result 
illustrates the importance of feedback iteration in 
implementing an associative memory using the 
proposed RHN. 

Figure 15 shows a network’s performance after 
being trained using only 500 and 5000 training images. 
The graph shows that the network could re-create 6674 
of the images perfectly when 500 training images were 
used, while the network can re-create 7849 of the 
images perfectly when 5000 training images were used. 
 

 

Figure 14: Effect of feedback iterations on the performance of an RHN 
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Figure 15: Performance of RHNs trained with 500 and 5000 MNIST training images 

VI. Conclusion 

A trainable analog Restricted Hopfield Network 
is presented in this paper. An energy or Lyapunov 
function was derived to show that the proposed network 
will converge to stable states when an input vector is 
introduced. The proposed network can be trained using 
either the modified SPSA or BPTT algorithms to ensure 
that all the weights are symmetric. Simulation results 
show that the presence of hidden nodes increases the 
network’s memory capacity. Using A, U, T, S as training 
characters, the network can be trained to be an 
associative memory. Simulation results show that the 
network can perform perfect re-creation of noisy images 
and perform better than the standard Hopfield Network 
and RBM. Simulation results also illustrate the 
importance of feedback iteration in implementing 
associative memory to re-create from noisy images. 
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