
© 2021. Tet Yeap. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Volume 21 Issue 2 Version 1.0 Year 2021
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals

 Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Implementation of an Associative Memory using a Restricted
Hopfield Network

 By Tet Yeap
University of Ottawa

Abstract- A trainable analog restricted Hopfield Network is presented in this paper. It consists of
two layers of nodes, visible and hidden nodes, connected by weighted directional paths forming
a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to
show that the proposed network will converge to stable states. The proposed network can be
trained using either the modified SPSA or BPTT algorithms to ensure that all the weights are
symmetric. Simulation results show that the presence of hidden nodes increases the network’s
memory capacity. Using EXOR as an example, the network can be trained to be a dynamic
classifier. Using A, U, T, S as training characters, the network was trained to be an associative
memory. Simulation results show that the network can perform perfect re-creation of noisy
images. Its recreation performance has higher noise tolerance than the standard Hopfield
Network and the Restricted Boltzmann Machine. Simulation results also illustrate the importance
of feedback iteration in implementing associative memory to re-create from noisy images.

Keywords: hopfield network, restricted boltzmann machine, energy function, lyapunov function,
restricted hopfield network, trainable networks, hidden nodes, basin of attraction, attractors.

GJRE-F Classification: FOR Code: 290903

 ImplementationofanAssociativeMemoryusingaRestrictedHopfieldNetwork

 Strictly as per the compliance and regulations of:

Global Journal of Researches in Engineering: F
Electrical and Electronics Engineering

Implementation of an Associative Memory using
a Restricted Hopfield Network

Tet Yeap

Abstract- A trainable analog restricted Hopfield Network is
presented in this paper. It consists of two layers of nodes,
visible and hidden nodes, connected by weighted directional
paths forming a bipartite graph with no intralayer connection.
An energy or Lyapunov function was derived to show that the
proposed network will converge to stable states. The
proposed network can be trained using either the modified
SPSA or BPTT algorithms to ensure that all the weights are
symmetric. Simulation results show that the presence of
hidden nodes increases the network’s memory capacity.
Using EXOR as an example, the network can be trained to be
a dynamic classifier. Using A, U, T, S as training characters,
the network was trained to be an associative memory.
Simulation results show that the network can perform perfect
re-creation of noisy images. Its recreation performance has
higher noise tolerance than the standard Hopfield Network
and the Restricted Boltzmann Machine. Simulation results also
illustrate the importance of feedback iteration in implementing
associative memory to re-create from noisy images.
Keywords: hopfield network, restricted boltzmann
machine, energy function, lyapunov function, restricted
hopfield network, trainable networks, hidden nodes,
basin of attraction, attractors.

I. Introduction

n 1982, based on his studies of collective dynamical
computation in neural networks, Hopfield [1, 2, 3]
proposed an influential recurrent neural network with

many potential applications such as content
addressable memory and optimization engine for the
traveling-salesman problem. He formulated an Energy
function for the network using the Lyapunov Direct
Method showing that the network converges to a stable
state if it has symmetric weights. Each network node
does not have self-feedback.

Hopfield network comes in two forms: analog or
discrete. However, in either format, the network can only
be programmed to memorize patterns using the
Hebbian Rule and has a limited memory capacity to
store 0.15N patterns where N is the network’s number of
nodes. Many have tried to improve the network’s
memory capacity problem and trainability issue [4, 5].
For example, instead of trying to memorize the patterns
in one presentation cycle, Gardner [6, 7, 8] improved the
network by presenting the training patterns repeatedly
and using the perceptron convergence procedure to
train each node to generate the correct state given the

states of all the other nodes for a particular training
vector.

A Boltzmann machine is a stochastic recurrent
neural network with interconnected visible and hidden
nodes introduced by Hinton [9, 10]. Like a Hopfield
network, a Boltzmann has a similar energy function
when the weights are symmetric and converges to a
stable state when an input vector is presented to the
visible nodes. A Boltzmann machine takes a long time to
train. As a result, a restricted Boltzmann machine (RBM)
was introduced [11, 12, 13]. It consists of two layers of
nodes, L visible and M hidden nodes, connected by
symmetric weights with no intralayer connection. Each
node makes probabilistic decisions to be either on or
off. The connection restriction allows for more efficient
training algorithms, notably the gradient-based
contrastive divergence algorithm, to be developed. The
network is capable of learning the probabilistic pattern
of a set of inputs.

An analog restricted Hopfield network (RHN) is
proposed in this paper to solve the memory capacity
and the trainability issue of the Hopfield network. Like an
RBM, the architecture consists of two layers of nodes,
visible and hidden nodes, connected by directional
weighted connection paths. The network is a fully-
connected bipartite graph and has no intralayer
connection. The visible nodes are classified into either
input or output nodes to manage the flow of information
to/from the visible nodes. An energy or Lyapunov
function was derived to prove that the proposed network
always converges to stable states when an input vector
is presented. The proposed network iterates, sending
signals back and forth between the two layers until all its
nodes reach an equilibrium state based on the
corresponding basin of attraction, generating the
desired output vector.

Two training algorithms were used to train the
proposed network: Simultaneous Perturbation
Stochastic Approximation (SPSA) [14, 15] and Back
propagation Through Time (BPTT) [16, 17]. The SPSA
algorithm was introduced by Spall and is simple to
implement. It can estimate the gradient of the error
function using only two final error values of the function.
Therefore, the merit of this training rule was
demonstrated to train the proposed network. The BPTT
algorithm, on the other hand, is based on the fact that
the temporal operation of an RHN may be unfolded into

I

© 2021 Global Journals

1

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

Author: School of Electrical Engineering and Computer Science
University of Ottawa. e-mail: tyeap@uottawa.ca

−

a multilayer perceptron so that a standard back
propagation algorithm could be applied.

Simulation results show that the proposed
network can be trained to implement a dynamic
classifier implementing an EXOR function. Using A, U, T,
S as training characters, the network was trained to be
an associative memory. Simulation results show that the
network performs perfect re-creation of these images
even when the input image is noisy. The results also
show that the proposed network performs better than
the standard Hopfield Network and RBM.

The paper is organized as follows. Section 2
presents the background work on Hopfield Network and

Restricted Boltzmann Machine. An RHN with hidden
nodes function is presented in section 3. In section 4,
two algorithms to train the network are introduced.
Section 5 presents some simulation results on the
performance of the RHN.

II. Background

a) Hopfield Network
An analog Hopfield network consists of fully

interconnected nodes modeled as amplifiers, in con-
junction with feedback circuits comprises of wires,
resistors, and capacitors, as shown in Figure 1.

Figure 1: An analog Hopfield network

The dynamics of the network can be described
by the following differential equations:

Where N is the number of nodes in the network, ui is the
input voltage of the amplifier, Tij is the weight or
conductance connecting the output of node j to the
input of node i, Vj is the output of node j, RC is the time
constant of the network, Ii is the input to node i, and g()
is the output function of a node.

The following energy function for the network
was derived by Hopfield using the Lyapunov Direct
Method if the network has symmetric weights and each
network node does not have self-feedback. For the
initial-value problem, Ii input is applied to node i at t = 0
and then allow the network to evolve. The integration of
the above differential equations provides the network

states’ evolution. With the energy function’s existence,
the network will always converge to a stable state.

Hopfield networks can only be programmed to
memorize patterns using the Hebbian Rule. When the
output function g() is a sigmoid function, the network
transforms the initial input vector it- eratively and
continuously into the output vector in the range [0, 1]. To
program the network to memorize specific binary input
vectors (S(p), p = 1 . . . P), the weight or conductance

Tij
 is deter- mined by the following formula:

When the output function g() is a hyperbolic tangent
function, the network transforms the initial input vector

dui
dt

=
N∑
j=1

Tijvj −
ui
τ

+ Ii

τ = RC

Vi = g(ui)

(1) E = −1

2

N∑
i=1

N∑
j=1

TijViVj −
N∑
i=1

Vi
ui
τ
−

N∑
i=1

ViIi (2)

Tij =
P∑

p=1

(2Si(p)− 1)(2Sj(p)− 1) (3)

2

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Implementation of an Associative Memory using a Restricted Hopfield Network

i

iteratively and continuously into the output vector in the
range [1, 1]. To program the network to memorize
specific binary input vectors (S(p), p = 1 . . . P), the
weight or conductance Tij is determined by the following
formula:

b) Restricted Boltzmann Machine (RBM)
A restricted Boltzmann machine (RBM) is a

stochastic recurrent neural network [4, 9, 10] consisting
of two layers of nodes, L visible and M hidden nodes,
connected by symmetric weights with no intralayer
connection. Each node makes probabilistic decisions to
be either on or off. The network is capable of learning
the probabilistic pattern of a set of inputs.

The following differential equations can
describe the dynamics of the network:
In the forward path:

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝐻𝐻 is the sum of all inputs to the hidden node

i, 𝑤𝑤𝑖𝑖𝑖𝑖𝐻𝐻 is the weight connecting the output of visible node
j to the input of hidden node i, 𝑉𝑉𝑗𝑗𝑣𝑣 is the output of visible
node j, 𝜃𝜃𝑖𝑖𝐻𝐻 is the threshold of hidden node i, 𝑉𝑉𝑖𝑖𝐻𝐻 is the
output of hidden node i, g() is the Sigmoid logistic
output function of hidden node i.
In the backward path:

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗
𝑣𝑣 is the sum of all inputs to the visible node i,

𝑤𝑤𝑗𝑗 𝑖𝑖𝑣𝑣 the weight connecting the output of hidden node i
to the input of visible node j, 𝑉𝑉𝑖𝑖𝐻𝐻 is the output of hidden
node i, 𝜃𝜃𝑗𝑗𝑉𝑉 is the threshold of visible node j, 𝑉𝑉𝑗𝑗𝑉𝑉 is the
output of visible node j, g() is the Sigmoid logistic output
function of hidden node j.

For symmetric weights configuration, the energy
or Lyapunov function of an RBM is given by:

With the existence of energy function, the
network will always converge to a stable state when an
input vector is presented to the visible nodes.

During the training of the network, an input
vector p is presented. Let 𝑒𝑒𝑖𝑖𝑖𝑖+ (p) =𝑉𝑉𝑖𝑖𝐻𝐻𝑉𝑉𝑗𝑗𝑣𝑣 denotes the
correlation of hidden node i and visible node j in the

forward direction, and 𝑒𝑒𝑖𝑖𝑖𝑖− (p) = 𝑉𝑉𝑖𝑖𝐻𝐻𝑋𝑋𝑗𝑗𝑉𝑉 denotes the
correlation in the backward direction, where 𝑋𝑋𝑗𝑗𝑉𝑉 is the
value of visible unit j of pattern p that is estimated by the
network. The weight is updated during a training
process by:

Where β is a small positive number.

III. Proposed Restricted Hopfield
Network(RHN)

An analog restricted Hopfield network (RHN) is
proposed to solve the memory capacity and train- ability
issues of the Hopfield network. Like an RBM, the
architecture consists of two layers of nodes, L visible
and M hidden nodes, connected by directional weighted
connection paths, as shown in Figure 2. The network is
a connected bipartite graph and has no intralayer
connection.

Tij =
P∑

p=1

Si(p)Sj(p) (4)

sumH
i =

L∑
j=1

wH
ij V

V
j + θHi (5)

V H
i = g(sumH

i)

sumV
j =

M∑
i=1

wV
jiV

H
i + θVj

V V
j = g(sumV

j)

(6)

E = −
M∑
i=1

L∑
j=1

wH
ij V

H
i V V

j −
L∑

j=1

θVj V
V
j −

M∑
i=1

θHi V
H
i (7)

wij(k + 1) = wij(k) + β(e+ij(p)− e−ij(p)) (8)

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

3

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

Figure 2: A Restricted Hopfield Network

The following differential equations describe the
dynamics of the network: In the forward path:

 Initial conditions:

 Where 𝑢𝑢𝑖𝑖𝐻𝐻

is the sum of all inputs to the hidden nodes,
𝑊𝑊𝑖𝑖𝑖𝑖

𝐻𝐻

is the weight connecting the output of visible node j

 to the input of hidden node i, 𝑉𝑉𝑗𝑗𝑉𝑉

is the output of visible
node j, 𝜃𝜃𝑖𝑖𝐻𝐻

is the threshold of hidden node i, 𝑉𝑉𝑖𝑖𝐻𝐻

is the
output of hidden node i, g() is the output function of
hidden node I, and Ij

is the initial input presented to the
visible node j.

 In the backward path:

Where 𝑢𝑢𝑗𝑗𝑉𝑉 is the sum of all inputs to the visible nodes,
𝑤𝑤𝑗𝑗𝑗𝑗𝑉𝑉 is the weight connecting the output of hidden node i
to the input of visible node j, 𝑉𝑉𝑖𝑖𝐻𝐻 is the output of hidden
node i, 𝜃𝜃𝑗𝑗𝑉𝑉 is the threshold of output node j, 𝑉𝑉𝑗𝑗𝑉𝑉 is the
output of visible node j, and g() is the output function of
visible node j.

The network input can be either digital or
analog, taking a value between 0 and 1. Using a
Sigmoid function as output function g() for all the nodes,
the output of all the nodes takes the value between 0
and 1. The proposed network will also work when the
hyperbolic tangent function is used as the output
function. In such a case, the output of all the nodes
takes the value between 1 and 1. The proposed RHN
always generates analog outputs between 0 and 1 using
the Sigmoid output function or between −1 and 1 using
the hyperbolic tangent output function.

Based on the Lyapunov Direct Method, it can
be shown that Eqn. 11 is the energy or a Lyapunov
function of the proposed network.

Differentiating E, we get:

Expanding all the above terms in Eqn. 12, we get:

duHi
dt

=
L∑

j=1

wH
ij V

V
j + θHi

V H
i = g(ui)

(9)

V V
j (0) = Ij

V H
i (0) = 0

duVj
dt

=
M∑
i=1

wV
jiV

H
i + θVj (10)

V V
j = g(uVj)

E = −1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i V H

j −
1

2

L∑
j=1

M∑
i=1

wV
jiV

H
j V V

i −
M∑
i=1

V H
i θHi −

L∑
i=1

V V
i θ

V
i (11)

dE

dt
= − d

dt
(
1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i V H

j)− d

dt
(
1

2

L∑
j=1

M∑
i=1

wV
jiV

H
j V V

i)− d

dt
(

M∑
i=1

V H
i θHi)− d

dt
(

L∑
i=1

V V
i θ

V
i)

(12)

d

dt
(
1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i V H

j) =
1

2

M∑
i=1

L∑
j=1

wH
ij

dV H
i

dt
V V
j +

1

2

M∑
i=1

L∑
j=1

wH
ij V

H
i

dV V
j

dt

Implementation of an Associative Memory using a Restricted Hopfield Network

4

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Now consider the forward path:
Because the outputs of visible nodes are constant in the forward path, then:

Assume that all the weights are symmetric, then:

Therefore, Equation 12 can be reduced to the following:

and can be simplified to:

Further simplified to:

Using Chain Rule:

Since:

If the output function is a Sigmoid or hyperbolic tangent function, then:

Then:

Now consider the backward path:

Because the outputs of hidden nodes are constant in the backward path, then:

d

dt
(
1

2

∑
j=1

L

M∑
i=1

wV
jiV

H
j V V

i) =
1

2

L∑
j=1

M∑
i=1

wV
ji

dV V
j

dt
V H
i +

1

2

L∑
j=1

M∑
i=1

wV
jiV

V
j

dV H
i

dt

d

dt
(

M∑
i=1

V H
i θHi) =

M∑
i=1

dV H
i

dt
θHi

d

dt
(

L∑
i=1

V V
i θ

V
i) =

L∑
i=1

dV V
i

dt
θVi

(13)

dV V
i

dt
= 0 (14)

wH
ij = wV

ji (15)

dE

dt
= −

M∑
i=1

L∑
j=1

wH
ij

dV H
i

dt
V V
j −

M∑
i=1

dV H
i

dt
θHi (16)

dE

dt
= −

M∑
i=1

dV H
i

dt
(

L∑
j=1

wH
ij V

V
j + θHi) (17)

dE

dt
= −

M∑
i=1

dV H
i

dt

duHi
dt

(18)

dE

dt
= −

M∑
i=1

dV H
i

duHi

duHi
dt

duHi
dt

dE

dt
= −

M∑
i=1

dV H
i

duHi
(
duHi
dt

)2

(19)

V H
i = g(uHi) (20)

dV H
i

duHi
is always positive

dE

dt
is always negative in the forward path

dV H
i

dt
= 0 (21)

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

5

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

Assume that all the weights are symmetric, then:

Therefore, Equation 12 can be reduced to

the following:

 and can be simplified to:

 Further simplified to:

 Using Chain Rule:

Since:

If the output function is a Sigmoid or hyperbolic tangent function, then:

Then:

The proposed RHN is a dynamic system.

Therefore, it has attractors toward which a system tends
to evolve for a wide variety of the system’s initial
conditions. The existence of a basin of attraction for
each attractor guarantees that any initial condition in the
nearby region will iterate to the attractor. When an input
vector in a specific basin of attraction is presented, the
proposed network sends signals back and forth
between the hidden and visible layers until all the nodes
reach an equilibrium state minimizing the energy
function above, generating the desired output vector.

The visible nodes can be divided into either A
input and B output nodes, as shown in Figure 3. In the
forward computation path, each node in the hidden
layer receives the weighted output of both the input and
output nodes of the visible layer. In the backward
computation direction, only the output nodes receive the

weighted output of the hidden nodes. Therefore, when
an input vector is presented to the input nodes, signals
are sent back and forth between the hidden and output
nodes until an equilibrium state is reached.

wH
ij = wV

ji (22)

dE

dt
= −

L∑
j=1

M∑
i=1

wV
ji

dV V
j

dt
V H
i −

L∑
j=1

dV V
j

dt
θVj (23)

dE

dt
= −

L∑
j=1

dV V
j

dt
(

M∑
j=1

wV
jiV

H
i + θVj) (24)

dE

dt
= −

L∑
i=1

dV V
j

dt

duVj
dt

(25)

dE

dt
= −

L∑
j=1

dV V
j

duVj

duVj
dt

duVj
dt

dE

dt
= −

L∑
j=1

dV V
j

duVj
(
duVj
dt

)2

(26)

V V
j = g(uVj) (27)

dV V
j

duVj
is always positive

dE

dt
is always negative in the backward path

Implementation of an Associative Memory using a Restricted Hopfield Network

6

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Therefore, combining the forward and backward
path, the energy function E of Eqn.11 is a Lyapunov
function if and only if all the weights are symmetric.

Figure 3: A Restricted Hopfield Network with Inputs and Outputs Nodes

The following differential equations describe the
dynamics of the network:
In the forward path:

Initial conditions:

Where 𝑢𝑢𝑖𝑖𝐻𝐻 is the sum of all inputs to the hidden nodes,
𝑊𝑊𝑖𝑖𝑖𝑖

𝐻𝐻 is the weight connecting the output of output node j
to the input of hidden node i, 𝑉𝑉𝑗𝑗𝑂𝑂 is the output of output
node j, 𝑊𝑊𝑖𝑖𝑖𝑖

𝐻𝐻 is the weight connecting the output of input
node k to the input of hidden node i, Ik is the output of
input node k, 𝜃𝜃𝑖𝑖𝐻𝐻 is the threshold of hidden node i, 𝑉𝑉𝑖𝑖𝐻𝐻 is
the output of hidden node i, and g() is the output
function of hidden node i.

In the backward path:

Where 𝑢𝑢𝑗𝑗𝑂𝑂 is the sum of all inputs to the output nodes,
𝑤𝑤𝑗𝑗𝑗𝑗𝑂𝑂 is the weight connecting the output of hidden node i
to the input of output node j, 𝑉𝑉𝑖𝑖𝐻𝐻 is the output of hidden
node i, 𝜃𝜃𝑗𝑗𝑂𝑂 is the threshold of output node j, 𝑉𝑉𝑗𝑗𝑂𝑂 is the
output of output node j, and g() is the output function of
output node j.

The proposed RHN always generates analog
outputs between 0 and 1 when g() is a sigmoid function
or between −1 and 1 when g() is a hyperbolic tangent
function.

Using the Lyapunov Direct Method, it can be
shown that Eqn. 31 is the energy or Lyapunov functions
of the proposed network.

Differentiating E, we get:

Expanding all the above terms in Eqn.32, we get:

duHi
dt

= −
B∑
j=1

wH
ij V

O
j +

H∑
k=1

wH
ikIk + θHi

V H
i = g(uHi)

(28)

V O
j (0) = 0

V H
i (0) = 0

(29)

duOj
dt

=
M∑
i=1

wO
jiV

H
i + θOj

V O
j = g(uOj)

(30)

E = −1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i V O

j −
1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j V

H
i

−
M∑
i=1

A∑
k=1

wH
ikV

H
i Ik −

M∑
i=1

V H
i θHi −

B∑
i=1

V O
i θ

O
i

(31)

dE

dt
= − d

dt
(
1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i V O

j)− d

dt
(
1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j V

H
i)

− d

dt
(

M∑
i=1

A∑
k=1

wH
ikV

H
i Ik)− d

dt
(

M∑
i=1

V H
i θHi)− d

dt
(

B∑
i=1

V O
i θ

O
i)

(32)

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

7

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

For constant input Ik:

Then:

For the rest

of the terms, we get:

Now consider the forward path:

Because the outputs of visible nodes are constant in the backward path, then:

Assume that all the weights are symmetric, then:

Therefore, Equation 32 can be reduced to:

and can be simplified to:

Further simplified to:

Using Chain Rule:

Since:

If the output function is a sigmoid or hyperbolic tangent function, then:

d

dt
(
1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i V O

j) =
1

2

M∑
i=1

B∑
j=1

wH
ij

dV H
i

dt
V O
j +

1

2

M∑
i=1

B∑
j=1

wH
ij V

H
i

dV O
j

dt

d

dt
(
1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j V

H
i) =

1

2

B∑
j=1

M∑
i=1

wO
ji

dV O
j

dt
V H
i +

1

2

B∑
j=1

M∑
i=1

wO
jiV

O
j

dV H
i

dt

d

dt
(

M∑
i=1

A∑
k=1

wH
ikV

H
i Ik) =

M∑
i=1

A∑
k=1

wH
ik

dV H
i

dt
Ik +

M∑
i=1

A∑
k=1

wH
ikV

H
i

dIk
dt

(33)

dIk
dt

= 0 (34)

d

dt
(

M∑
i=1

A∑
k=1

wH
ikV

H
i Ik) =

M∑
i=1

A∑
k=1

wH
ik

dV H
i

dt
Ik (35)

d

dt

M∑
i=1

V H
i θHi =

M∑
i=1

dV H
i

dt
θHi

d

dt

B∑
i=1

V O
i θ

O
i =

B∑
i=1

dV O
i

dt
θOi

(36)

dV O
j

dt
= 0 (37)

wH
ij = wO

ji (38)

dE

dt
= −

M∑
i=1

B∑
j=1

wH
ij

dV H
i

dt
V O
j −

M∑
i=1

A∑
k=1

wH
ik

dV H
i

dt
Ik −

M∑
i=1

dV H
i

dt
θHi (39)

dE

dt
= −

M∑
i=1

dV H
i

dt
(

B∑
j=1

wH
ij V

O
j +

A∑
k=1

wH
ikIk + θHi) (40)

dE

dt
= −

M∑
i=1

dV H
i

dt

duHi
dt

(41)

dE

dt
= −

M∑
i=1

dV H
i

duHi

duHi
dt

duHi
dt

dE

dt
= −

M∑
i=1

dV H
i

duHi
(
duHi
dt

)2

(42)

V H
i = g(uHi) (43)

dV H
i

duHi
is always positive (44)

Implementation of an Associative Memory using a Restricted Hopfield Network

8

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Now consider the backward path:

Because the outputs of hidden nodes are constant in the backward path, then:

Assume all the weights are symmetric:

Therefore,

 and can be simplified to:

Further simplified to:

Using Chain Rule:

Since:

If the output function is a sigmoid or hyperbolic tangent function, then:

Then

Therefore, combining the forward and backward
path, the energy function E of Eqn.31 is a Lyapunov
function if and only if all weights are symmetric.

The proposed RHN is a dynamic system. When
an input vector is presented to the input nodes, and the
input vector is in a specific basin of attraction, the
proposed network sends signals back and forth
between the hidden and output nodes until the network

reaches an equilibrium state or the corresponding
attractor.

IV. Training of Proposed RHN

The proposed network can be trained using
either the modified SPSA or BPTT algorithms to ensure
that all the weights are symmetric, as described in the
following.

dV H
i

dt
= 0 (46)

wO
ji = wH

ij (47)

dE

dt
= −

B∑
j=1

M∑
i=1

wO
ji

dV O
j

dt
V H
i −

B∑
j=1

dV O
j

dt
θOj (48)

dE

dt
= −

B∑
j=1

dV O
j

dt
(

M∑
i=1

wO
jiV

H
i + θOj) (49)

dE

dt
= −

B∑
j=1

dV O
j

dt

duOj
dt

(50)

dE

dt
= −

B∑
j=1

dV O
j

duOj

duOj
dt

duOj
dt

dE

dt
= −

B∑
j=1

dV O
j

duOj
(
duOj
dt

)2

(51)

V O
j = g(uOj) (52)

dV O
j

duOj
is always positive (53)

dE

dt
is always negative in the backward path (54)

Then:
dE

dt
is always negative in the forward path (45)

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

9

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

a) SPSA Algorithm
As mentioned earlier (Equations 3 and 4), the

conventional Hebbian rule is not suitable for training the
proposed network because the outputs of the hidden
nodes are unknown, and the equations cannot handle
analog quantities.

The simultaneous perturbation stochastic
approximation (SPSA) algorithm uses a gradient

approximation that requires only 2N objective function
measurements over all N iterations regardless of the
optimization network’s dimension [4, 9]. Therefore, the
SPSA algorithm, as shown in the following formulae, is
suited for a high-dimensional optimization problem of
minimizing an objective function dependent on multiple
adjustable symmetric weights.

At each iteration, a simultaneous perturbation
delta vector with mutually independent zero-mean
random variables is generated; each element ∆ ij(k) in
∆(k) matrix is generated with a probability of 0.5 of being
either +1 or 1. Two weight matrices W + and W are
calculated by adding and subtracting the ∆(k) matrix
scaled by gain sequence c(k) to/from the current weight
matrix W (k) to compute their respective contributions
J(W +) and J(W) to the objective function. Dependent
on the outcome of the evaluation and scaled by gain
sequences a(k) and c(k), the current weight matrix W is
updated accordingly. The gain sequences a(k) and c(k)
decrease as the number of iterations k increases, will
converge to 0 as k approaches ∞.

The objective function J used for the
optimization of the proposed RHN is:

Where 𝐷𝐷� ij

is the jth

element of the desired output vector i,

𝑉𝑉𝑖𝑖𝑖𝑖𝑂𝑂

(k) is the output value of the jth

output node when

training pattern i is presented, B is the number of output
nodes, and P is the number of training patterns.

b)

Backward Propagation Through Time (BPTT)
Algorithm

For simplicity and the ability to apply BPTT
training algorithm, the proposed network in Figure 3 can
be transformed into a discrete-time system and
unfolded in time, as shown in Figure 4.

∆Wij =
J(W (k) + c(k)∆(k))− J(W (k)− c(k)∆(k))

2c(k)∆ij(k)

Wij(k + 1) = Wji(k + 1) = Wij(k)− a(k)∆Wij(k)

(55)

J =
P∑
i=1

B∑
j=1

(D̂ij − V O
ij (k))2 (56)

Figure 4: Unfolded RHN in 2-time steps

W represents all the weights in the proposed RHN. V O(T)
and V O(T − 1) are the outputs of the output nodes at T
and T − 1, respectively. The structure of the block is
presented in Figure 5.

The error function J used for the optimization of
the proposed RHN is:

Where 𝐷𝐷�pj is the jth element of the desired output vector
k, V O(T) is the output value of the jth output node when

training pattern p is presented, B is the number of output
nodes, and P is the number of training patterns.

J =
1

2

P∑
p=1

B∑
j=1

(D̂pj − V O
pj (T))2 (57)

Implementation of an Associative Memory using a Restricted Hopfield Network

10

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Applying the BPTT algorithm,

Figure 5: Structure of block W in Figure 4

Where the deltas are:

Since the weights are symmetric, then:

V. Simulation Results

a) Comparison of Hopfield Network and RHN
Let us consider storing 3 vectors ([1100], [0110], [0101]) in a Hopfield network. Hopfield network can be

programmed to memorize these three vector patterns using Hebbian Rule, and the weight matrix is:

∆WO
ji = ε(δOpjV

H
pj (T) + δH2

pj V
H
i (T − 1)) (58)

For j = 1 . . . A:
∆WH

ij = ε(δH1
pi + δH3

pi)IOpj (59)

For j = A+ 1 . . . A+B, k = 1 . . . B:

∆WH
ij = ε(δH1

pi V
O
pk(T − 1) + δH3

pi V
O
pk(T − 2)) (60)

δOpj = g
′
(uOpj(T))(D̂pj − V O

pj (T))

δH1
pi = g

′
(uHpi(T))

B∑
j=1

δOpjW
O
ji

δH2
pj = g

′
(uOpj(T − 1))

M∑
i=1

δH1
pj W

H
ij

δH3
pi = g

′
(uHpj(T − 1))

B∑
i=1

δH2
pj W

O
ji

(61)

WO
ji (T + 1) = wH

ij (T + 1) = wO
ji(T) + ∆WO

ji + ∆WH
ij (62)

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

11

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

The weight matrix will generate the correct
output vector when the corresponding input vector with
noise is provided.

Let us consider storing the fourth vector [1111]
in the network. The weight matrix to store vector [1111]
is:

 Adding this new weight matrix to the previous
weight matrix of the Hopfield network programmed to
store 3 vectors ([1100], [0110], [0101]) yields a weight
matrix with zero elements, erasing all the previous
programming, as shown in the following. Therefore, the
Hopfield network cannot be programmed to remember
all four vectors ([1100], [0110], [0101], [1111]) using
Hebbian rule.

However, by introducing five hidden nodes in
the proposed RHN, all the vectors can be easily stored
and recalled correctly. The simulation shows that it is
possible to increase the Hopfield network’s memory
capacity by using more hidden nodes. By increasing the
number of hidden nodes to 50, the proposed network
can remember all 16 binary vectors.

b)

EXOR Problem

The EXOR or exclusive-or problem is a classical
problem in neural network research. It is a problem of
using a neural network to predict EXOR logic gates’
outputs given two binary inputs. The network should
return a ”1” if the two inputs are not equal and a ”0” if

they are similar. The EXOR problem appears to be
simple. However, Minksy and Papert in 1969 showed
that this was a big problem for neural network
architectures of the 1960s, providing

a good test for the
proposed network [18].

Using an RHN with input and output nodes, as
shown in Figure 3, is used. An RHN with 2 input nodes,
one output node, and four hidden nodes was created. It
was trained to learn the EXOR problem. Figure 6 shows
the

training curve of the network using the SPSA
algorithm described earlier. The network is trained after
1000 training iterations.

Figure 6:

The training plot of square error J

Figures 7 and 8 show the basin

of attraction and the network’s energy profile, indicating four attractors, one
attractor for each input pair.


0 1 −1 −1
1 0 −1 −1
−1 −1 0 1
−1 −1 1 0

 +


0 −1 −1 1
−1 0 1 −1
−1 1 0 −1
1 −1 −1 0

 +


0 −1 1 −1
−1 0 −1 1
1 −1 0 −1
−1 1 −1 0

 =


0 −1 −1 −1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




0 −1 −1 −1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

 +


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Implementation of an Associative Memory using a Restricted Hopfield Network

12

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Figure 7: Basin of attraction of an RHN implementing EXOR function

Table 1 illustrates the effect of feedback as the
output of an RHN network evolves when an initial input

is presented. The EXOR output takes 3 to 4 feedback
iterations to settle on the correct result.

Figure 8: The energy function of an RHN implementing EXOR function

Table 1: The evolution of the RHN’s output

Input
Output at each iteration

T = 0 T = 1 T = 2 T = 3 T = 5 T = 6
0 0 0 0.004 0.004 0.004 0.004 0.004
0 1 0 0.258 0.510 0.638 0.847 0.997
1 0 0 0.316 0.521 0.851 0.990 0.995
1 1 0 0.003 0.003 0.003 0.003 0.003

c) Associative Memory Problem

An RHN with 35 input nodes, 35 output nodes,
and ten hidden nodes is created. The network is then
trained to perform auto-encoding of A, U, T, S
characters, each with 5 7 pixels. The input characters
are distorted by changing some of the pixels to test the
network’s ability to re-create the characters in the
presence of noise.

In Figure 9, the distorted images of A, U, T, S
are on the left and re-created images are on the right.
The figure shows that the network can perform perfect
re-creation of these images even when distorted images
with the Hamming distance of 13 are presented.

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

13

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

Figure 9: Distorted and re-created images of A, U, T, and S

As shown in Figure 10, an RHN trained with the
BPTT algorithm can re-create the images with an
average error rate of 2.4% when the Hamming distance
is 5. The result is significantly improved compared with
the RHN trained with the SPSA algorithm resulting in an
error pattern of more than 4.4% for the same input. The
classical Hopfield network and RBM can only achieve an
error rate of 22.6% and 13.4%, respectively, for input
vectors with the same Hamming distance. The RHN
performs better compared to the Hopfield network and
RBM.

d) Creating an Associative Memory Model of Hand
Written Digits

The MNIST handwritten digit classification
problem is a standard dataset used in computer vision

and deep learning. The dataset contains 60,000 images,
typically split into 50,000 training images and 10,000
validation images.

In this example, instead of performing
handwritten classification, some of the 50,000 MNIST
images are used as training inputs to associate with 3 5
pixel models representing handwritten digits, as shown
in Figure 11. All 10,000 validation MNIST images will be
used as test images to verify the network’s associative
function

Figure 10: Performance comparison of the Hopfield Network and RBM with RHN

Implementation of an Associative Memory using a Restricted Hopfield Network

14

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Figure 11: 3 × 5 pixel model of digits

The architecture to process MNIST images is
inspired by a Convolution Neural Network architecture
[19, 20], as shown in Figure 12. It consists of several
layers: Input, 2D-Convolution, ReLU (Rectified Linear
Unit), Max-pooling, Matrix to Vector, and RHN. The
function of each layer in more detail is presented as
follows:

• The Input layer will hold the raw pixel values of the
image, in this case, an image of width 28, height 28;

• The 2D-Convolution layer will compute the output of
nodes that are connected to local re- gions in the
input image, each computing a dot product
between their weights and a small area they are
connected to in the input. Since four filters
(horizontal line, vertical line, 45-degree line, and
135-degree line detection) are used in the
architecture, this results in a volume equal to [26 ×
26 × 4];

• The ReLU layer will apply an elementwise activation
function, max(0,x), thresholding at zero. The layer

leaves the size of the volume unchanged ([26 × 26
× 4]).

• The Max-pooling layer will perform a downsampling
operation along the spatial dimensions (width,
height), resulting in a smaller volume of [7 × 7 × 4].

• The Matrix to Vector layer will convert a volume of

• An RHN with 196 input nodes, 100 hidden nodes,

and 15 output nodes will be trained using the BPTT
algorithm to associate an input image with a digit
model of 3 × 5 pixels.

The network architecture was inspired by the
visual cortex’s organization, having a similar connectivity
pattern of the retina, ganglion cells, and neurons in a
human brain. Individual neurons respond to stimuli only
in a restricted region of the visual field known as the
receptive field. A collection of such fields overlap to
cover the entire image area.

Figure 12: Image Processing and RHN

An RHN was trained with 1 percent of the
50,000 training images. Figure 13 shows the responses
of an RHN when different input images are presented at
zero, one, and two feedback iterations.

An RHN with zero feedback iteration is a feed-
forward multilayer perceptron (MLP) acting as a
mapping function. When input images ”0” and ”4” are
presented, models of ”0” and ”4” with 1-bit error were

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

15

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

data (in this case [7 × 7 × 4] elements) into a linear
vector of 196 elements.

created as outputs at iteration 0. The network generated
correct models of ”0” and ”4” after the first iteration.
When input image ”1” is presented, it takes two
feedback iterations to generate the correct model of ”1”.

When input image ”6” is presented, the network first
generated a wrong model of ”5” and then corrected its
output to generate the correct model of ”6” after the first
feedback iteration.

Figure 13: RHN’s sample output at different iterations

The effect of feedback iterations on the
performance of an RHN is illustrated in Figure 14. The
figure shows that the network can re-create half of the
models correctly without any feedback iteration.
However, the network’s performance can be improved
by applying one or more feedback iterations. This result
illustrates the importance of feedback iteration in
implementing an associative memory using the
proposed RHN.

Figure 15 shows a network’s performance after
being trained using only 500 and 5000 training images.
The graph shows that the network could re-create 6674
of the images perfectly when 500 training images were
used, while the network can re-create 7849 of the
images perfectly when 5000 training images were used.

Figure 14: Effect of feedback iterations on the performance of an RHN

Implementation of an Associative Memory using a Restricted Hopfield Network

16

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

Figure 15: Performance of RHNs trained with 500 and 5000 MNIST training images

VI. Conclusion

A trainable analog Restricted Hopfield Network
is presented in this paper. An energy or Lyapunov
function was derived to show that the proposed network
will converge to stable states when an input vector is
introduced. The proposed network can be trained using
either the modified SPSA or BPTT algorithms to ensure
that all the weights are symmetric. Simulation results
show that the presence of hidden nodes increases the
network’s memory capacity. Using A, U, T, S as training
characters, the network can be trained to be an
associative memory. Simulation results show that the
network can perform perfect re-creation of noisy images
and perform better than the standard Hopfield Network
and RBM. Simulation results also illustrate the
importance of feedback iteration in implementing
associative memory to re-create from noisy images.

References Références Referencias

1. John J Hopfield. Neural networks and physical
systems with emergent collective computational
abilities. Proceedings of the national academy of
sciences, 79(8):2554–2558, 1982.

2. John J Hopfield and David W Tank. “neural”
computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

3. John J Hopfield and David W Tank. Computing with
neural circuits: A model. Science, 233(4764):625–
633, 1986.

4. ROBERTJ McEliece, Edwardc Posner, EUGENER
Rodemich, and SANTOSHS Venkatesh. The
capacity of the hopfield associative memory. IEEE
transactions on Information Theory, 33(4):461–482,
1987.

5. Amos J Storkey and Romain Valabregue. The
basins of attraction of a new hopfield learning rule.
Neural Networks, 12(6):869–876, 1999.

6. Elizabeth Gardner. Maximum storage capacity in
neural networks. EPL (Europhysics Letters), 4(4):481,
1987.

7. Elizabeth Gardner. The space of interactions in
neural network models. Journal of physics A:
Mathematical and general, 21(1):257, 1988.

8. Elizabeth Gardner and Bernard Derrida. Optimal
storage properties of neural network models.
Journal of Physics A: Mathematical and general,
21(1):271, 1988.

9. David H Ackley, Geoffrey E Hinton, and Terrence J
Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

10. Ruslan Salakhutdinov and Geoffrey Hinton. Deep
boltzmann machines. In Artificial intelligence and
statistics, pages 448–455. PMLR, 2009.

11. Geoffrey E Hinton. A practical guide to training
restricted boltzmann machines. In Neural networks:
Tricks of the trade, pages 599–619. Springer, 2012.

12. Ilya Sutskever, Geoffrey E Hinton, and Graham W
Taylor. The recurrent temporal restricted boltzmann
machine. In Advances in neural information
processing systems, pages 1601–1608, 2009.

13. Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey
Hinton. Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th
international conference on Machine learning, pages
791–798, 2007.

14. James C Spall et al. Multivariate stochastic
approximation using a simultaneous perturbation
gradient approximation. IEEE transactions on
automatic control, 37(3):332–341, 1992.

15. James C Spall. An overview of the simultaneous
perturbation method for efficient optimization. Johns
Hopkins apl technical digest, 19(4):482–492, 1998.

16. Paul J Werbos. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10): 1550–1560, 1990.

Implementation of an Associative Memory using a Restricted Hopfield Network

© 2021 Global Journals

17

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

17. Simon Haykin. Neural networks and learning
machines, 3/E. Pearson Education India, 2010.

18. Marvin Minsky and Seymour A Papert. Perceptrons:
An introduction to computational geometry. MIT
press, 2017.

19. Yann LeCun, Bernhard Boser, John S Denker,
Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Back
propagation applied to handwritten zip code
recognition. Neural computation, 1(4): 541–551,
1989.

20. Yann LeCun, Yoshua Bengio, et al. Convolutional
networks for images, speech, and time series. The
handbook of brain theory and neural networks,
3361(10):1995, 1995.

Implementation of an Associative Memory using a Restricted Hopfield Network

18

Y
e
a
r

20
21

Vo
lu
m
e

 X
xX
I
 I
ss
ue

 I
I
V e

rs
io
n

I

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

© 2021 Global Journals

	Implementation of an Associative Memory using a RestrictedHopfield Network
	Author
	Keywords
	I. Introduction
	II. Background
	a) Hopfield Network
	b) Restricted Boltzmann Machine (RBM)

	III. Proposed Restricted Hopfield Network(RHN)
	IV. Training of Proposed RHN
	a) SPSA Algorithm
	b)Backward Propagation Through Time (BPTT)Algorithm

	V. Simulation Results
	a) Comparison of Hopfield Network and RHN
	b)EXOR Problem
	c) Associative Memory Problem
	d) Creating an Associative Memory Model of Hand Written Digits

	VI. Conclusion
	References Références Referencias

