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6

Abstract7

The numerical solutions for the coexisting fields of surface and internal solitary waves have8

been obtained, where the set of nonlinear equations based on the variational principle for9

steady waves are solved using the Newton- Raphson method. The relative phase velocity of10

surface-mode solitary waves is smaller in the coexisting fields of surface and internal solitary11

waves than in the cases without the coexistence of internal waves. The relative phase velocity12

of internal-mode solitary waves is also smaller in the coexisting fields of surface and internal13

solitary waves than in the cases without surface waves. The interfacial position of an14

internalmode internal solitary wave in a coexisting field of surface and internal waves can15

exceed the critical level determined in the corresponding case without a surface wave. The16

wave height ratio between internal-mode surface and internal solitary waves is smaller than17

the corresponding linear shallow water wave solution, and the difference increases, as the18

relative wave height of internal-mode internal solitary waves is increased.19

20

Index terms— solitary wave, internal wave, free surface, nonlinear wave equation, numerical solution21

1 Introduction22

urface and internal waves coexist in the ocean with stratification development. The behaviors of waves in such23
coexisting fields of surface and internal waves show more complicated characteristics than those which exist24
individually. For instance, the traveling time for a distant tsunami is delayed due to the influence of density25
stratification in the ocean, according to the theoretical analyses for linear waves 1), 2) . Fructus and Grue 3)26
used a pressure field for two-layer fluids sandwiched by two fixed horizontal plates, to obtain the surface waves27
caused by large-amplitude internal waves. A coexisting field of surface and internal waves can be established28
even in nearshore zones, where surface long waves have great influence on sediment motion and coastal structures29
as an external force, and conversely, internal waves may greatly affect the coastal environment through water30
salinity and temperature. Surface and internal waves, however, have often been studied individually: especially,31
the nonlinear characteristics of surface and internal waves have been investigated independently by e.g. Longuet-32
Higgins and Fenton 4) and Choi and Camassa 5) . In also the research by Fructus and Grue 3) mentioned above,33
the interaction between surface and internal waves has not been considered.34

In the present study, solitary wave solutions for coexistence fields of surface and internal waves have been35
numerically calculated using the set of nonlinear wave equations based on the variational principle 6) for two-36
layer fluids with a free water surface, to examine the characteristics of surface and internal solitary waves, where37
the phases of both the steady surface and internal solitary waves are assumed to be the same, with a surface38
mode or an internal mode.39
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5 A) DETERMINANT IN THE NEWTON-RAPHSON METHOD

2 II.40

3 Fundamental Equations41

The motion in two-layer inviscid and incompressible fluids is assumed to be irrotational. The upper and lower42
layers are called the first and second layers, respectively, and the fluids in each layer do not mix even in motion.43
The velocity potential ? i in the i-th layer (i = 1 or 2) is expanded into the power series of derivation process of44
nonlinear surface wave (1) where Ni is the number of terms and fi,?i is the weightings of the power series.45

By applying the variational principle, the nonlinear surface/internal wave equations 6) are obtained as follows:46
The upper and 1 st layer S ( ) ( )? ? ? ? = ? = 1 0 , , , , i i i i N i i z t f t z ? ? ? ? x x ( ) ? ? ( ) 0 1 1 1 147

1 1 1 1 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 , 1 1 1 1 1 = ? ? + ? ? ? ? + + + ? ? ? ? ? ? + ? + + + + + ? ? ? ? ? ?48
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? f f t t , 0 2 1 2 1 1 1 1 1 1 1 1 1 1 1 , 1 , 1 2 1 1 , 1 , 1 , 1 = + + ? ?49
+ ? ? ? + + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? g f f f f t f ,(2)50
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for the coexisting fields of surface and internal solitary waves have been obtained, where the set of nonlinear54
equations based on the variational principle for steady waves are solved using the Newton-Raphson method. The55
relative phase velocity of surface-mode solitary waves is smaller in the coexisting fields of surface and internal56
solitary waves than in the cases without the coexistence of internal waves. The relative phase velocity of internal-57
mode solitary waves is also smaller in the coexisting fields of surface and internal solitary waves than in the58
cases without surface waves. The interfacial position of an internalmode internal solitary wave in a coexisting59
field of surface and internal waves can exceed the critical level determined in the corresponding case without a60
surface wave. The wave height ratio between internal-mode surface and internal solitary waves is smaller than61
the corresponding linear shallow water wave solution, and the difference increases, as the relative wave height62
of internal-mode internal solitary waves is increased. vertical position z, in the manner similar to that for the63
equations 7) , as , Japan. e-mail: kyamashita@irides.tohoku.ac.jp (4) The lower and 2 nd layer (5) In this study,64
we focus on solitary waves, such that the number of terms for the expanded velocity potential expressed by Eq.65
( ??) is three for both upper and lower layers, i.e., N 1 = N 2 = N = 3, based on the accuracy verification 8) for66
the surface and internal solitary waves obtained using the fundamental equations.(6) 0 2 1 2 1 1 , 1 , 1 2 1 1 , 167
, 1 , 1 1 1 1 1 1 1 1 1 1 1 = + + + ? ? + ? ? ? + + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? p g f f f f t f , ( ) ? ? (68
) 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 , 2 1 1 2 2 2 2 , 2 1 1 2 2 = ? ? + ? ? ? ? + + + ? ? ? + ? + + + + + ? ? ? ?69
? ? = ? + + + + ? ? + ? ? ? + + gh p g f f f f t f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?70

5 a) Determinant in the Newton-Raphson method71

For the propagation of nonlinear surface/internal waves, the fundamental differential equations, i.e., Eqs.72
(2), (3), (5), and (7), are transformed to finite difference equations, which are solved using an implicit73

scheme 9) . In the present study, numerical solutions for surface/internal solitary waves are obtained using74
the method introduced by Yamashita and Kakinuma 8) , where the Newton-Raphson method is applied to solve75
the fundamental equations for steady waves in a coexisting fields of surface and internal waves. We substitute76
the advection equation ?F/?t = ?C ?F/?x into the time derivative terms of Eqs. (2), (3), (5), and (7), and then77
solve the resulting nonlinear wave equations for steady waves traveling in the direction of the x-axis, where C is78
the phase velocity of the waves, and the physical quantity F is the water surface displacement ?, the interface79
displacement ?, and the weightings of the expanded velocity potential f i,? . In this method, an arbitrary phase80
velocity C is given, and these unknown physical quantities for a steady wave with phase velocity C are evaluated81
using the Newton-Raphson method. Note that in the resulting equations for steady waves, the physical quantities82
F are functions of only x, for the time derivative terms are eliminated.83

For the discretization in the Newton-Raphson method, the second-order central finite difference is used for84
spatial differentiation. The computational domain is the region of 1 ? m ? M, where m is grid point number.85
The grid points of m = 0 and m = M + 1 are virtual grid points for the central finite difference at the lateral86
boundaries.87

( )0 2 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 , 1 , 1 2 1 1 , 1 , 1 , 1 2 1 1 2 1 , 2 , 2 2 2 2 , 2 , 2 ,88
2 = ? ? ? + ? ? ? ? ? ? + ? ? ? + ? ? ? ? ? ? ? ? ? + + ? ? + ? ? ? + + ? + + ? ? ? ? ? ? ? ? ? ? ? ? ?89
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? f f f f t f h g f f f f t f (7)90

.91
The method to solve the determinant J? = D, which represents the simultaneous difference equations obtained92

by the discretization above, is the Gaussian elimination method, with partial pivots of high computational93
stability, where J = J(m) (m = (1, 2, ??? , M)) is the94

Jacobian matrix, and ? = ?(m) is a column vector composed of the difference ?F between the numerical95
solution F at the k th and that at the (k + 1) th iterative calculations for convergence.96

where ?, ?, b, p, h 1 , and ? i are the water surface displacement, interface displacement, seabed position,97
pressure at the interface, the upper-layer thickness in still water, and fluid density of the i-th layer, respectively.98
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The fluid density ? i is constant in each layer. The It should be noted that the sum rule of product is used for99
the subscripts ? i , ? i , and ? i : for example, ? 1 in the first term on the left-hand side of Eq. ( ??) is the100
power of ?.101

From Eqs. ( ??) and ( ??), p is eliminated to obtain the following equation:102
The number of elements of the Jacobian matrix J is {(2 + 2 N) M} 2 . For example, if the number of grids in103

the computational domain is 2,500, the total number of elements is about 400 million, such that it is not efficient104
to store the Jacobian matrix J in one array, from the viewpoint of memory capacity. Therefore, considering that105
the Jacobian matrix J is a band matrix, we secure only both the elements required to the pivot operation and106
those of the Jacobian matrix J corresponding to ?(m) = (?f 1,? , ?? , ?? , ?f 2,? ) m for one computational grid107
point, such that the Jacobian matrix Consequently, the number of elements has been reduced to around 640,000,108
and the calculation efficiency could be improved significantly.J is composed of (2 + 2 N) × 4 (2 + 2 N) × M.109
horizontal partial differential operator ? is (?/?x, ?/?y),110

6 b) Initial values in the Newton-Raphson method111

The initial values in the Newton-Raphson method are the surface and interface profiles, as well as the velocity112
potential, obtained through the KdV theory for small amplitude solitary waves. In two-layer fluids, there are two113
types of solitary waves with different restoring forces: solitary waves with a surface-wave mode due to gravity,114
as sketched in Fig. 1, and solitary waves with an internal-wave mode owing to the effective gravity between the115
two layers, as illustrated in Fig. 2. For the former, the initial values in the Newton-Raphson method are the116
KdV solutions for a one-layer fluid, and for the latter, those are the KdV solutions for two-layer fluids, the upper117
surface of which contacts with a fixed horizontal plate.118

7 c) Lateral boundary conditions for approximating solitary119

waves in the finite domain120

Solitary waves have the property that the horizontal gradient dF/dx of the physical quantity asymptotically121
approaches zero at a distance in the horizontal direction. In the numerical calculation, however, the target domain122
is a finite region, such that the property should be described using boundary conditions. First, as a boundary123
condition of the calculation using the central finite difference, we assumed dF/dx = 0 for the physical quantities124
F at the virtual grid points, i.e., m = 0 and m = M + 1, and then the calculation diverged immediately. Second,125
although we extrapolated the physical quantities F at the virtual grid points m = 0 and M + 1 using the first-or126
secondorder approximation, the calculation also diverged. displacement ? near the boundaries oscillates without127
asymptotically approaching zero toward the boundary, which means that in order to obtain stable solutions, it is128
necessary to suppress such oscillation and express that dF/dx approaches zero toward the boundaries. Finally, we129
adopted F 0 = F 1 and F M+1 = F M , which means that the gradient of physical quantities in the virtual regions130
adjacent to the boundaries is assumed to be zero, although it does not mean dF/dx = 0 at the boundaries. For131
example, dF/dx at the boundary m = 1 is expressed as (F 2 ? F 1 )/ 2?x, which has the same sign as dF/dx at132
the position m ? 1.5, and the absolute value is 1/2 of dF/dx at the position m ? 1.5, such that the oscillation due133
to sign reversal around the boundaries is suppressed, and the property of solitary waves, where dF/dx approaches134
zero toward the boundary, is approximately expressed.135

The illustration in Fig. 1 is our schematic for surface and internal solitary waves with a surface-wave mode,136
where the still water depth h = h 1 + h 2 is uniform, and the thickness of the upper layer h 1 is 0.2h in still137
water. By applying the final method described above, we obtain numerical solutions for surface-mode solitary138
waves, where the phases of both surface-mode surface and internal solitary waves are assumed to be the same as139
shown in Fig. 1.140

The density ratio of the lower and upper layers, ? 2 /? 1 , is 1.02, which is close to the density ratio of141
seawater and freshwater. The total length of the calculation domain, L, is 100.0h, and the grid width in the x142
direction, ?x, is 0.05h. Shown in Fig. 3 are the numerical results for the water surface profiles of the surface-mode143
surface solitary waves, where the horizontal and vertical axes indicate horizontal distance from the position of144
the wave-profile peak and the ratio of surface displacement from the still water level to still water depth h. The145
ratio of the wave height of the surface solitary waves to still water depth, a s /h, is 0.1, 0.3, and 0.5. Comparing146
the water surface profiles of the surface solitary waves for the one-layer fluid indicated by the black solid lines147
and those for the two-layer fluids drawn with the red broken lines, a significant difference is not observed between148
the two, although the latter is slightly sharpened.149

8 IV.150

9 Surface-Mode Solitary Waves151

Figure ?? shows the relationship between the relative representative wavelength of surface-mode surface solitary152
waves, ? s /h, and the ratio of wave height to still water depth, a s /h, where the red solid line shows the153
numerical solution for the two-layer fluids, and the black solid and broken lines show the numerical solution and154
the KdV solution for the one-layer fluid, respectively.155
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11 GLOBAL

The representative wavelength ? s of surface solitary waves is defined by (8) Fig. ??: Relationship between156
the relative representative wavelength of surface-mode surface solitary waves, ? s /h, and the ratio of wave height157
to still water depth, a s /h, where ? s is defined by Eq. ( ??); h 2 /h 1 = 4.0 and ? 2 /? 1 = 1.02. Fig. ??158
indicates that the relative representative wavelength decreases, as the ratio of wave height to still water depth, a159
s /h, is increased. Although the representative wavelength for the two-layer fluids is slightly shorter than that for160
the one-layer fluid, there is almost no difference between the two. The representative wavelength from the KdV161
theory for the one-layer fluid is shorter than those through the numerical calculation for the one-layer fluid and162
the two-layer fluids, for the wavelength by the KdV theory decreases as the wave height is increased, satisfying163
the assumption that O(a s /h) = O((h/? s ) 2 ). Conversely, in the derivation process of the set of fundamental164
equations 6) , no assumptions are made regarding both the ratio of wave height to water depth and the ratio of165
water depth to wavelength, when the number of the expansion terms for velocity potential, N, is infinity.166

10 Global Journal of Researches in Engineering ( ) Volume Xx167

X Issue III V ersion I168

Shown in Fig. ?? is the ratio of the wave height a i of surface-mode internal solitary waves to the wave height a169
s of surface-mode surface solitary waves, for the two-layer fluids. Although the numerical solution of a i /a s is170
close to 0.8, which is the value through the linear theoretical solution for small-amplitude surface solitary waves,171
the difference between the value of a i /a s through the numerical calculation and that from the linear theory172
increases, a s /h is increased. Fig. ??: Relationship between the wave height ratio a i /a s and the ratio of wave173
height to still water depth, a s /h, where a i and a s are the wave height of surface-mode internal and surface174
solitary waves, respectively; h 2 /h 1 = 4.0 and ? 2 /? 1 = 1.02.175

In the following cases, the density ratio of lower and upper layers, ? 2 /? 1 , is 1.20. In the numerical176
calculation, the total length of the calculation domain, L, is 50.0h, and the grid width in the x direction, ?x, is177
0.02h. Figure 7 shows the numerical results for the water surface profiles of surface-mode surface solitary waves,178
where the ratio of the wave height of surface solitary waves to still water depth, a s /h, is 0.5. The distance179
between the front and back surfaces of the wave profile at each height of the surface-mode surface solitary wave180
is shorter in the coexisting field of surface and internal waves than in the case without internal waves. is smaller181
than the KdV solution, and the numerical solution of C/C s,0 is smaller for the two-layer fluids than for the182
one-layer fluid. The difference ?(C/C s,0 ) between the numerical solution for the one-layer fluid and that for the183
two-layer fluids is 2.0 × 10 ?3 , 1.8 × 10 ?3 , 1.4 × 10 ?3 , and 6.0 × 10 ?5 , when a s /h = 0.1, 0.3, 0.5, and 0.6,184
respectively, where ?(C/C s,0 ) decreases as a s /h is increased.185

Figure 5 shows the relationship between the relative phase velocity C/C s,0 and the ratio of wave height to186
still water depth, a s /h, for the surface-mode surface solitary waves, where C s,0 = ?ð�??”ð�??”? is the phase187
velocity of linear shallow water waves for a one-layer fluid. In Fig. 5, the red solid line shows the numerical188
solution for the two-layer fluids, and the black solid and broken lines indicate the numerical solution and the189
KdV solution, respectively, for the one-layer fluid. The relative phase velocity C/C s,0 through the numerical190
calculation Figure ?? indicates the relationship between the relative representative wavelength of surface-mode191
surface solitary waves, ? s /h, and the ratio of their wave height to water depth, a s /h, where the thick and192
thin lines show the numerical solutions for the two-layer fluids and for the one-layer fluid, respectively. The193
representative wavelength ? s is defined by Eq. ( ??). The relative representative wavelength decreases, as the194
ratio of wave height to still water depth, a s /h, is increased, as in the case shown in Fig. ??.195

Fig. ??: Relationship between the relative representative wavelength of surface-mode surface solitary waves,196
? s /h, and the ratio of their wave height to water depth, a s /h, where ? s is defined by Eq. ( ??); h 2 /h 1 =197
4.0 and ? 2 /? 1 = 1.20.198

Figure ?? shows the relationship between the relative phase velocity C/C s,0 and the ratio of wave height to199
water depth, a s /h, for surface-mode surface solitary waves, where C s,0 = ?ð�??”ð�??”? is the phase velocity200
of linear shallow water waves for a one-layer fluid. The numerical solution for relative phase velocity C/C s,0 is201
smaller for the two-layer fluids than for the one-layer fluid, which is the same as in the case shown in Fig. 5.202

11 Global203

Journal of Researches in Engineering ( ) Volume Xx X Issue III V ersion I E Fig. ??: Relationship between the204
relative phase velocity C/C s,0 and the ratio of wave height to water depth, a s /h, for surface-mode surface205
solitary waves, where C s,0 = ?ð�??”ð�??”? is the phase velocity of linear shallow water waves for a onelayer206
fluid; h 2 /h 1 = 4.0 and ? 2 /? 1 = 1.20. Shown in Fig. 10 is the ratio of the wave height a i of surface-mode207
internal solitary waves to the wave height a s of surface-mode surface solitary waves, for the two-layer fluids.208
The surface-mode wave height ratio a i /a s decreases, as the relative wave height of surfacemode surface solitary209
waves, a s /h, is increased, as in the case shown in Fig. ??. Fig. 10: Relationship between the wave height210
ratio a i /a s and the ratio of wave height to still water depth, a s /h, where a i and a s are the wave height of211
surface-mode internal and surface solitary waves, respectively; h 2 /h 1 = 4.0 and ? 2 /? 1 = 1.20.212
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12 V.213

13 Internal-Mode Solitary Waves214

Illustrated in Fig. 2 are internal-mode surface and internal solitary waves, where the still water depth h is215
uniform, and the thickness of the upper layer h 1 is 0.2h in still water. By applying the same method, the216
numerical solutions for internal-mode solitary waves are obtained, where the phases of both internal-mode surface217
and internal solitary waves are assumed to be the same as shown in Fig. 2. The total length of the calculation218
domain, L, is 25.0h, and the grid width in the x direction, ?x, is 0.005h. First, the density ratio of the lower and219
upper layers, ? 2 /? 1 , is 1.02.220

The numerical solutions for the interface profiles of internal-mode internal solitary waves are shown in Fig. 11.221
The red lines indicate the interface profiles for the coexisting field of both surface and internal solitary waves,222
where the ratio of wave height to upper-layer thickness in still water, a i /h 1 , is 0.15, 0.5, and 1.0, as well as223
1.493, which is the maximum value obtained by numerical calculation. On the other hand, the black line shows224
the numerical solution for the interface profile of the internal solitary wave with the obtained maximum wave225
height, where the upper surface is in contact with a fixed horizontal plate. In the absence of a free water surface,226
the downward convex interface of stable internal waves cannot appear below the height of (z c + h 1 )/h 1 =227
?1.488, which is called the critical level 10) . Figure 11, however, indicates that (? min + h 1 )/h 1 = ?1.493, such228
that the interfacial minimum position ? min can exceed the critical level, when the free water surface coexists.229
Fig. 12: Relationship between the relative representative wavelength ? i /h 1 and the ratio of wave height to230
upper layer thickness in still water, a i /h 1 , for internal-mode internal solitary waves, where the representative231
wavelength ? i is defined by Eq. ( ??); h 2 /h 1 = 4.0 and ? 2 /? 1 = 1.02. the representative wavelength of232
internal-mode solitary waves in the coexistence field of surface and internal waves is shorter than that for the233
case without the coexistence of surface waves. These numerical solutions are larger than the corresponding KdV234
solution, which is similar to surface-mode surface solitary waves shown in Fig. ??.235

14 Global236

Figure 13 shows the relative phase velocity C i /C i,0 of internal-mode solitary waves, where is the phase velocity237
of linear internal shallow water waves without the coexistence of surface waves. As indicated in Fig. 13, the238
relative phase velocity C i /C i,0 decreases in the coexistence field of surface and internal waves than in the case239
without the coexistence of surface waves, where the difference between the two decreases as a i /h 1 is increased,240
as for the case of surface-mode solitary waves shown in Fig. 5. . As shown in Fig. 12, the numerical solution for241
Fig. 13: Relationship between the relative phase velocity C i /C i,0 and the ratio of wave height to upper-layer242
thickness in still water, a i /h 1 , for internal-mode internal solitary waves, where C i,0 is the phase velocity of243
linear internal shallow water waves without the coexistence of surface waves; h 2 /h 1 = 4.0 and ? 2 /? 1 =244
1.02. internal-mode surface solitary waves to that of internalmode internal solitary waves, a s /a i . The wave245
height ratio a s /a i decreases, as the ratio a i /h 1 is increased. Conversely, the wave height ratio a s /a i from246
the linear shallow water wave theory for the coexisting field of surface and internal waves does not depend on247
the ratio a i /h 1 , for a s /a i = (1? ? 1 /? 2 ) h 2 /h = 0.016. Second, we compare the numerical solutions for248
two cases, where the density ratio of the lower and upper layers, ? 2 /? 1 , is 1.02 and 1.20. Figure 15 shows the249
relative representative wavelength ? i /h 1 for internalmode internal solitary waves, where ? i is defined by Eq.250
(9). As shown in Fig. 15, although the representative wavelength ? i of internal-mode internal solitary waves in251
the coexisting field of surface and internal waves is larger in the case where ? 2 /? 1 = 1.02 than in the case252
where ? 2 /? 1 = 1.20, when a i /h 1 is relatively small, the opposite is true, when a i /h 1 is relatively large.253
Shown in Fig. 14 is the ratio of wave height of 15: Relationship between the relative representative wavelength254
? i /h 1 and the ratio of wave height to upper layer thickness in still water, a i /h 1 , for internal-mode internal255
solitary waves, where the representative wavelength ? i is defined by Eq. ( ??), and h 2 /h 1 = 4.0.( ) ( ) 2 1 1256
2 2 1 1 2 0 , i / h h h gh C ? ? ? ? + ? = i 2 2 1 i a dx h L L ? ? + = ? ?257

Figure 16 shows the relative phase velocity C i /C i,0 of internal-mode solitary waves, where is the phase258
velocity of linear internal shallow water waves without the coexistence of surface waves. The relative phase259
velocity C i /C i,0 is larger when ? 2 /? 1 = 1.02 than when ? 2 /? 1 = 1.20.260

Fig. 16: Relationship between the relative phase velocity C i /C i,0 and the ratio of wave height to upper-layer261
thickness in still water, a i /h 1 , for internal-mode internal solitary waves, where C i,0 is the phase velocity of262
linear internal shallow water waves without the coexistence of surface waves, and h 2 /h 1 = 4.0.263

Shown in Fig. 17 are the ratios of wave height, a s /a i , where a s and a i are the wave height of internalmode264
surface and internal solitary waves, respectively. The wave height ratio a s /a i is larger when ? 2 /? 1 = 1.20265
than when ? 2 /? 1 = 1.02. The numerical solutions for wave height ratio a s /a i decrease, as the relative wave266
height a i /h 1 is increased, although that through the linear shallow water wave theory for the coexisting field267
of surface and internal waves does not depend on the ( ) ( )2 1 1 2 2 1 1 2 0 , i / h h h gh C ? ? ? ? + ? =268

relative wave height a i /h 1 , for a s /a i = [(? 2 /? 1 ) ? 1] / [(? 2 /? 1 )/(h 2 /h 1 ) + 1], such that a s /a i269
? 0.154 when ? 2 /? 1 = 1.20, and a s /a i ? 0.016 when ? 2 /? 1 = 1.02.270
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15 Global271

Journal of Researches in Engineering ( ) Volume Xx X Issue III V ersion I E Fig. 17: Relationship between wave272
height ratio a s /a i and relative wave height a i /h 1 , where a s and a i are the wave height of internal-mode273
surface and internal solitary waves, respectively, and h 2 /h 1 = 4.0.274

16 VI.275

17 Conclusions276

The numerical solutions for the solitary waves in the coexisting fields of surface and internal waves were obtained277
for the two-layer fluids with a free water surface, where the phases of both the steady surface and internal solitary278
waves were assumed to be the same, with a surface mode or an internal mode. The set of nonlinear equations279
based on the variational principle for steady waves were solved using the Newton-Raphson method.280

The relative phase velocity of surface-mode solitary waves was smaller in the coexisting fields of surface and281
internal waves than in the cases without the coexistence of internal waves. The difference in the relative phase282
velocity between the two decreased, as the relative wave height of surface-mode surface solitary waves was283
increased.284

The relative phase velocity of internal-mode solitary waves was also smaller in the coexisting fields of surface285
and internal waves than in the cases without the coexistence of surface waves. The difference in the relative286
phase velocity between the two decreased, as the relative wave height of internal-mode internal solitary waves287
was increased.288

The interfacial position of the internal-mode internal solitary waves in the coexisting fields of surface and289
internal waves exceeded the critical level determined in the cases without the coexistence of surface waves.290

The wave height ratio between internal-mode surface and internal solitary waves was smaller than the291
corresponding linear shallow water wave solution, and the difference increased, as the relative wave height of292
internal-mode internal solitary waves was increased. 1

Figure 1:
293
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Figure 2: Fig. 1 :
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Figure 3: Fig. 2 :
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Figure 4:
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Figure 5: Fig. 3 :
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Figure 6: Fig. 5 :
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Figure 7: Fig. 7 :
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Figure 8:
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Figure 9: Figure 12
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Figure 10: Fig. 11 :
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Figure 11: Fig. 14 :
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Figure 12: Fig.

III. Calculation Method for Steady
Wave Solutions in a Coexisting Field
of Surface and Internal
Solitary Waves

[Note: GlobalJournal of Researches in Engineering ( ) Volume Xx X Issue III V ersion I]

Figure 13:
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