
The Kinematics of a Puma Robot using Dual Quaternions1

Mahmoud Gouasmi1, Belkacem Gouasmi2 and Mohamed Ouali32

1 Blida 1 University3

Received: 15 December 2019 Accepted: 2 January 2020 Published: 15 January 20204

5

Abstract6

This chapter presents mainly, on the light of both main concepts; The first being the screw7

motion or/ and dual quaternions kinematics while the second concerns the classical ’Denavit8

and Hartenberg parameters’ method, the direct kinematics of a Puma 560 robot.Kinematics9

analysis studies the relative motions, such as, first of all, the displacement in space of the end10

effector of a given robot, and thus its velocity and acceleration, associated with the links of11

the given robot that is usually designed so that it can position its end-effector with a three12

degree-of-freedom of translation and three degree-of-freedom of orientation within its13

workspace.14

15

Index terms— dual quaternions, forward kinematics, screw motion, denavit and hartenberg parameters.16

1 Introduction17

any research students have a great deal of trouble understanding essentially what quaternions are [1], [2], [3] and18
how they can represent rotation. So when the subject of dualquaternions is presented, it is usually not welcomed19
with open arms. Dual-quaternions are a break from the norm (i.e., matrices) which we hope to entice the reader20
into supporting willingly to represent their rigid transforms.21

The reader should walk away from this analysis with a clear understanding of what dual-quaternions are and22
how they can be used [4]. First we begin with a short recent and related work that emphasises the power of23
dual-quaternions:24

The dual-quaternion has been around since 1882 [5], [6], [7] but has gained less attention compared to25
quaternions alone; while the most recent work which has taken hold and has demonstrated the practicality of dual-26
quaternions, both in robotics and computer graphics can be resumed in: -Kavan [8] demonstrated the advantages27
of dual-quaternions in character skinning and blending. -Ivo [9] extended Kavan’s work with dual-quaternions28
and q-tangents as an alternative method for representing rigid transforms instead of matrices, and gives evidence29
that the results can be faster with accumulated transformations of joints if the inferences per vertex are large30
enough. -Selig [10] address the key problem in computer games. -Vasilakis [11] discussed skeleton-based rigid-31
skinning for character animation. -Kuang [12] presented a strategy for creating real-time animation of clothed32
body movement.-Pham [13] solved linked chain inverse kinematic (IK) problems using Jacobian matrix in the33
dual-quaternion space. -Malte [14] used a mean of multiple computational (MMC) model with dualquaternions34
to model bodies. -Ge [15] demonstrated dual-quaternions to be an efficient and practical method for interpolating35
three-dimensional motions. -Yang -Hsing [16] calculated the relative orientation using dualquaternions. -Perez36
[17] formulated dynamic constraints for articulated robotic systems using dualquaternions.-Further reading on37
the subject of dual numbers and derivatives is presented by Gino [18].38

In the last three decades, the field of robotics has widened its range of applications, due to recent developments39
in the major domains of robotics like kinematics, dynamics and control, which leads to the sudden growth of40
robotic applications in areas such as manufacturing, medical surgeries, defense, space vehicles, under-water41
explorations etc.42

To use robotic manipulators in real-life applications, the first step is to obtain the accurate kinematic model43
[19]. In this context, a lot of research has been carried out in the literature, which leads to the evolution of44
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3 DUAL QUATERNIONS A) « PRODUCT TYPE » DUAL QUATERNIONS

new modeling schemes along with the refinement of existing methodologies describing the kinematics of robotic45
manipulators.46

First of all, examples of basic solid movements such as rotations, translations, their combinations and general47
screw motions are studied using both (4x4) rigid body transformations and dual quaternions so that the reader48
could compare and note the similarity of the results obtained using one or the other method. Both dual49
quaternions technique as well as its counterpart the classical ’Denavit and Hartenberg parameters method’ are50
finally applied to the first three degree of freedom of a Puma 560 robot. Finally, we and the reader, can observe51
that the two methods confirm exactly one another by giving us the same results for the considered application,52
while noting that the fastest, simplest more straightforward and easiest to apply method, is undoubtedly the one53
using dual quaternions. As a result this chapter may as well act as a beginners guide to the practicality of using54
dual-quaternions to represent the rotations and translations in character-based hierarchies.55

elements of screw theory can be traced to the work of Chasles and Poinsot [20], [21], in the early 1800’s56
and Whittaker [22]. Using the theorems of Chasles and Poinsot as a starting point, Robert S. Ball developed57
[23] a complete theory of screws which he published in 1900. Throughout the development of kinematics,58
numerous mathematic theories [24] and tools have been introduced and applied. The first pioneer effort for59
kinematic modeling of robotic manipulators was made by Denavit and Hartenberg in introducing a consistent and60
concise method to assign reference coordinate frames to serial manipulators, allowing the (4×4) homogeneous61
transformation matrices to be used (in 1955) [25], followed by Lie groups and Lie Algebra by J.M Selig and62
others, [26], [27], [28]) and quaternions and dual quaternions introduced by Yang and Freudenstein (1964) [29],63
see also Bottema and Roth (1979) [30] and McCarthy (1990) [31].The original D-H parameter method has many64
counterparts: Distal variant, proximal variant, ?to name but a few. There even exist different options for these65
counterparts.66

In this method, four parameters, popularly known as D-H parameters, are defined to provide the geometric67
description to serial mechanisms. Out of the four, two are known as link parameters, which describe the relative68
location of two attached axes in space. These link (See appendix 10,3,1.) parameters are: The link length (a i )69
and the link twist (? i ).70

The remaining two parameters are described as joint parameters, which describe the connection of any link to71
its neighboring link. These are the joint offset (d i ) and the joint angle (? i ).72

Modeling the movement of the rigid body by the theory of the helicoidal axis: a combination of an amount of73
rotation about and an amount of translation along a certain axis, hence the term helicoidal axis is used in various74
fields such as computer vision and biomechanics. The application of this theory in the field of robotics is taking75
more and more space. We can consider the motion of a joint segment as a series of finite displacements. In this76
case the movement is characterized by an angle of rotation about and an amount of translation along an axis77
defined in space by its position and its orientation. This axis is referred to as the finite helicoidal axis (FHA),78
because of the discretization of the movement into a series of displacements. On the other hand and by taking79
the continuity of the movement into account, this movement will be characterized by a rotational speed (angular80
velocity) about and translation speed along an axis defined by the instantaneous position and orientation in81
space. One speaks in this case of an instantaneous helicoidal axis (IHA).The application of the helicoidal theory82
with its two versions (FHA and IHA) is used to describe and understand the joint movement, and to study in83
biomechanics, for example, the different positioning techniques of prothèses. Thus there are several methods to84
estimate the helicoidal axis from a set of points representing a rigid body.85

Any displacement of a rigid body is a helicoidal motion which may be decomposed into an angular rotational86
movement about and a linear translational movement along a certain axis in 3D space. The methods differ87
in the way of mathematically representing these two movements. These movements can be expressed using88
rotation matrices and translation vectors, homogeneous matrices, unit quaternions, dual quaternions, .... The two89
representations; using (3x3) matrices or (4x4) homogeneous matrices and dual quaternions will be simultaneously90
used for all and each examples or applications studied so that comparisons for each case could be done.91

2 II.92

3 Dual Quaternions a) « Product type » dual quaternions93

The dual quaternions have two forms thus two readings which are complementary and simultaneous: The first is94
the « product type » description:?? ? ?? = ??? ?? + ?? ?? ?? .?? ?? 2 ? With: ?? ?? = ?cos ð�??”ð�??” 2 , n.95
sin ð�??”ð�??” 2 ? = ?cos ð�??”ð�??” 2 , sin ð�??”ð�??” 2 . ?? ?? , sin ð�??”ð�??” 2 . ?? ?? , sin ð�??”ð�??” 2 . ??96
?? ?97

and ?? ?? = (0,??? ?? , ?? ?? , ?? ?? ?= (0 ,{??} ) Then, the transformation is: Note that this98
form resembles that used for classic quaternions; using the dual angle and the dual unitary vector instead of the99
classical ones.?? ? ?? = ??? ?? + ?? ?? ?? .?? ?? 2 ? = ?cos100

And as a matter of fact: The screw displacement is the dual angle ?? ? = ?? + ?? d, along the screw axis101
defined by the dual vector ?? ? or ??? or in our case ?? ? = n +?? m; such that we will obtain (respecting102
the rules of derivation and multiplication of dual numbers), dual vectors, quaternions and dual quaternions (see103
appendix 10,2. and eq (A15)):?? ? =?cos ?? ? 2 , sin ?? ? 2 ?? ?? = [cos ?? 2 ? ?? ?? 2 sin ?? 2 , (sin ?? 2 +104
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?? ?? 2 cos ?? 2 ) ( n +?? m )] = cos ?? 2 ??? ?? 2 sin ?? 2 , n sin ?? 2 +?? (n ?? 2 cos ?? 2 + sin ?? 2 m) =105
( cos ?? 2 , n sin ?? 2 ) + ??(? ?? 2 sin ?? 2 , sin ?? 2 m + n ?? 2 cos ?? 2 ) (2)106

The geometric interpretation of these quantities is related to the screw-type motion. The angle ?? is the107
angle of rotation around n, the vector unit n represents the direction of the rotation axis. The element d is the108
translation or the displacement amplitude along the vector n, m being the vector moment of the vector axis n109
relative to the origin of the axes. The vector m is an unambiguous description of the position of an axis in space,110
in accordance with the properties of Plückér coordinates defining lines in space.111

This form gives another interesting use: Whereas the classics quaternions can only represent rotations whose112
axes pass through the origin O of the coordinate system (O, x, y, z), the dual quaternions can represent rotations113
about arbitrary axes in space, translations as well as any combination of both these two basic spatial motions.114

These two forms « product type » eq (1) or « ???????? ???????? » ???? (2) represent the same motion that115
describe the same movement ’the screw motion’: The vector m = (m x , m y , m z ) is the moment of the vector116
n about the origin of reference (O, x, y, z); it is named the moment of the axis n, with: ?? ? = ?? + ?? d with d117
being the amplitude of the translation along the dual vector ?? ? = n +?? m with m = p x n (the green vector118
see figure 1) that defines the vector according to Plücker coordinates, p, (the blue vecor), being the vector that119
gives the position of n ,(the red vector), using the vector OO 1 (see figure (1)).III.120

The parameters of the transformation, the angle ??, the axis of rotation n, the magnitude of the translation d121
and the moment m are the four characteristics of all, any and every 3D rigid body transformation (4x4) matrix,122
a screw motion or a helicoidal movement of any kind (or type ).123

Using quaternions the first rotation will be written; since?? 1 2 = ?? 4 then cos ?? 1 2 = sin ?? 1 2 = ?2 2124
?? 1 = ( ?2 2 , ?2 2 , 0 , 0 ) ; having ?? 1 2 = ?? 4 then cos ?? 1 2 = sin ?? 1 2 = ?2 2125

The second rotation will have the form:?? 2 = ( ?2 2 , 0 , ?2 2 , 0 )126
The final composition of the two movements will be given by the quaternion ?? such that:?? = ?? 2 . ?? 1 =127

( ?2 2 , 0 , ?2 2 , 0 ) . ( ?2 2 , ?2 2 , 0 , 0 ) = ( 1 2 , 1 2 , 1 2 , ?1 2128
) Using quaternion’s definition (A5) and quaternions properties:?? = (( 1 2 , ?3 2 ( 1 ?3 , 1 ?3 , ? 1 ?3 )) or129

(( 1 2 ,? ?3 2 (? 1 ?3 ,? 1 ?3 , 1?3130
))131
It is then easy to extract both the amplitude and the resulting axis of the rotation from the result q: In fact132

the two solutions represent the same and similar solution since for any q we have q (??, n) = q (???, ?n).133
Using our classical (3x3) rigid transformations we get:R 21 = R 2 .R 1 = ? 0 0 1 0 1 0 ?1 0 0 ? ? 1 0 0 0 0 ?1134

0 1 0 ? = ? 0 1 0 0 0 ?1 ?1 0 0 ?135
Here it is very important to note that unlike the quaternion method we cannot extract the needed results136

easily and straightforwardly but we must follow a long and sometimes complicated process (determinant, trace,137
Whichever used technique we will find: A rotation of ?? = )) and that will imply ?? i = 120 º around the axis n138
= Using MATLAB (See Appendix 10,1.) we can calculate easily both the two quaternions multiplications: q=139
n1 = q2.q1 and q i = n2 = q1.q2 and the two equivalent product of matrices1 ?3 ? 1 1 1 , or ?? i = ? 120 º140
around the axis (-n) = 1 ?3 ?? ?1 1 ?1 ; Which of course will imply that: ?? 1 . ?? 2 ? ?? 2 . ?? 1 Using141
matrices : R i = R 1 R 2 = ? 1 0 0 0 0 ?1 0 1 0 ? ? 0 0 1 0 1 0 ?1 0 0 ? = ? 0 0 1 1 0 0 0 1 0 ? ? R ii = R 2142
RR 21 = R 2 R 1 and R i = R 1 R 2 .143

The Kinematics of a Puma Robot using Dual Quaternions IV.144

4 Important Notes: What about Translations?145

We must recall that rotations act on translations, the reverse being not true; in fact when multiplying by blocks:146
For a rotation followed by a translation:? ?? ?? 0 1 ? ? ?? 0 0 1 ? = ? ?? ?? 0 1147
? ; the rotation is not affected by the translation.148
While for a translation followed by a rotation:? ?? 0 0 1 ? ? ?? ?? 0 1 ? = ? ?? ???? 0 1149
? ; the translation is affected by the rotation.150
When translations are performed first we can thus assume that the translation vector of the resulting matrix151

product; Rt acts as the translation vector t of a rotation followed by a translation .Or more generally speaking152
considering two six degree of freedom general rigid body transformations T 1 followed by T 2 we will have:T 2153
.T 1 = ? ?? 2 ?? 2 0 1 ? ? ?? 1 ?? 1 0 1 ? = ? ?? 2 ?? 1 ?? 2 ?? 1 + ?? 2 0 1 ? = ? ?? ?? 0 1 ?154

The translation vector t of the product of the two transformations is? ?? 1 = ?? 2 ?? 1 + ?? 2 = ? ?? 2 0 0155
1 ? ? ?? 1 1 + ? ?? 2 1156

The same analysis as the last one could then be done whatever the order and the number of the successive157
transformations being performed over the rigid body: The final result of the products of all the undertaken rigid158
body transformations will be finally the helicoidal, the helical or the screw motion given by the (4x4) matrix:[T]159
= T n ? T i ...T 2 .T 1 = ? ?? ?? 0 1 ?(3)160

With T i representing either a rotation, a translation, a rotation followed by a translation, a translation161
followed by a rotation or even simply a no movement (ie: the 4x4 identity matrix I ).162

Any screw motion would be given by the following (4x4) matrix [ T ]:? ?? ?? 0 1 ? = ? ?? ?? 0 1 ? ? ?? (??,163
??) ? p 2?? ?? 0 1 ? ? ?? ? ?? 0 1 ? = ? ??(??, ??) ? p 2?? ?? + (?? ? ??(??, ??)?? 0 1 ? = [T]( 3 )164

The middle matrix is a screw about a line through the origin; that is, a rotation of ?? radians around the axis165
n followed by a translation along n. The outer matrices conjugate the screw and serve to place the line at an166
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5 VII.

arbitrary position in space. The parameter p is the pitch of the screw, it gives the distance advanced along the167
axis for every complete turn, exactly like the pitch on the thread of an ordinary nut or bolt. When the pitch is168
zero the screw is a pure rotation, positive pitches correspond to right hand threads and negative pitches to left169
handed threads.170

To show that a general rigid motion is a screw motion, we must show how to put a general transformation171
into the form derived above. The unit vector in the direction of the line n is easy since it must be the eigenvector172
of the rotation matrix corresponding to the unit eigenvalue.(This fails if R = I, that is if the motion is a pure173
translation). The vector u is more difficult to find since it is the position vector of any point on the rotation axis.174
However we can uniquely specify u by requiring that it is normal to the rotation axis. So we impose the extra175
restriction that n.u = 0. So to put the general matrix ? ?? ?? ?? ?? ? into the above form we must solve the176
following system of linear equations: All we need to do now is to solve the equation system:?? ?? ???? ?? + (??177
? ??)?? = t Now n.Ru = n.u = 0,(?? ? ??)?? = (t -(??. t) ??) ;178

This is possible even though det (?? ? ??) = 0, since the equations will be consistent.179
This entire analysis established through this long paragraph concerning the helicoidal motion or rigid (4x4)180

transformation matrix [T] is contained in only one line enclosed in its counterpart dual quaternion ?? ? of the181
form:182

The Kinematics of a Puma Robot using Dual Quaternions Year 2020 Global Journal of Researches in183
Engineering ( ) Volume Xx X Issue I V ersion I H V. Screw Motion ?? ? = ?cos ?? ? 2 , sin ?? ? 2 ??184
?? = ?? ? ?? . . ?? ? ?? . . ?? ? 2 .?? ? 1 = ?cos ?? 2 ,185

sin186

T 2 .T 1 = ? 1 0 0 1 0 0 0 1 ?1 0 0 0 0 0 0 1 ? ? 0 0 1 0 0 ?1 1 0 0 0 1 0 0 0 0 1 ? = ? 0 0 1 1 1 0 0 1 0 0 0 1 0 0187
0 1 ?(4)188

The rotation part of the product corresponds to that of the precedent example of successive rotationsR i = R189
1 R 2190

with amplitude ?? = ; its translation part being t = ? 1 0 1191
We can find its pitch p =2?? ?? (n. t ) = 2?? 2?? 3 1 ?3 ? 1 1 1 . ? 1 0 1 = 6 ?3 = 2?3192
The axis of rotation will keep its same original direction n =1 ?3 ? 1 1 1193
, it will go through a new centre C given by the shifting vector u which could be found by the linear equations194

system :(I -R) u = t - ?? ?? ???? n ?? 1 0 ?1 1 1 0 0 ?1 1 ? ? ?? ?? ?? ?? ?? ?? = ? 1 0 1 ? 2?? 3.2?? 6 ?3 ? ?195
? ? ? 1 ?3 1 ?3 1 ?3 = ? 1 0 1 ? 2 ?3 ? ? ? ? ? 1 ?3 1 ?3 1 ?3 = ? ? ? ? ? ? 1 3 2 3 1 3196

The vector translation T (or t ) of the movement ? 1 0 1 is the sum of the two main perpendicular vectors T197
1 + T 2 such as T 1 is to be chosen parallel to n while the rest T 2 is the translation vector part responsible for198
the shifting of the axis to its final position through the new center C as such we have: So that to confirm these199
results ; we can finally check the following conjugation matrices :T 1 = ? ? ? ? ?? ? ? 0 0 1 0 1 0 0 1 0 0 ?2 3200
?1 3 0 0 0 1 ? ? ? ? ? ? ? 0 0 1 2 3 1 0 0 1 0 0 2 3 2 3 0 0 0 1 ? ? ? ? ? ? ? 0 0 1 0 1 0 0 1 0 0 2 3 1 3 0 0 0 1?201
? ? = ? 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 ? ? (4) Or, ? ? ? 0 0 1 2 3 1 0 0 1 0 0 0 1 3 0 0 0 1 ? ? ? ? ? ? ? 0 0 1 2202
3 1 0 0 1 0 0 2 3 2 3 0 0 0 1 ? ? ? ? ? ? ? 0 0 1 ?2 3 1 0 0 1 0 0 0 ?1 3 0 0 0 1 ? ? ? = ? 0 0 1 1 1 0 0 1 0 0 0 1203
0 0 0 1 ? ? (4)204

Or finally;? ? ? 0 0 1 1 3 1 0 0 1 0 0 ?1 3 0 0 0 0 1 ? ? ? ? ? ? ? 0 0 1 2 3 1 0 0 1 0 0 2 3 2 3 0 0 0 1 ? ? ? ?205
? ? ? 0 0 1 ?1 3 1 0 0 1 0 0 1 3 0 0 0 0 1 ? ? ? = ? 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 ? ? (4)206

Whenever necessary, Matlab was, throughout the chapter implemented, concerning all kinds of products or207
multiplication of quaternions or matrices.208

5 VII.209

The Same General Example using Dual Quaternions?? ? = ?? + ???? ?? = ?? ?? + ?? 2 ??? ?? ?? + ?? ??210
?? + ?? ?? ?????? ?? = ?? + ?? ???? 2211

The two transformations T 1 and T 2 are basic centered helicoidal movements through the origin O of the212
axes, that can be written:213

For the first movement around and along Oy:?? ? 1 = ?? 1 + ?? 2 ?? ?? 1 = ?? ? ?? = (c , 0 , s , 0) + ?? 2214
(? s?? ?? , 0 , c ?? ?? , 0 ) = ( cos ?? 4 , 0 , sin ?? 4 , 0) + ?? 2 (? sin ?? 4 . 1 , 0 , cos ?? 4 . 1 , 0 ) = ( ?2 2 ,215
0 , ?2 2 , 0 ) + ?? 2 ( ? ?2 2 , 0 , ?2 2 , 0 )216

followed by the second movement around and along Ox:?? ? 2 = ?? 2 + ?? 2 ?? ?? 2 = ?? ? ?? = (c , ?? , 0217
, 0 ) + ?? 2 (? s?? ?? , c ?? ?? , 0 , 0) = ( cos ?? 4 , sin ?? 4 , 0, 0) + ?? 2 (? sin ?? 4 . 1 , cos ?? 4 . 1 , 0, 0)218
= ( ?2 2 , ?2 2 , 0 , 0) + ?? 2 ( ? ?2 2 , ?2 2 , 0 , 0 )219

The dual quaternion product of the two screw movements is: ?? ? 2 . ?? ? 1 = ( ?? 2 + ?? 2 ?? ?? 2 ).( ??220
1 + ?? 2 ?? ?? 1 ) = ?? 2 . ?? 1 + ?? 2 (?? 2 . ?? ?? 1 + ?? ?? 2 . ??221

At this stage we know the complete integrality of informations concerning this movement thanks to our magic,222
rapid and powerful dual quaternion :The rotation part, as seen before, having amplitude ?? = We can also have223
the vector part: ?m sin?? 2 + ?? 2 ?? cos ?? 2 ? = ( 0 , 0 ,1 2224

) which implies:m x ?3 2 + ?3 3 1 ?3 1 2 = m x ?3 2 + 1 6 = 0 ; m y ?3 2 + ?3 3 1 ?3 1 2 = m y ?3 2 + 1 6225
= 0 and m z ?3 2 + ?3 3 1 ?3 1 2 = m z ?3 2 + 1 6 = 1 2226

We can then deduce the vector moment m =? ? ? ? ? ?1 3?3 ?1 3?3 2 3?3227
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Finally we can have the right position of the shifted axis u that have the same direction as the rotation axis228
n by defining the coordinates u x ,u y and u z of a point or a center C belonging to it so that:m = u ? n Or ? ?229
? ? ? ?1 3?3 ?1 3?3 2 3?3 = ? u x u y u z ? 1 ?3 ? 1 1 1 = 1 ?3 ? u y ? u z u z ? u x u x ? u y implying that:230
u y ? u z = ?1 3 ; u z ? u x = ?1 3 and u x ? u y = 2 3231

Which confirm the same obtained results eq (5) using the (4x4) rigid transformation matrix:?? ?? ? ?? ?? =232
1 3 ; ??? ?? + ?? ?? = ?2 3233

; and? ?? ?? + ?? ?? = 1 3( 5 )234
VIII. Application 2: Kinematics of the Puma 560 Robot235
The first three joints of this manipulator (Waist, Shoulder, Elbow) characterize for the first joint to be a236

rotation about a vertical axis , for the second and the third rotations about horizontal axes whose movements237
are identified by the variables q 1 , q 2 , and q 3 . The last three joints, which constitute the wrist of the robot238
arm, are characterized by the rotations q 4 , q 5 , and q 6 whose axes intersect at the center of the wrist (See239
appendix 10,3. Figures (3),(4) and Table 1 for the forward kinematic solution using the Denavit and Hartenberg240
convention.241

The elegant , most accurate , rapid and finally the best manner to get the forward kinematic solutions of this242
Puma 560 robot is to use the dual quaternions:243

For the sake of comparaison let us choose the same home position for the robot with its geometry (a i and d244
i ) given in table (1) and the same absolute home initial frame (x 0 ,y 0 ,z 0 ) with its origin O taken in link1245
at the intersection of the base axis with the link1 axis (see figure (3)), assuming mobile frames at the centers of246
the six rotations: (x n ,y n ,z n ) which axes remain parallel to the The Kinematics of a Puma Robot using Dual247
Quaternions ’home position’ or initial axes (x 0 ,y 0 ,z 0 ). Let us begin, with the first two rotations using either248
equations A3 or A14 from appendix 10,2,1. to find the new vector position of the center O 3 ( a 2 , d 2 , 0):?? ?249
1 ?? ? 2 ?? ? ?? ?? ? ? 2 * ?? ? ? 1 * = ?? ? 1 (?? ? 2 ??? ? ?? ) ?? ? ? 2 * ??? ? ? 1 * (7) ?? ? 2 ?? ? ??250
?? ? ? 2 * = (c 2 , 0 , s 2 , 0) [ 1+ ?? (a 2 , d 2 , 0 )] (c 2 , 0 , ?s 2 , 0)251

Using correctly the rules for both quaternions eq (A1) and dual quaternions multiplications eq (A7) we have252
:?? ? 2 ?? ? ?? = (c 2 , 0 , s 2 , 0) + ?? (?s 2 d 2 , c 2 a 2 , c 2 d 2 , ?s 2 a 2 )253

and?? ? 2 ?? ? ?? ?? ? ? 2 * = 1 + ?? (0 , a 2 cos ?? 2 , d 2 , ?a 2 sin ?? 2 ) thus ?? ? 1 ?? ? 2 ?? ? ?? ??254
? ? 2 * ?? ? ? 1 * = (c 1 , 0 , 0 , s 1 )[ 1 + ?? (0 , a 2 cos ?? 2 , d 2 , ?a 2 sin ?? 2 )] (c 1 , 0 , 0 , ? s 1 )255

Performing the product and using the trigonometric properties we can have the new quaternion vector256
position:1 + ?? (0 , a 2 cos ?? 2 cos ?? 1 ? ?? 2 ?????? ?? 1 , a 2 cos ?? 2 ?????? ?? 1 + d 2 cos ??257
1 , ?a 2 sin ?? 2 )258

or the three coordinates vector:? a ?? 2 ?????? ?? 1 ? ?? 2 ?????? ?? 1 a 2 ?????? ?? 2 ?????? ?? 1 + ?? 2259
?????? ?? 1 ?a 2 ?????? ?? 2260

This result is confirmed (see appendix 10,3,2.) by the fourth or last column of the matrix :?? 0 2 = ?? 0 1 ??261
1 2 = R 1 R 2 = ? ?? 1 0 -?? 1 0 ?? 1 0 ?? 1 0 0 ?1 0 0 0 0 0 1 ? ? ?? 2 ??? 2 0 ?? 2 ?? 2 ?? 2 ?? 2 0 ?? 2 ??262
2 0 0 1 ?? 2 0 0 0 1 ? = ? ?? 1 ?? 2 ??? 1 ?? 2 ? ?? 1 ?? 2 ?? 1 ?? 2 ? ?? 2 ?? 1 ?? 1 ?? 2 ??? 1 ?? 2 ?? 1 ??263
2 ?? 2 ?? 1 + ?? 2 ?? 1 ??? 2 ??? 2 0 ??? 2 ?? 2 0 0 0 1264

6 ?265

The third rotation of the third link is around the axis O 3 y 3 , with the center O 3 being displaced or shifted266
and thus having the position coordinates with respect to the asolute frame O 3 (a 2 , d 2 , 0 ).267

Note: The conjugation ( technique could be used in its dual quaternion form or its (4x4) rigid transformation268
form. The dual quaternion ( definition (2) may be used instead; The moment m, w-r -t the axis of rotation?? ?269
= ?? ? =?cosy 3 , is m = ? a 2 ?? 2 0 ?? 0 1 0 = ? 0 0 a 2 so that ?? ? 3 = [?? 3 , (0, ?? 3 , 0)]+ ???0, {(0,0,270
a 2 ?? 3 }? (?? ? 1 ?? ? 2 )?? ? 3 ?? ? ?? ?? ? ? 3 * (?? ? ? 2 * ?? ? ? 1 * ) = (c1 , 0 , 0 , s1) (c2 , 0 , s2 , 0)271
?? ? 3 ?? ? ?? ?? ? ? 3 * (?? 2 , 0 , ??? 2 , 0) (?? 1 , 0 , 0, ??? 1 )272

To find the new vector position of the wrist center O 4 :( a 2 + a 3 , d 2 + d 3 , 0) = ( A, D, 0) result of the273
three successives rotations we must start from the central operation namely :?? ? ??3 = ?? ? 3 ?? ? ?? ?? ? ?274
3 * = [(?? 3 , 0, ?? 3 , 0 )+ ?? ( 0,0,?? 2 ?? 3 )] [(1+?? ( A, D, 0))] [ ?? ? ? 3 * ] = [(?? 3 , 0, ?? 3 , 0 ) + ??(275
0,0,?? 2 ?? 3 )+??(??? 3 D, ?? 3 A , ?? 3 D,??? 3 A)] [ ?? ? ? 3 * ]= [(?? 3 , 0, ?? 3 , 0 +??(??? 3 D, ?? 3 A ,276
?? 3 D , ?? 3 (?A)] [(?? 3 , 0, ??? 3 , 0 )+ ?? ( 0,0,?? 2 ?? 3 )] = (?? 3 2 + ?? 3 2 , 0, ??? 3 ?? 3 + ?? 3 ?? 3 ,277
0) +??(??? 3 ?? 3 D + ?? 3 ?? 3 D , ?? 3 2 ?? 2 + ?? 3 2 A + ?? 3 2 (?? 2 ?A), ?? 3 2 D + ?? 3 2 D , ?? 3 ??278
3 ?? 2 ??? 3 ?? 3 A + ?? 2 ?? 3 ?? 3 ??? 3 ?? 3 A )279

Using the basic trigonometric rules and properties we can write the solution vector:q ? v3 = q ? 3 q ? v q ?280
? 3 * = 1+ ? (0 , a 2 + a3 cos ? 3 , d2 + d3 , ? a3 sin ? 3 ) = 1+ ? (a 2 + a3 cos ? 3 , d2 + d3 , ? a3 sin ? 3 )281

The Kinematics of a Puma Robot using Dual Quaternions Year 2020282

7 Global283

Journal of Researches in Engineering ( ) Volume Xx X Issue I V ersion IH ?? ? ) TRT -1 )(8)284
For a better use of space we may adopt to write our result dual quaternions vectors under the form:? ? ?285

scalar part O x coord. O y coord. O z coord.286
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11 CONCLUSION

So that the precedent result could be written ?? ? ??3 = ? 0 a 2 + a 3 cos ?? 3 ) ](?? 2 , 0 , ??? 2 , 0 ) = (c287
2 , 0 , s 2 , 0)? 1 + ?? ? 0 a 2 + a 3 cos ?? 3 d 2 + d 3 ? a 3 sin ?? 3 ? ? ?? ? ? 2 * ? = ? ? ? ? (?? 2 , 0 , ??288
2 , 0) + ?? ? ??? 2 (d 2 + d 3 ) ?? 2 (a 2 + a 3 cos ?? 3 ) ??? 2 a 3 sin ?? 3 ?? 2 (d 2 + d 3 ) ? ?? 2 a 3 sin ??289
3 ??? 2 (a 2 + a 3 cos ?? 3 ) ? ? ? ? ? (?? 2 , 0 , ??? 2 , 0 ) = (?? 2 2 + ?? 2 2 ,0, ??? 2 ?? 2 +?? 2 ?? 2 ,290
0)+?? ? ? ? ??? 2 ?? 2 (d 2 + d 3 ) + ?? 2 ?? 2 (d 2 + d 3 ) ?? 2 2 (a 2 + a 3 cos ?? 3 ) ??? 2 ?? 2 a 3 sin ??291
3 ?? 2 2 (d 2 + d 3 ) + ?? 2 2 (d 2 + d 3 ) ??? 2 ?? 2 a 3 sin ?? 3 ??? 2 2 (a 2 + a 3 cos ?? 3 ) ? ?? 2 2 a 3 sin292
?? 3 ??? 2 ?? 2 (a 2 + a 3 cos ?? 3 )??? 2 ?? 2 (a 2 + a 3 cos ?? 3 ) + ?? 2 2 a 3 sin ?? 3 ? ? ? = 1+ ?? ? ? ?293
0 ?? 2 2 (a 2 + a 3 cos ?? 3 ) -?? 2 ?? 2 a 3 sin ?? 3 ?? 2 2 (d 2 + d 3 ) + ?? 2 2 (d 2 + d 3 ) ??? 2 ?? 2 a 3294
sin ?? 3 ??? 2 2 (a 2 + a 3 cos ?? 3 ) ? ?? 2 2 a 3 sin ?? 3 -?? 2 ?? 2 (a 2 + a 3 cos ?? 3 )??? 2 ?? 2 (a 2 + a 3295
cos ?? 3 ) + ?? 2 2 a 3 sin ?? 3 ? ? ? = ? 0 cos ?? 2 (a 2 + a 3 cos ?? 3 ) ? a 3 sin ?? 2 sin ?? 3 (d 2 + d 3 )296
?a 3 cos ?? 2 sin ?? 3 ? sin ?? 2 (a 2 + a 3 cos ?? 3 ) ? =297

We can finally get the transformed vector ?? ? ??2 :?? ? ??2 =1+ ?? [(a 3 cos (?? 2 + ?? 3 ) + a 2 cos ?? 2298
, (d 2 + d 3 ) , ?a 3 sin ( ?? 2 + ?? 3 ) ?a 2 sin ?? 2 )] (c 1 , 0 ,0 , s 1 ) ?? ? ??2 (?? 1 , 0, 0, ??? 1 ) = (c 1 , 0,299
0, s 1 ) [1+?? (a 3 cos (?? 2 + ?? 3 ) + a 2 cos ?? 2 , (d 2 + d 3 ) , ?a 3 sin (?? 2 + ?? 3 ) ?a 2 sin ?? 2 )] ?? ?300
? 1 * (c 1 , 0 , 0, s 1 ) ? ? ? ? 1 + ?? ? ? 0 a 3 cos (?? 2 + ?? 3 ) + a 2 cos ?? 2 d 2 + d 3 ?a 3 sin (?? 2 + ??301
3 ) -a 2 sin ?? 2 ? ? ? ? ? ? ? ?? ? ? 1 * ? = ? ? ? ? (?? 1 , 0 , 0, ?? 1 ) + ?? ? ? a 3 ?? 1 sin (?? 2 + ?? 3 )302
+ a 2 ?? 1 sin ?? 2 a 3 ?? 1 cos (?? 2 + ?? 3 ) + a 2 ?? 1 cos ?? 2 ? ?? 1 (d 2 + d 3 ) ?? 1 (d 2 + d 3 ) + a 3303
?? 1 cos (?? 2 + ?? 3 ) + a 2 s 1 cos ?? 2 ?a 3 ?? 1 sin (?? 2 + ?? 3 ) -a 2 ?? 1 sin ?? 2 ) ? ? ? ? ? ? ? ?? ? ?304
1 * ? =305

The Kinematics of a Puma Robot using Dual Quaternions306
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We can finally perform the first but last transformation given by the following dual quaternions products:(c 1 ,308
0 , 0 , s 1 ) (c 2 , 0 , s 2 , 0) ?? ? 3 ?? ? ?? ?? ? ? 3 * (?? 2 , 0 , ??? 2 , 0)(?? 1 , 0 , 0, ??? 1 ) = ? (?? 1 , 0 ,309
0, ?? 1 ) + ?? ? a 3 ?? 1 sin (?? 2 + ?? 3 ) + a 2 ?? 1 sin ?? 2 a 3 ?? 1 cos (?? 2 + ?? 3 ) + a 2 ?? 1 cos ?? 2310
? ?? 1 (d 2 + d 3 ) ?? 1 (d 2 + d 3 ) + a 3 ?? 1 cos (?? 2 + ?? 3 ) + a 2 s 1 cos ?? 2 ?a 3 ?? 1 sin (?? 2 + ??311
3 ) -a 2 ?? 1 sin ?? 2 ? ? (?? 1 , 0 , 0, ??? 1 ) = (?? 1 2 + ?? 1 2 ,0, ??? 1 ?? 1 + ?? 1 ?? 1 ,0) + ?? ? ? ? a 3312
?? 1 ?? 1 sin (?? 2 + ?? 3 ) + a 2 ?? 1 ?? 1 sin ?? 2 ? a 3 ?? 1 ?? 1 sin (?? 2 + ?? 3 ) ? a 2 ?? 1 ?? 1 sin ?? 2313
a 3 ?? 1 2 cos (?? 2 + ?? 3 ) + a 2 ?? 1 2 cos ?? 2 ? ?? 1 ?? 1 (d 2 + d 3 ) ? ?? 1 ?? 1 (d 2 + d 3 ) ? a 3 ?? 1314
2 cos (?? 2 + ?? 3 ) ? a 2 ?? 1 2 cos ?? 2 ?? 1 2 (d 2 + d 3 ) + a 3 ?? 1 ?? 1 cos (?? 2 + ?? 3 ) + a 2 ?? 1 s 1315
cos ?? 2 + a 3 ?? 1 ?? 1 cos (?? 2 + ?? 3 ) + a 2 ?? 1 ?? 1 cos ?? 2 ? ?? 1 2 (d 2 + d 3 ) ?a 3 ?? 1 2 sin (?? 2316
+ ?? 3 ) -a 2 ?? 1 2 sin ?? 2 ? a 3 ?? 1 2 sin (?? 2 + ?? 3 ) ? a 2 ?? 1 2 sin ?? 2 ? ? ? = 1+ ?? ? ? 0 a 3 ?? 1317
2 ?? 23 + a 2 ?? 1 2 ?? 2 ? ?? 1 ?? 1 (d 2 + d 3 ) ? ?? 1 ?? 1 (d 2 + d 3 ) ? a 3 ?? 1 2 ?? 23 ? a 2 ?? 1 2 cos318
?? 2 ?? 1 2 (d 2 + d 3 ) + a 3 ?? 1 ?? 1 ?? 23 + a 2 ?? 1 s 1 cos ?? 2 + a 3 ?? 1 ?? 1 ?? 23 + a 2 ?? 1 ?? 1319
cos ?? 2 ? ?? 1 2 (d 2 + d 3 ) ?a 3 ?? 1 2 ?? 23 -a 2 ?? 1 2 sin ?? 2 ? a 3 ?? 1 2 ?? 23 ? a 2 ?? 1 2 sin ?? 2 ? ?320
With ?? 23 = cos (?? 2 + ?? 3 ) and ?? 23 = sin (?? 2 + ?? 3 )321

The result vector is then:? ???????? 1 (a 2 ???????? 2 + a 3 ?? 23 ) ? ???????? 1 (d 2 + d 3 ) ???????? 1 (a322
2 ???????? 2 + a 3 ?? 23 ) + ???????? 1 ( (d 2 + d 3 ) ? (a 2 ???????? 2 + a 3 ?? 23 )323

9 ?324

Which is confirmed by the last column (see appendix (10, 3, 2.) of the matrix ?? 0 3 .325
We can also, using the Denavit and Hartenberg formalism or the dual quaternions alike easily calculate the326

coordinates of the terminal element (or the end effector) and so the final positioning of our Puma 560 robot327
relative to the base or fixed absolute frame.328

10 IX.329

11 Conclusion330

We hope that the reader should not get us wrong: We never pretend that the D-H parameters method is wrong331
or obsolete and that it should be a thing of the past; recognising that this important classical method was the332
precursor that enlightened the path to modern robotics; we only say that there exist through the DQ parameters333
another short, free of singularities and easy to work with, when dealing with robot direct kinematics. On the334
light of the obtained results one has to say that the most perfect (not suffering singularities of any kind), easiest335
and rapid way to perform a 3D rigid transformation of any sort is to use the dual quaternion that caracterise336
that movement. Most of all we are free to use the 3D space, being sure that no loss of degree of freedom or337
guinball lock of any sort can never happen. Using a D-H parameters method or any of its counterparts means a338
choice of different sort of embarassing and somehow awkward three axes frames to be created and then allocated339
to each arm/ link; ’providing’ our robot or mecanism with different direction axes and angles with very much340
complicated choice of signs (concerning the directions and the angles alike) to be chosen subject to some rules341
depending on the chosen method and model of robot.342

Choosing to use dual quaternions we only need to know the constants or values that concern the construction343
or space geometry of the given robot (directions (orientations and axes) , rotations ,distances, lengths of links)344
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to evaluate its kinematics without any threat to be lost in the maze or a jungle of choices .Most of all, it will345
prevent us from using the only other existing method, or one of its options, which is that of the Denavit and346
Hartenberg parameters that mainly consists of:347

The Kinematics of a Puma Robot using Dual Quaternions Year 2020 Global Journal of Researches in348
Engineering ( ) Volume Xx X Issue I V ersion I H 1. Choosing 3D frames attached to each link upon certain349
conditions /conventions, 2. Schematic of the numbering of bodies and joints in a robotic manipulator, following350
the convention for attaching reference frames to the bodies, this will help to create: 3. A table for exact definition351
of the four parameters, a i , ? i , d i , and ? i , that locate one frame relative to another, 4. The (4x4 ) rigid352
transformation matrix that will have the given form : ?? ?? ? ?? ?? . (See 10,3.)353

This chapter provided a taste of the potential advantages of dual-quaternions, and one can only imagine the354
further future possibilities that they can offer. For example, there is a deeper investigation of the mathematical355
properties of dual-quaternions (e.g., zero divisions). There is also the concept of dual-dualquaternions (i.e., dual356
numbers within dual numbers) and calculus for multi-parametric objects for the reader to pursue if he desires.357

We should emphasize on the fact that Matlab software was used, throughout this work and whenever necessary,358
concerning all kinds of products or multiplication of quaternions or rigid transformation matrices.359

Finally we hope all efforts should be conjugated to create a common ’PROJECT MATLAB QUATER-360
NION/MATRIX platform’ to be used for the straightforward calculations and manipulation of Quaternions361
and / or Dual Quaternions as well as conversions from or into 3D or 4D rigid body matrices.362

12 X.363

13 Appendices a) Quaternion-Matlab Implementation Class:364

» % See paragraph 3; Example 1: Rotations represented by Quaternions » % A first rotation of angle ?/2 around365
the x -axis ,q1 , followed by a rotation of angle ?/2 around the y -axis , q2 will result in a rotation given by the366
product n1 = q2.q1 : » q1 =[ cos(pi/4) sin(pi/4) 0 0 ]; q2 =[cos(pi/4) 0 sin(pi/4) 0 ]; » n1 = quatmultiply (q2,q1)367
n1 = 0.5000 0.5000 0.5000 -0.5000 » % If the order is inversed the result will be given by the quaternion n2 =368
q1.q2 » n2 = quatmultiply (q1,q2) n2 = 0.5000 0.5000 0.5000 0.5000 » % Using 3*3 matrices; if the rotation R1369
is performed first the rotation product is R2*R1:R1 = [1 0 0;0 0 -1;0 1 0 ]; R2 = [ 0 0 1; 0 1 0;-1 0 0]; prod1 =370
R2*R1 prod1 = 0 1 0 0 0 -1 -1 0 0 » % if the order is inversed the multiplication will be R1*R2: prod2 = R1*R2371
prod2 = 0 0 1 1 0 0 0 1 0 i.372

14 Quaternions or rotation representation373

Quaternions were first discovered and described by the Irish mathematician Sir Rowan Hamilton in 1843. Indeed374
quaternion’s representation and axis-angle representation are very similar.375

Both are represented by the four dimensional vectors. Quaternions also implicitly represent the rotation of376
a rigid body about an axis. It also provides better means of key frame interpolation and doesn’t suffer from377
singularity problems.378

The definition of a quaternion can be given as (s, m) or (s, ?? x , ?? y , ?? z ) where m is a 3D vector, so379
quaternions are like imaginary (complex) numbers with the real scalar part s and the imaginary vector part m.380

Thus it can be also written as: s + ?? x i + ?? y j + ?? z k.381
There are conversion methods between quaternions, axis-angle and rotation matrix.382
Common operations such as addition, inner product etc can be defined over quaternions. Given the definition383

of ?? 1 and ?? 2 :?? 1 = ?? 1 + ?? x1 ?? + ?? y1 ?? + ?? z1 ?? or ?? 1 = (?? 1 , m 1 ) ?? 2 = ?? 2 + ?? x2384
?? + ?? y2 ?? + ?? z2 ?? or ?? 2 = (?? 2 , m 2 )385

Addition operation is defined as:?? 1 + ?? 2 = (?? 1 + ?? 2 , m 1 + m 2 ) = (?? 1 + ?? 2 ) + (?? x1 + ??386
x2 )i + (?? y1 + ?? y2 )j + (?? z1 + ?? z2 )k387

dot (scalar, inner): product operation(.) as:?? 1 . ?? 2 = ?? 1 . ?? 2 + m 1 . m 2388
Quaternion multiplication is non commutative, but it is associative. Multiplication identity element is defined389

as: (1, (0, 0, 0)) We can also perform the multiplication in the imaginary number domain using the definitions:??390
2 = ?? 2 = ?? 2 = ?1; ??. ?? = ?? , ??. ?? = ?? , ??. ?? = ?? ; ??. ?? = ? ?? , ??. ?? = ? ?? , ??. ?? = ? ??391

Equations (A1) to (A15) state the definitions, rules and properties of dual quaternion algebra. Quaternion392
multiplication (?) is defined as:?? 1 ??? 2 = (?? 1 . ?? 2 -m 1 . m 2 , ?? 1 . m 2 + ?? 2 . m 1 + m 1 ?m 2 )393
(A1)394

Each quaternion has a conjugate ?? * (except zero quaternion) defined by:?? * = ( s, -m ) (A2)395
and an inverse ?? ?1 = ( The Kinematics of a Puma Robot using Dual Quaternions rotations can be combined396

into one unit quaternion q R = q R1 .q R2 . q R3 .... q RN It is also possible to rotate a vector directly by using397
quaternion multiplication. To do this, we must define a 3D vector V = (v x , v y , v z ) that we want to rotate398
in quaternion definition as q v = (0, v) = 0 + v x i+ v y j+ v z k. The rotated vector V ? = (v x ?, v y ?, v z399
?) can be defined asq v’ = (0, v ?) = 0 + v x ?i + v y ?j + v z ?k400

Noting that, in quaternion rotation ?? ?1 = ?? * (For unit quaternion). So, rotation of q v by quaternion q401
can be calculated as:q v’ = q ? q v ? ?? ?1 = q ? q v ? ?? * (A3)402

And, assuming another quaternion rotation p, two rotations can be applied to the vector V such as:q v’ = p403
?(q ? q v ? ?? ?1 ) ? ?? ?1 = (p ?q )? q v ? (?? ?1 ? ?? ?1 ) = C ? q v ? ?? ?1 (A4)404
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14 QUATERNIONS OR ROTATION REPRESENTATION

Providing that quaternion C = (p ? q) is a combinaison of the precedent quaternions q and p .405
The equation implies that vector V is first rotated by the rotation represented by q followed by the rotation p.406
A quaternion q that defines a rotation about (around) the axis n denoted by the unit vector (n x , n y , n z )407

of an angle ?? could be written as :q = cos ?? 2 + sin ?? 2408
(n x i + n y j + n z k) (A5) This same quaternion represents a rotation of amplitude (? ?? ) around the409

opposite axis ( ?n )410
ii. Dual quaternions Dual Quaternions (DQ) were proposed by William Kingdom Clifford in 1873.They are411

an extension of quaternions. They represent both rotations and translations whose composition is defined as a412
rigid transformation.413

They are represented by the following eight dimensional vector:?? ? = ( ?? ?, ?? ? ) = (s , ?? x , ?? y , ?? z414
, ?? ?? ?? , ?? ?? ?? , ?? ?? ?? , ?? ?? ?? ) = ( ?? ?, ?? ? , ?? ? , ?? ?) (A6)415

Such that:?? ? = ?? + ???? ?? = s + ?? x i + ?? y j + ?? z k + ?? (?? ?? ?? + ?? ?? ?? + ?? ?? ?? + ??416
?? ?? )417

Dual quaternion multiplication is defined by:?? ? 1 ? ?? ? 2 = ?? 1 ? ?? 2 + ?? (?? 1 ? ?? 2 ?? + ?? 1 ??418
? ?? 2 ) (A7)419

With ?? 2 = 0; ?? being the second order nilpotent dual factor. The dual conjugate (analogous to complex420
conjugate) is denoted by:?? ? ? = ?? -???? ?? (A8)421

This conjugate operator can lead to the definition of the inverse of ?? ? which is: The translation T on the422
vector ?? ? can be computed by: ?? ? ?? ? = ?? ? ?? ??? ? ?? ??? ? ? ?? * So fortunately using def (A9), we423
have: ?? ? ?1 = 1 ?? ? = ?? ? ? ?? ? ? 1 ?? ? =?? ? ? ?? * = ?? ? ?? = 1+ ?? ?? 2 ,?? ? ?? ? = ???( ?? ?424
? ?? ? ?? ??? ? ? * ) ? ???? * = ( ??? ? ?? ? ) ? ?? ? ?? ? (?? ? ? * ? ???? * ) = ?? ? ? ?? ? ?? ? ?? ?? *425
(A11)426

It is very important to notice that the most inner transformation of the equation is applied first with an inside427
to outside manner. In eq (22), ?? ? is the first transformation followed by the second one ??.428

The successive composition or combination of unit DQ rotation ?? ? ?? = R followed by a DQ translation ??429
? ?? = 1+ ?? 2 ??? ?? ?? + ?? ?? ?? + ?? ?? ?? ? will give:?? ? ?? ? ?? ? ?? = (1+ ?? 2 ??? ?? ?? + ?? ??430
?? + ?? ?? ?? ?) ? q R = q R + ?? 2 ??? ?? ?? + ?? ?? ?? + ?? ?? ?? ?? q R = R + ?? ???? 2 (A12) Its431
inverse being: ( R + ?? ???? 2 ) ?1 = ?? * ? ?? * ?? 2432

If the translation is applied first:?? ? ?? ? ?? ? ?? = ?? ? ?? ?(1 + ?? 2 ??? ?? ?? + ?? ?? ?? + ?? ?? ??433
?) = q R + ?? ? ?? ? ?? 2 ??? ?? ?? + ?? ?? ?? + ?? ?? ?? ? q R = R + ?? ???? 2 (A13) Its inverse being: (434
R + ?? ???? 2 ) ?1 = ?? * ? ???? * 2 v. Several transformations435

Suppose that the vector V in its dual quaternion form ?? ? ?? = 1 + ?? ?? is under a sequence of rigid436
transformations represented by the dual quaternions ?? ? 1 , ?? ? 2 , . . . , ?? ? n . The resulting vector is437
encapsulated in the dual quaternion:1+ ?? ?? ? = ?? ? n ? (?? ? n?1 ? ?.? (?? ? 1 ? (1+ ?? ??) ? ?? ? ? * 1438
) ? ?..? ?? ? ? * n?1 ) ? ?? ? ? * n (A14) = (?? ? n ????? ? 1 ) ? (1+ ?? ??) ? (?? ? ? * 1 ? ?. ? ?? ? ? * n )439

We denote the product dual quaternion as ?? ? = ?? ? n ????? ? 1 . The effect is equivalent to a single rigid440
transformation represented by ?? ?; namely,1+ ?? ?? ? = ?? ? ? (1+ ?? ??) ? ?? ? ? * .441

Using dual numbers and plucker coordinates and introducing the following dual angle and dual vector we can442
write:?? ? = ?? + ???? and ?? ? = ?? + ????443

It can be easily shown that:444
The Kinematics of a Puma Robot using The steps for this technique are as follows:445

Dual Quaternions cos ?? + ???? 2 = cos ?? 2 ??? ?? 2 sin ??446

1. Numbering of the constituent segments of the manipulator arm from the base to the terminal element.447
The zero referential is associated with the base of it, and the order n to the terminal element (end effector); 2.448
Definition of the main axes of each segment:449

? If z i and z i-1 do not intersect we choose x i so as to be the parallel with the axis perpendicular to z i and450
z i-1 . ? If z i and z i-1 are collinear, x i is chosen in the plane perpendicular to z i-1 .451

3. Fix the four geometric parameters: d i , ? i , a i , ?? ?? (see Figure( 4)) for each joint such as:452
The Kinematics of a Puma Robot using Dual Quaternions ? d i coordinate of the origin O i on the axis z i-1453

For a slide d i is a variable and for a hinge d i is a constant. ? ? i is the angle obtained by screwing x i-1 to x454
i around the axis z i-1 .For a slide ?? ?? is a constant and for a hinge ?? ?? is a variable. ? a i is the distance455
between the axes z i and z i-1 measured on the axis x i negative from its origin up to the intersection with the456
axis z i-1 .457

? ? 1 is the angle between z i et z i-1 obtained by screwing z i-1 to z i around x i . Finally, the homogeneous458
DH displacement matrix [?? ????? ?? ] which binds together the rotation and the translation is formed . Its left459
upper part defines the rotation matrix ?? ????? ?? and on its right the translation vector [?? ???1 ?? ] : ? ??460
???1 ?? ?? ???1 ?? 0 0 0 1 ?(9)461

The definition of the frames associated with the links according to the Denavit and Hartenberg convention is462
as follows: Link1: Frame (x 0 ,y 0 ,z 0 ) ;The origin O is taken in link1 at the intersection of the base axis with463
the link1 axis. z 0 axis of rotation, + z 0 upwards.+ y 0 coincides with the axis of the link 1 and the axis + z 1464
.y 1 is parallel to the link 2.465

Link 2: Frame (x 1 ,y 1 ,z 1 ) ;The origin coincides with the origin of the frame (x 0 ,y 0 ,z 0 ,) .z 1 axis of466
rotation, + z 1 is perpendicular to the link 2 and parallel to the axis + z 2 .+ y 1 downwards, superimposed467
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with the axis of the base and parallel with y 2 .+ x 1 is parallel to the link 2. Link 3: Frame (x 2 ,y 2 ,z 2 ) ;The468
origin is taken in link 2 at the intersection of the axis of the link 2 with the axis of the joint 3.z 2 axis of rotation,469
+ z 2 is perpendicular to link 2 and axis z 3 .+ y 2 downwards, opposite with + z 3 .+ x 2 is parallel to the link470
2. Link 4: Frame (x 3 , y 3 , z 3 ); The origin is taken in link 3.z 3 axis of rotation, + z 3 towards the wrist and471
perpendicular to +z 4 .+ y 3 is perpendicular to the link 2, and parallel to +z 4 .+ x 3 is parallel to the link 2.472

Link 5: Frame (x 4 ,y 4 ,z 4 ) ;The origin is taken at the center of the wrist.z 4 axis of rotation, + z 4 is473
perpendicular to link 2 superposed with +z 5 . + y 4 is opposite to + z 5 .+ x 4 is parallel to link 2. Link 6:474
Frame (x 5 ,y 5 , z 5 ) ;The origin coïncides with the origin of the link (x 4 ,y 4 , z 4 ).z 5 axis of rotation, +z 5475
towards the effector parallel to +z 6 .+ y 5 coïncides with the axis of joint 5.+ y 5 is perpendicular to the axis476
of joint 5.477

The end effector: Frame (x 6 ,y 6 ,z 6 ) ;The origin coïncides with the origins of the links (x 4 ,y 4 , z 4 )478
and (x 5 , y 5 , z 5 ). The distance d 6 is not shown in Table ( I)..This distance varies according to the effector479
used for the application (the effector is the tool attached to the wrist on the last articulation of the robot for the480
manipulation of the objects). In this application the distance between the end of the effector and the axis of the481
wrist is assumed to be null d 6 = 0.482

The dynamics of the last three articulations is negligible compared to the first three. Therefore, we have been483
interested in studying the movement of the three first joints of the PUMA 560 robot arm fixing the others to the484
original position (i.e., wrist attached to the original position: q 4 = q 5 = q 6 = 0).485

Such that we will have :?? 0 2 = ?? 0 1 ?? 1 2 = ? ?? 1 0 -?? 1 0 ?? 1 0 ?? 1 0 0 ?1 0 0 0 0 0 1 ? ? ?? 2 ???486
2 0 ?? 2 ?? 2 ?? 2 ?? 2 0 ?? 2 ?? 2 0 0 1 ?? 2 0 0 0 1 ? = ? ?? 1 ?? 2 ??? 1 ?? 2 ? ?? 1 ?? 2 ?? 1 ?? 2 ? ?? 2487
?? 1 ?? 1 ?? 2 ??? 1 ?? 2 ?? 1 ?? 2 ?? 2 ?? 1 + ?? 2 ?? 1 ??? 2 ??? 2 0 ??? 2 ?? 2 0 0 0 1 ?(15)488

We can also write:489
And finally write ?? 03 = ?? 0 2 ?? 2 3 = ? ?? 1 ?? 2 ??? 1 ?? 2 ? ?? 1 ?? 2 ?? 1 ?? 2 ? ?? 2 ?? 1 ?? 1 ??490

2 ??? 1 ?? 2 ?? 1 ?? 2 ?? 2 ?? 1 + ?? 2 ?? 1 ??? 2 ??? 2 0 ??? 2 ?? 2 0 0 0 1 ? ? ?? 3 0 ?? 3 ?? 3 ?? 3 ?? 3 0491
? ?? 3 ?? 3 ?? 3 0 1 0 ?? 3 0 0 0 1 ? =492

The Kinematics of a Puma Robot using Dual Quaternions 1 2
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Figure 1: 2 ?? 2 ?? 2 )Figure 1 :
493
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14 QUATERNIONS OR ROTATION REPRESENTATION

1

Figure 2: Example 1 :

Figure 3:
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Figure 4:

Figure 5:

1 |??| ) 2 ?? * ; (?? ? 0) Where |??| 2
= s 2 + ?? x 2 + ??

y
2 + ?? z 2 = ?? ? ??

[Note: * = ?? * ? ??]

Figure 6:

then ?? ? ?? ? = ?? ? ?? ??? ? ?? ??? ? ? ?? * = ?? ? ?? ??? ? ?? ??? ?
?? = [1+ ?? ?? ?? ?? )]?[1 + 2

??
2

Figure 7:

11



14 QUATERNIONS OR ROTATION REPRESENTATION

With?? ???1 ?? =
?

?????? ?? ?? ??????? ? ?? ?????? ?? ?? ?????? ?? ?? ?????? ? ?? ?????? ?? ?? ??????? ? ?? ?????? ?? ?? ?????? ? ?? ?????? ?? ?? ? (10)

0 ?????? ? ?? ?????? ?
??

And ?? ???1 ?? =??? ?? ?????? ?? ??
?? ?? ?????? ?? ??

(11)

?? ??
Figure (4??????? ?? ?????? ?? ?? sin ? ?? ???????? ??

?????? ?? ??
?????? ? ??

?? ?? sin
?? ?? ??
??

?

0 0 0 1

Figure 8:

1

Figure 9: Table 1 :
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.1 *

.1 *494

Combining these two conjugation operators will lead to the formalization of DQ transformation on 3D points.495
Use of both conjugations on ?? ? can be denoted ?? ? ? * .Using definitions (A2), (A6) and (A8) we finally496
have:497

It is well know that we can use dual quaternions to represent a general transformation subject to the following498
constraints:499

The DQ screw motion operator ?? ?: = (??, ?? ?? ) must be of unit magnitude:500
This requirement means two distinct conditions or constraints:501
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