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Research into the damage sustained by the reticles (photomasks) used to print semiconductor8

devices is summarized. It is explained why ESD prevention alone does not necessarily provide9

adequate protection for such highly electrostatic-sensitive objects. The standard approach to10

ESD prevention used in the semiconductor industry is shown to increase the risk of other11

damage mechanisms than ESD to which reticles are far more sensitive. Insights gained from12

this research are then applied to the methods being used to protect sensitive electronic,13

optoelectronic and micro- electro-mechanical devices during their manufacture and handling.14

Similar weaknesses to those identified in the widely-established approach to reticle handling15

are found. Equipotential bonding is shown to expose field-sensitive devices to a heightened16

risk of damage and to reduce the effectiveness of essential static-reduction technology.17
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Semiconductors and Similar Devices During Manufacturing, Packaging and Handling Gavin C Rider Abstract-21
Research into the damage sustained by the reticles (photomasks) used to print semiconductor devices is22
summarized. It is explained why ESD prevention alone does not necessarily provide adequate protection for23
such highly electrostatic-sensitive objects. The standard approach to ESD prevention used in the semiconductor24
industry is shown to increase the risk of other damage mechanisms than ESD to which reticles are far more25
sensitive. Insights gained from this research are then applied to the methods being used to protect sensitive26
electronic, optoelectronic and micro-electromechanical devices during their manufacture and handling. Similar27
weaknesses to those identified in the widelyestablished approach to reticle handling are found. Equipotential28
bonding is shown to expose field-sensitive devices to a heightened risk of damage and to reduce the effectiveness29
of essential static-reduction technology. A recommendation is given to use the alternative electrostatic damage30
prevention methodology described in SEMI Standard E163, which should improve the electrostatic security of all31
extremely electrostatic sensitive devices. It is concluded that more research into device electrostatic protection32
is urgently required, because the established understanding of it is partly based on incorrect assumptions and33
principles, leading to errors in implementation.34

1 Introduction35

t has been well known for centuries that when certain dissimilar materials rub against one another especially36
insulating ones in a dry atmosphere -there is a generation of electric charge. This charge is referred to as ”static37
electricity” and the process is called triboelectric charging. If an object that has been charged in this way comes38
close to another object, a spark can jump between them, which is known as an electrostatic discharge or ESD.39
Most people are very familiar with this effect since the development of man-made fibres used in clothing and40
carpets has introduced ”the static problem” into homes and offices.41

Semiconductor manufacturing environments are maintained at a relatively low humidity to prevent corrosion42
from taking place between wafer processing steps. The dry environment coupled with the continuous movement43
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4 AN OVERVIEW OF RETICLE ELECTROSTATIC DAMAGE STUDIES

of machinery, materials and personnel makes the generation of static electricity very likely. If sparks take place44
when semiconductor devices are being manufactured or handled, the delicate structures within them can be45
destroyed by the current that flows into them through the spark. Machines can also malfunction if radiated46
energy from a spark induces errors in their control systems.47

Methods have therefore been developed to reduce the likelihood of sparks occurring in the manufacturing48
environment or in any place where the devices are subsequently handled. To protect sensitive devices against49
a spark striking them if any of the safety procedures fail, protective circuitry is normally built into them.50
Electrostatic discharges exhibit different characteristics depending on where they originate, and the two main51
classifications for discharges that are likely to affect semiconductor devices are referred to as the Human Body52
Model and the Charged Device Model.53

Devices are now designed, tested and certified to be able to withstand discharges of a specified strength from54
either of these sources. The environments in which semiconductor devices are handled are controlled so that any55
electrostatic risk that might be created will be below the level that could cause the devices to be damaged. There56
are international standards in place defining how such environments should be controlled and how the operations57
within them should be conducted. An example is ANSI ESD S20.20 [1].58

2 II.59

3 The Control of ESD in Semiconductor Manufacturing60

The standard principles that have been applied for controlling ESD in semiconductor manufacturing are probably61
familiar to most people working in the industry, as anyone working with semiconductor devices will be trained62
in how to avoid static-related problems:63

1. Eliminate all non-essential insulators because they can accumulate static electricity 2. Neutralize all64
essential insulators using methods such as air ionization 3. Connect all conductive objects to a common electrical65
potential, normally ground (which is known as ”equipotential bonding”). 4. Personnel working within a factory66
are required to wear conductive clothing and to be connected to ground, either through conductive footwear or by67
a special grounding strap at a workstation. 5. Workstations are required to be grounded, to have static dissipative68
work surfaces and to have supplementary methods of charge neutralization, such as ionized air showers.69

It is necessary to ensure that any material being transported within a factory is at the same electrical potential70
as its destination, to eliminate the possibility of an electrostatic discharge taking place when it is delivered. Hence71
it has become standard practice to ground objects while they are being moved, for example by employing drag72
chains on the carts used to carry wafers between processing stations, or by using a grounded AMHS. To avoid73
any risk of a high-power discharge taking place on connection to ground, resistive contact materials (otherwise74
referred to as ”static dissipative”) are used. Wafer boats, chip trays and WIP transfer boxes are now generally75
specified to be made from static dissipative materials.76

A focus in the design of automated equipment in semiconductor manufacturing in recent years has been to try77
and reduce the generation of static charge within the equipment anywhere near the handling path of the sensitive78
devices being manufactured. The presence of static charge is typically revealed during an electrostatic audit by79
detecting the electric field that the static charge produces.80

Steady-state measurements can be performed using hand-held field meters, but inside fast-moving equipment81
such as pick-and-place machines it is necessary to use equipment with a fast response time, such as digital82
electrometers and storage oscilloscopes. However, as will be mentioned later, even some of the fastest field-83
recording equipment available is not able to detect all electrostatic risk. The limitations of the measuring84
equipment being used in any electrostatics audit must always be considered, since the failure to register85
electrostatic risk on a meter does not necessarily mean that there is no risk present.86

Figure ??: Reduction in the level of electric field generated within a piece of automated material handling87
equipment by optimizing the design of the ground path and changing the material of the vacuum nozzle used to88
pick and place the components. Reproduced from [2].89

Figure ?? presents the result of a program of electrostatic risk reduction in automated handling equipment [2],90
showing that electric fields can be significantly reduced through suitable equipment design and material choices,91
but they are generally not eliminated completely. Hence, some electric field is always likely to be present in the92
environment around sensitive devices during their manufacture and handling. Furthermore, the author of this93
study states in his observations:94

”the typical end user of components in their assembly work, whether Contract Electronic Manufacturing or95
Original Equipment Manufacturers, do not or cannot obtain accurate sensitivities of the components they are96
trying to handle with automated equipment”. This means that there is always likely to be some electrostatic risk97
present during semiconductor and electronic device manufacturing, but the degree of susceptibility to that risk98
is generally unknown.99

III.100

4 An Overview of Reticle Electrostatic Damage Studies101

Electrostatic damage to the lithographic reticles being used to print semiconductor device layers has always been102
a problem, but it became critical at the end of the 1990s when around 50% of the reticles being returned to103
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mask manufacturers for repair had sustained ESD damage. Since damage to semiconductor devices was already104
known to be caused by ESD events during their handling, it was presumed that reticle damage was being caused105
in the same way; by the transfer of static charge to or from the reticle while it was being handled. Hence, it was106
decided that protection of the reticle would be best achieved by adopting the methods that were already being107
used for device protection. Guidance was therefore published stating that reticles should always be handled using108
grounded conductive tools fitted with static dissipative contact materials [3].109

However, research into reticle electrostatic damage conducted at International Sematech and other independent110
sites identified that reticles are susceptible to ESD damage simply by being exposed to an electric field [4]. It111
was found that damage can be induced within a reticle pattern by an externally generated electric field, without112
any charge transfer taking place to or from the reticle and without the reticle even being touched. Measurements113
of the strength of electric field that would cause ESD in typical production reticles in this way led to further114
guidance being published through the SEMI Standards program and through the ITRS (now replaced by the115
IRDS) to limit the level of electric field to which reticles might be exposed.116

The program of risk reduction undertaken in the areas where reticles were handled followed the general117
principles described earlier, including the replacement of insulating plastic with static dissipative alternatives.118
The insulating plastic pods and boxes that were being used to store and transfer reticles were replaced with119
static dissipative ones, to reduce the likelihood of the box generating an electric field by being tribocharged120
during handling. This change, when introduced alongside all the other static-reduction measures being taken in121
lithography areas, resulted in a significant drop in the amount of reticle ESD damage. Since the problem appeared122
to be understood and controllable, most research programs studying reticle electrostatic damage Unfortunately,123
the belief that reticle electrostatic damage would no longer be a problem was short-lived. Shortly after the124
introduction of static dissipative plastic reticle pods and boxes it was found that they are not able to adequately125
protect a reticle from electric field, because electric field can penetrate static dissipative materials. Levit and126
Weil [5] had measured the penetration of electric field into a reticle pod from an electrode positioned outside,127
simulating the charged hand of an operator carrying it. They showed that the pod was only partially effective at128
shielding the reticle from the electric field, and that the shielding effectiveness dropped rapidly as the frequency129
of the applied field was increased. It took almost a second for the static dissipative plastic pod in their tests to130
fully screen a constant external field, but any field that changed within that time would not be fully screened. If131
the field changed more rapidly than about 25Hz, the shielding effect was very poor indeed. The static dissipative132
material used to make the pod was acting as a high-pass filter, allowing rapidly changing electric fields to reach133
the reticle inside the pod.134

This particular characteristic of static dissipative materials had been studied more extensively by Chubb [6],135
who quantified the field-shielding effectiveness of various materials that were being used for packaging in electronic136
component handling, at frequencies up to 1GHz. Figure 2 shows his measurements of field transmission through137
a metallized plastic ”shielding bag” and also through a static dissipative bag. In both cases the conductivity of138
the material was insufficient to fully screen the bag’s contents from electric field, and the shielding efficiency of139
the static dissipative bag fell away rapidly as the frequency of the field was increased (note the logarithmic scale).140
The behaviour as a function of frequency shown in b) is a characteristic of all static dissipative plastic materials.141

5 Chubb noted: ”Electrostatic spark discharges involve current142

rise times and voltage collapse times down to below 1ns.143

Lower voltages shorter times. Transport packaging hence144

needs to provide >200:1 attenuation for frequencies to 1GHz.”145

The Sematech research had proven reticles to be extremely sensitive to field-induced damage, and they were known146
to require much more effective shielding from electric fields than packaged semiconductor devices, so Chubb’s147
specification would not be sufficient for reticle protection. Based on Chubb’s criteria and Levit’s measurements148
of pod performance, reticles were certainly not going to be adequately protected from electric field by the static-149
dissipative reticle pods that had been developed in an effort to protect them.150

Other research findings were published in December 2003 that also challenged the wisdom of the decision to151
end the Sematech project [7,8]. It was shown that the predominant electrostatic risk to reticles is from field152
induction rather than conductive ESD as had previously been thought. Ironically, it was also shown that the153
grounding of reticles during handling -a practice that had recently been introduced to protect them -actually154
made the risk of field-induced damage worse rather than reducing it. Furthermore, a newlyidentified form of field-155
induced reticle damage called EFM had been identified. Unlike ESD, which instantaneously causes very obvious156
damage to a reticle, EFM is a gradual degradation process that does not generate easily detectable damage, but157
it does interfere with the lithography process and cause yield loss. It progresses cumulatively, under levels of158
fieldinduction at least two orders of magnitude weaker than would be necessary to induce ESD (as determined159
for a typical production reticle in use at that time). This new study, which had identified serious errors in the160
advice that had been given for reticle electrostatic protection, created disquiet in the electrostatics consultancy161
community. There was a great deal of scepticism expressed by ESD experts over the assertion that equipotential162
bonding increases the electrostatic risk to a reticle rather than reducing it. This had been identified through163
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computer simulation, and it was believed by many electrostatics experts that the simulations were wrong, because164
the indications from the simulations were not in accord with their practical experience of ESD prevention in the165
semiconductor industry. However, the study’s findings were subsequently confirmed by experimentation with166
production reticles and special test reticles [9], demonstrating that field induction is a subject that can confound167
even those who specialise in electrostatic protection and have many years of practical experience of it within the168
semiconductor industry. ”Established wisdom” is not necessarily correct.169

The evidence that static dissipative plastic reticle pods were probably not sufficient to protect reticles against170
field-induced damage, and the persistence of reticle electrostatic damage events in some facilities that were using171
them, led to efforts being made to increase the conductivity of the pod material. New ”conductive” plastics were172
developed having carbon nanotubes embedded within the matrix to enhance electrical conduction, and a study173
conducted in 2006 [10] compared the field-shielding performance of a pod made with this new material against174
other types in widespread use. The results of the testing are shown in Figure 3.175

6 Global Journal of Researches in Engineering ( ) Volume XX176
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The tests showed that increasing the conductivity of the plastic reduced the field penetration into the reticle pod178
to the limit of electronic detectability. However, even this degree of shielding did not prevent field-induced ESD179
taking place in a test reticle inside the pod. If field penetration into such a reticle pod was sufficient to induce180
ESD in the reticle inside it, it would certainly not offer adequate protection against other forms of field-induced181
degradation such as EFM, which takes place under much lower electrostatic stress. The research by Helmholtz182
and Lering also confirmed that because the conductive plastic reticle pods had conductive paths connecting the183
reticle to the grounded load port (a supposedly protective design following the principles outlined earlier) field184
induction was enhanced and the rate of reticle damage was actually increased by it.185

In 2008 further experimental research into EFM was published [11,12] confirming the initial interpretation of186
the reticle damage mechanism as the field-induced migration of chrome. This study fully quantified the effect and187
showed that reticles were even more sensitive to electric field than had been estimated five years earlier when EFM188
was first identified. The degradation characteristics were illustrated with an atomic force microscope image of a189
damaged reticle structure, overlaid with an electric field computer simulation to indicate the local electric field190
strength corresponding with the different damage effects observed. This image is reproduced in Figure 4. Other191
research being conducted around the same time into reticle degradation in semiconductor production confirmed192
that as well as directly distorting the reticle features through chrome migration, EFM could also cause ACLV193
in the printed pattern by reducing the light transmission of the clear areas of the mask [13]. Device yield had194
been impacted by this subtle form of reticle degradation, even though the reticle had passed regular inspections195
with no defects being detected. It required the use of highly specialised surface analysis and destructive failure196
analysis techniques to unambiguously identify the cause of the yield loss as chrome migration [14]. This difficulty197
with first detecting and then correctly diagnosing such subtle reticle degradation effects perhaps explains why,198
more than fifteen years since its discovery, EFM is rarely being identified as a reticle damage mechanism in199
modern semiconductor production fabs -even though it is almost certainly happening. A new sensor device had200
been developed following the discovery that reticles are extremely sensitive to electric field. This self-contained201
recording device had the same form factor as a normal six-inch reticle and it could record the electric field to202
which the sensor was exposed under the same conditions that would be experienced by a standard production203
reticle [15]. This sensor device has been extremely valuable in allowing hidden areas of electrostatic risk within204
semiconductor fabs to be identified. One of the first measurements made was of a normal handling sequence in205
a production facility using a staticdissipative single reticle pod. The measurement, which is shown in Figure 5,206
reveals that a reticle carried in a static dissipative reticle pod is repeatedly exposed to electrostatic stress from207
transient electric fields. The level of field penetration into the reticle pod was confirmed to be sufficient to cause208
cumulative damage in production reticles, following the earlier quantification of reticle sensitivity to EFM [11,12].209
Another test carried out with the sensor reticle revealed that static dissipative reticle pods actually generate210
significant electric field transients through tribocharging during normal use, something that had previously been211
believed not to happen with static dissipative materials, mainly because of an inappropriate testing methodology212
using field meters with insufficient temporal response.213

The most recent assessment of all the effects that can be produced by field induction in reticles [16] identifies214
the heightened risk posed by rapidly changing and transient electric fields, and concludes that very short-duration215
field transients and rapidly changing electric fields up to gigahertz frequencies and beyond would be capable of216
causing cumulative reticle damage. This is because electric fields cause charge displacement within the reticle217
pattern every time the field conditions within the reticle change. Rapidly oscillating, pulsed or transient fields218
are particularly hazardous, because one field cycle produces two charge displacements, once as the field increases219
and again as it decreases.220

Figure ??: Measurement of multiple sequential ESD events induced within an electrically isolated reticle as the221
voltage on a nearby electrode is first increased and then decreased, from [17]. The opposite polarity of the signals222
as the field is removed indicates that the displaced charge that caused the initial series of ESD events is returning223
to its original location within the reticle and causing further ESD damage. This characteristic was demonstrated224
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during the field induction experiments conducted by Montoya et al [4,17]. Spark discharges induced within the225
reticle pattern by a high potential applied to an electrode held just above the reticle were detected using an RF226
loop antenna connected to a storage oscilloscope, as shown in Figure ??, which is from their presentation at the227
Sematech ESD Symposium of 2000. As the voltage on the electrode was increased, sequential discharges were228
detected within the reticle. Then, as the voltage was removed, discharges of opposite polarity were observed as229
the displaced charge within the reticle returned to its original location.230

Extremely rapid field transients that are capable of being generated and transmitted by static dissipative and231
conductive plastics are responsible for the ESD damage in the test reticle reported by Helmholtz and Lering [10],232
yet neither their fast recording oscilloscope nor this new sensor reticle would have had sufficient sensitivity and233
response time to detect the threat they pose. There remains a significant level of electrostatic threat that can234
damage reticles but cannot be detected electronically.235

The movement of charge that contributes to the reticle damage is induced entirely within the reticle pattern;236
the reticle remains electrically neutral throughout the process. The reticle inherently amplifies any electric field237
that is present in its environment by up to several orders of magnitude, the degree of amplification depending238
on the arrangement of the isolated conductors in the image. This field amplification results from the movement239
of electrons within the reticle’s conductive structures so it happens almost instantaneously, and it explains why240
undetectable amounts of electric field penetrating a reticle pod [10] could be sufficient to induce ESD and other241
forms of cumulative damage. This field amplification characteristic is illustrated by the computer simulation of242
Figure 7. The field amplification is a function of the orientation of the reticle pattern relative to the electric243
field, so simply moving the reticle without changing the electric field it is exposed to will also change the field244
conditions within the reticle pattern, with a corresponding risk of the reticle being damaged. A similar situation245
occurs if conductive objects such as robotic arms are moved within the vicinity of a reticle in the presence of an246
electric field, because such objects perturb the electric field around and within the reticle. The perturbation of247
electric field by conductive robotic arms is illustrated by the recording in Figure 8, which was made using the248
field-sensing reticle mentioned previously [15].249

The evidence from Figure 8 is that the ESD countermeasures such as equipotential bonding that have been250
introduced into semiconductor manufacturing facilities are not necessarily effective for damage prevention. If the251
static charge that grounding is intended to remove is located on an insulating part of the object being handled,252
which it most probably would be, grounding cannot remove it. As shown in this recording, the use of a grounded253
handling tool creates a risk from field perturbation that otherwise would not be experienced by the reticle. It also254
demonstrates that unless ionizers are correctly installed and maintained they can actually create an electrostatic255
risk -one that is accentuated by the use of equipotential bonding. This point is further illustrated by Figure 9,256
which shows the electric field recorded by the sensor reticle as it was being loaded into another piece of reticle257
handling equipment that had been fitted with an ionizer to neutralize incoming reticles at the loading station.258
The ionizer had been installed much too close to the reticle’s handling path, so pulsed electric field from the259
ionizer tips was reaching the reticles as they passed underneath it. Every pulse of electric field from this ionizer260
was capable of causing field-induced damage in the reticle pattern, and after passing the ionizer the reticle had261
been put into a charged state, just as in Figure 8. The studies into reticle electrostatic damage illustrated here262
have revealed shortcomings in the electrostatic protection principles adopted by the semiconductor industry and263
have also revealed errors in the implementation of them, the most significant two being the use of equipotential264
bonding and of making reticle pods and boxes from static-dissipative plastic.265

While equipotential bonding does indeed result in the elimination of conductive ESD events when material is266
being transferred from one manufacturing station to another, it does not protect field-sensitive items from the267
damaging effects of exposure to electric fields -it actually makes the damage worse. Static dissipative plastic268
reticle pods have been shown to allow hazardous levels of electric field to reach the reticle stored inside them,269
and such pods actually generate transient electric fields during normal use.270

The conclusion reached here is that for absolute security no amount of exposure to electric field should be271
considered safe for any transmission reticle. The wisdom of making reticle pods from static dissipative or even272
”conductive” plastic is called into question, and because equipotential bonding increases the impact of any field273
exposure that might take place during reticle handling or use, it should not be used when handling reticles.274

7 IV. Implications for the Safe Handling of Electrostatic Sensi-275

tive Devices276

When material handling ’best practice’ was being defined for the semiconductor industry decades ago the problem277
was addressed in a logical but somewhat over-simplistic way. It was apparent that semiconductor devices were278
being damaged by conductive ESD during handling and the deduction was that if the ESD could be prevented,279
so would the damage. Indeed, the control of ESD during semiconductor manufacturing has been accompanied280
by a corresponding yield improvement. However, it was not correct to believe that eliminating ESD meant that281
reticles would be safe, so it is probably not correct to think the same about the electrostatic safety of sensitive282
electronic devices.283

The semiconductor industry almost exclusively characterizes device electrostatic sensitivity by means of284
discharge testing, for example as described by Diaz [18]. Diaz observes that there are two different forms of285

10.34257/GJREFVOL20IS3PG5 5



7 IV. IMPLICATIONS FOR THE SAFE HANDLING OF ELECTROSTATIC
SENSITIVE DEVICES

damage that can be caused to devices; thermal effects due to a current surge from an ESD event or from EOS,286
and field effects such as dielectric breakdown and latent hot-carrier damage. ”Hot-carrier” damage refers to a287
reduction of the electrical resistance of dielectrics as a result of being exposed to an excessive electric field. Points288
of weakness in the dielectric caused by excessive electric field can subsequently break down completely during289
device operation, producing thermal damage that appears similar to EOS or ESD.290

There is, unfortunately, a ”grey area” wherein some of such electrostatic damage is classified as EOS and some291
as ESD, with no clear indication of the origin of it. Distinguishing between the two mechanisms after the damage292
has occurred is very difficult indeed, and it is almost impossible to determine the precursor state after breakdown293
has happened.294

Identifying the root cause of the failure requires a detailed understanding of the physical mechanisms involved295
and very careful analysis of the damaged area. It was possible to do this quite easily in reticles, because the296
damaged features were easily accessible for AFM imaging, which meant that the subtle differences between ESD297
damage and that caused by EFM could be identified. They could then be characterized and quantified through298
controlled experimentation, as shown in Figure 4. Real-life damage signatures in semiconductor devices are far299
more difficult to deconvolve, because the damage is usually extensive and can completely destroy the damage300
site. It can also be necessary to expose the damage site deep within the device by carefully deconstructing it301
in order to analyze the damage, which is a laborious and difficult task that is not routinely undertaken. For302
this reason, a great deal of device electrostatic damage is probably being incorrectly classified, which also means303
that the root cause is not being correctly understood. Failing to correctly identify the root cause of electrostatic304
damage can result in inappropriate guidance being given to try and prevent it (as happened when equipotential305
bonding was recommended to prevent reticle electrostatic damage).306

It is believed by many people that the spark between a charged device and ground results in the device literally307
becoming ”discharged”, meaning neutralized. For example, Diaz states in his article [18] ”Electrostatic discharge308
occurs whenever a charged object is grounded, resulting in the release and equalization of the static charge.” The309
impression that neutralization has occurred is reinforced when a device that has experienced such an ESD event310
is measured using a Faraday cup and is found to carry little or no net static charge. However, this impression is311
wrong in most cases.312

The static charge on a charged device will most likely be present on an external insulating surface as a result313
of tribocharging during handling. The spark that jumps between ground and the charged device generally strikes314
one of the connector pins, which is why it injects a current pulse that damages the internal circuitry. So, what315
actually happens during such a CDM static discharge event is that an opposite charge to that present on the316
encapsulation enters the device circuitry from ground, attracted by the electric field from the static charge on the317
encapsulation. The opposite charges cannot physically recombine and neutralize one another as they are separated318
by insulating material. Hence, such balancing of the charge on the device as a consequence of grounding it results319
in the device being in an energized state, just like a charged capacitor. It contains electrostatic potential energy,320
just as a charged capacitor does, stored within the internal electric field. The same final energized state would321
be achieved whether the balancing charge flowed into the device rapidly through a spark or slowly as a reduced322
current through a resistive contact in an equipotential bonding scheme.323

If the flow of balancing charge into the device is gradual, as in an equipotential bonding scheme where static324
dissipative contact materials are used, there is no initial current surge that can cause the thermal damage effects325
described by Diaz. Hence it would be correct to say that ESD damage had been prevented by the equipotential326
bonding scheme slowing down the transfer of charge -but field-induced damage effects that can result in latent327
dielectric damage could still occur if the internal electric field generated by the balancing charge exceeded the328
capacity of the dielectric layers in the device to withstand it.329

ESD protection circuitry is generally designed to shunt an incoming current surge in order to protect the330
device’s operational circuitry, but it will not change the final location reached by a balancing charge, as this will331
be determined by the physical layout of the device and the location of the static charge on the encapsulation.332
The balancing charge will move as close as possible to the static charge on the encapsulation, driven there by the333
internal electric field. Therefore, even if the ESD protection circuits do prevent an immediate thermal damage334
event by diverting the route taken by the charge as it enters the device, they may be ineffective at preventing335
any field-induced damage that occurs as a result of the injection of a balancing charge.336

A similar risk from the generation of internal electric fields could also be created in a partlyprocessed silicon337
wafer should it become charged during processing, which is a common occurrence. If the partly completed devices338
on the wafer contain conductive layers separated by dielectric barrier layers, an electric field can be generated339
between the isolated layers. If a balancing charge were introduced to the substrate from ground during handling,340
attracted by static charge on an outer insulated layer of the partiallycompleted wafer, the balancing charge would341
distribute itself within the wafer until it approached as close as possible to the static charge, after which any342
further charge movement (and ultimately, static charge neutralization) would be prevented by the interposed343
insulating layer(s). Like the device in the previous scenario, the wafer would appear to be electrically neutral344
but it would be in an energized state, just like a charged capacitor.345

An excessively strong electric field can damage the structure of dielectric material, resulting in the346
rearrangement of the atomic bonds, which degrades its insulating strength. The mechanism by which dielectric347
degradation happens is described by Azizi and Yiannacouras [19]. It has been shown by Pey and Tung [20]348
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that this mechanism and the degradation it produces are independent of the dielectric composition. Hsu et al349
report that the dielectrics being used in latestgeneration devices exhibit degradation that is dependent on the350
field strength within the dielectric [21]. Another field-induced damage process in semiconductor devices involves351
the diffusion of dopants and contaminants [22]. This can alter the electronic properties of devices that rely352
on a particular dopant profile within their active features, or create conduction barriers at interfaces. So, it is353
conceivable that enhanced electric fields produced within a device while it is being manufactured, as would be354
likely to occur as a result of using equipotential bonding, could potentially cause any of the above described355
damage effects. Some devices may continue to operate as they were designed to, but the robustness of a damaged356
dielectric to EOS or TDDB (which is a life-limiting aspect of many semiconductor devices) will be reduced. Any357
material degradation that has the capability to cause premature failure is classified as a ”latent defect”, and it is358
evident that the practice of equipotential bonding has the capability to introduce such defects into devices and359
wafers that have become charged during handling or processing.360

Clearly, any procedure that can generate an uncontrolled internal electric field within a device containing thin361
dielectric layers must be considered potentially hazardous -and that is exactly what equipotential bonding can362
do. The ultimate consequence of a device being stressed in this way would be dependent on the type of device363
and would also be affected by how it was subsequently handled and operated. When failure eventually happened,364
it would not be apparent that the use of equipotential bonding during the manufacture of the device could have365
contributed to its demise. It would be practically impossible to identify the root cause of such a delayed failure.366

V.367

8 Discussion368

At this point, it is perhaps worth reflecting on the fact that the potentially harmful outcomes described previously369
rely on a combination of two factors, one of which is avoidable: a) Charging of the device (which is not always370
avoidable, but is not itself damaging) and b) Grounding of the device.371

It is not possible to directly observe the described effects in a semiconductor manufacturing environment, so372
there is currently no empirical evidence from semiconductor manufacturing sites to analyze. Such effects could373
only be observed and measured if carefully designed experimentation were carried out, in much the same way as374
reticle electrostatic damage was extensively studied at Sematech. Even then, it would be necessary to analyze the375
results very carefully to avoid the risk of reaching false conclusions, as initially happened with the analysis of the376
Sematech data. Reevaluation of the Sematech reticle damage data ultimately led to the completely unexpected377
discovery of both EFM and identification of the detrimental effect of equipotential bonding. Similar studies could378
potentially reveal previously unidentified field-induced damage effects in semiconductor devices.379
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There have been some heated discussions about the sensitivity of semiconductor devices to electric fields and the382
effectiveness of equipotential bonding for device protection in online discussion groups, following the research into383
reticle damage. The perspective of most electrostatics consultants working in the semiconductor industry seems384
to be that packaged devices are not field-sensitive. They also state that their experience gained over decades385
working in semiconductor manufacturing proves that equipotential bonding is protective, because damage rates386
are improved when using it. However, as mentioned previously, the avoidance of immediate thermal damage387
from an ESD event by using static dissipative contacts to ground a device does not mean that the grounding388
of the device is an inherently safe procedure. Grounding does not remove static charge from an insulating part389
of the device and it does not actually neutralize the device, but it does inject a balancing charge that creates390
an internal electric field. Since the purpose of grounding the device is actually the removal of static charge and391
the neutralization of the device, it does not seem to be a particularly valuable result to avoid an ESD event392
while failing to achieve either of these objectives. Not grounding the device would achieve the same outcome,393
but it would also avoid the generation of potentially hazardous internal electric fields through the injection of a394
balancing charge.395

While the disagreement continued about whether or not devices are susceptible to damage from electric396
fields, Smallwood [23] conducted a simple experiment. He demonstrated that it is possible to damage ESDS397
semiconductor devices through field induction alone, without a conductive ESD event taking place. His simple398
experiment confirms that the principles presented in this paper are valid and that the concerns expressed here399
are justified.400

One further unforeseen negative consequence of using equipotential bonding to try and remove static charge401
from devices during handling is that grounding a charged device virtually eliminates external electric field, by402
balancing the charges held on the device. Ionizers are the only practical way of neutralizing static charge on an403
insulator, and they are widely adopted in semiconductor manufacturing to help control static charge accumulation.404
Airborne ions of the appropriate polarity respond to the presence of static charge by being attracted by the electric405
field it creates, while ions of opposite polarity to those needed for neutralization are repelled. If the external406
electric field emanating from a tribocharged device is nullified by the injection of a balancing charge into the407
device from ground, it removes the mechanism through which charge neutralization by an air ionizer is achieved.408
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Thus, grounding is not only incapable of safely neutralizing a charged device or wafer, it acts against the only409
feasible method of doing so.410

The importance of understanding and controlling all forms of device degradation, going beyond those typically411
caused by ESD, has been emphasized by Sonnenfeld et al [24] who state: ”?it is not widely known how degradation412
mechanisms propagate as a function of environmental conditions and various stressors. The attainment of such413
knowledge is critical for advancements in the field of power electronics health management and prognostics. The414
ability to perform large scale experiments and characterize the degradation signatures of such semiconductor415
devices under various scenarios is of great interest?416

The assumption of new functionality will also increase the number of electronics faults with perhaps417
unanticipated fault modes. In addition, the move toward lead-free electronics and microelectromechanical devices418
(MEMS) will further result in unknown behaviors.”419

The study of field induction in reticles and the computer simulations performed to help the understanding of420
field induction on a nanometer scale, which cannot be directly measured, have demonstrated that measurements421
of charge and voltage on a macroscopic scale during typical ESD audits in a factory environment tell only a422
partial -and often misleadingstory. It is necessary to consider the physics that operate on the scale of the device423
structures themselves, or even at an atomic level, to fully appreciate the varied detrimental effects that may be424
caused by electrostatic imbalance. This requires shifting the focus of attention from the traditional approach of425
controlling voltage on a macroscopic scale to managing electric field on a microscopic scale.426

One might wonder why focusing on electric field management might lead to a different treatment of electrostatic427
risk than other approaches, such as those like equipotential bonding that are designed to control electrical428
potential. After all, electric field is measured in volts per meter, so if voltage is controlled, electric field will429
be controlled too, no? Intuitively the two approaches might seem to be the same. However, the reason for the430
fundamental difference can be understood by looking at a graph of field induction between conductive structures431
on the scale of the features found in reticles and semiconductor devices.432

Figure 10 is a graph of computer simulation results showing the electric field and voltage that would be present433
between two isolated conductors, when exposed to a constant electric field, as a function of their separation. It434
was produced to help explain the observed effects of field induction in reticles. The simulations show that as435
the separation of conductors is reduced (as reticle patterns and the structures in semiconductor devices become436
further miniaturized following Moore’s Law) the voltage that is induced between adjacent features by an external437
electric field rapidly falls, while the electric field concentrated in the gap between them rapidly rises. The effect438
is highly nonlinear.439

By the time the separation of conductors reduces to the scale of the structures in semiconductor devices it440
becomes extremely difficult for an electric field to induce high voltages between them, which many people might441
believe automatically reduces any risk arising from field induction. However, a high induced voltage is not the442
stress factor that causes the damage. It can be seen from the graph that on this dimensional scale low induced443
voltages can be accompanied by very strong electric fields, and this fact is further illustrated by the simulation444
shown in Figure 11. This computer simulation was produced to show that the guidance published in the ITRS445
specifying the maximum electric field to which a reticle should be exposed to control ESD risk was actually446
unsafe when considering the risk of EFM. It shows that on this scale, with only a small fraction of a volt induced447
between the adjacent conductors, the local electric field strength can be dangerously high. The ITRS guidance448
was subsequently updated and the figure for the maximum electric field to which a reticle should be exposed449
was significantly reduced, in recognition of the newly identified risk of fieldinduced damage. present between450
the conductive features, as in semiconductor devices, would further increase the local electric field strength at451
any induced voltage by comparison with the situations modelled in Figure 10 and Figure 11. Such points of452
field amplification, as indicated in Figure 7, are the very locations that would be susceptible to damage by the453
generation of an excessive local electric field.454

It is impossible to measure the potential differences and local electric fields that are induced between different455
internal parts of a semiconductor device, so one cannot measure this kind of risk directly. It is also practically456
impossible to simulate field induction effects in such complex three-dimensional structures, so the only way of457
estimating the risk is to base the risk assessment on what is already known from the study of field induction in458
reticles. One crucial aspect of this is that grounding through an equipotential bonding program that is principally459
designed to reduce ESD during material handling accentuates any risk to devices and wafers from electric field.460

When considering all the matters that have been discussed, injecting a balancing charge into a semiconductor461
device or wafer through equipotential bonding, which cannot achieve the intended neutralization but will462
inevitably create a strong internal electric field, does not seem to be a very prudent thing to do.463

10 VI.464

11 Conclusions465

It was first shown theoretically and subsequently proven experimentally that using equipotential bonding to466
prevent ESD during the handling of reticles has negative consequences for the safety of the reticle. Even467
though equipotential bonding is intended to be protective, is a recommendation given by many electrostatics468
consultants, and even forms the core of several semiconductor industry patents, it is definitely not protective469
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for reticles. Detailed investigations of damage effects in reticles have revealed that as well as increasing the risk470
of ESD within the reticle, rather than reducing it, equipotential bonding enhances other fieldinduced damage471
mechanisms that until recently were completely unknown. These cumulative damage processes take place under472
conditions of electric field exposure that are orders of magnitude weaker than those that cause ESD, but their473
cost implications to semiconductor production are more severe than ESD [16].474

Extending this understanding to an assessment of the handling of semiconductor devices leads to the conclusion475
that equipotential bonding may also have negative consequences for their security. Experimentation to validate476
the concerns expressed herein has been performed only on a very limited and simplistic scale, but the result477
shows that concern about this is justified.478

Consequently, it is recommended that the extensive experimental research described as being ”of interest” by479
Sonnenfeld should urgently be undertaken, to investigate whether electrostatic damage processes are capable of480
being enhanced in devices by equipotential bonding -a practice that is universally applied in the semiconductor481
industry and is presumed to be protective. Even if current semiconductor devices are found to be sufficiently482
robust to withstand stresses of the kind that have been described in this paper, it does not mean that creating such483
stress is advisable; neither is it guaranteed that all future electronic, optoelectronic and micro-electromechanical484
devices would be able to withstand such treatment.485

If it is confirmed that significant risk of device electrostatic damage is being created through the use of486
equipotential bonding, as has been proven to be the case for reticles, this does not create an insurmountable487
challenge for the semiconductor industry. A methodology for handling extremely electrostatic sensitive (EES)488
devices without exposing them to increased risk by grounding them through an equipotential bonding scheme489
has already been described in SEMI Standard E163 [25], and the technology that would be required to implement490
such a handling scheme is already available.491

Further experimental research, and the willingness of the industry to change its way of working if it should be492
found to be beneficial, are urgently needed in order to assure the future electrostatic security of ESDS and EES493
devices that are yet to be developed. 1 2 3

Figure 1:
494

1Why SEMI Standard E163 Should be Followed for the Protection of Extremely Electrostatic-Sensitive
Semiconductors and Similar Devices During Manufacturing, Packaging and Handling

2Year 2020 F © 2020 Global Journals
3© 2020 Global Journals
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