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Abstract7

It is generally accepted that the only type of motion present in a symmetric Euler gyroscope8

(SEG) is regular precession. This paper proves that regular precession is not the only type of9

motion present, but corresponds only to the well-known initial coordinated Euler angles. At10

any other initial angles, motions that differ from regular precession occur. In the article, the11

problem is solved analytically in two stages: first, angular velocities of the gyroscope are12

determined using differential dynamic equations, at the second stage, as a result of integration13

of differential matrix kinematic and differential matrix Poisson equations (both with periodic14

coefficients), final relations about the SEG motion with arbitrary initial Euler angles are15

derived. Periodic coefficients are the SEG angular velocities that are found as a solution to the16

dynamic equations. From the obtained general formulas, special formulas of regular precession17

for particular coordinated initial Euler angles that coincide with the well-known ones are18

derived.19
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2 Annotation24

t is generally accepted that the only type of motion present in a symmetric Euler gyroscope (SEG) is regular25
precession. This paper proves that regular precession is not the only type of motion present, but corresponds only26
to the well-known initial coordinated Euler angles. At any other initial angles, motions that differ from regular27
precession occur. In the article, the problem is solved analytically in two stages: first, angular velocities of the28
gyroscope are determined using differential dynamic equations, at the second stage, as a result of integration29
of differential matrix kinematic and differential matrix Poisson equations (both with periodic coefficients), final30
relations about the SEG motion with arbitrary initial Euler angles are derived. Periodic coefficients are the SEG31
angular velocities that are found as a solution to the dynamic equations. From the obtained general formulas,32
special formulas of regular precession for particular coordinated initial Euler angles that coincide with the well-33
known ones are derived. For other initial angles, formulas for irregular precession are obtained. In addition to34
the solutions for the Euler angles, solutions for the Euler-Krylov angles were found, which in some cases provide a35
more explicit geometric interpretation of motion. The analytical results are supported by mathematical modeling.36
In particular, certain conditions were found -the ”strong impact” condition when irregular SEG precession for37
the Euler-Krylov angles occurs in the direction of the rotational pulse, and the sign of the angular velocity of the38
gyroscope proper rotation changes to the opposite. At the Euler angles, the motions of irregular precession during39
the ”strong” and ”weak” impact conditions are qualitatively identical. In relation to the case of regular precession40
under the ”strong” impact conditions, the changes are significant: the angles of precession and nutation become41
oscillatory, and the angular velocity and the angle of proper rotation change their sign to the opposite.42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



5 II.

3 a) Relevance43

Modern gyroscopic technology has achieved the highest accuracy in measuring angular motion parameters of44
moving objects (MO) in the field of classical symmetric Euler gyroscopes with electrostatic suspension. In the45
US Gravity Probe experiment, the four axially symmetric Euler gyroscopes with electrostatic cryogenic suspension46
mounted on the astronomical Earth satellite had values of drift angular velocities of less than 10 -11 angular47
deg/hr. This, together with the telescope readings, experimentally confirms the Einsteinian general theory of48
relativity (GTR) by detecting a gyro axis shift with the accuracy of 1% equal to 6.6 angular seconds per year,49
which is effectively predicted by the GTR [1,2]. It is noted that classical symmetric Euler gyroscopes (SEG) with50
electrostatic suspensions have drift angular velocities values of 10 -5 angular deg/hr in terrestrial conditions,51
which is a better accuracy level than that of fiber optic (FOG) and laser (LG) gyroscopes, i.e. gyros based on52
new physical measurement principles in which drift angular velocities values are in the range of 10 -4 -10 -353
angular deg/hr, respectively [2]. Considering the fact that rotary classical Euler gyroscopes with magnetic active54
and magnetic resonance suspensions are still being developed and manufactured, it can be stated that studies55
concerning angular motions of the rotor’s axis of proper rotation, which characterize its errors, are relevant. In56
this aspect, for a symmetric Euler gyroscope designed for GTR validation [1,4], the parameters of its regular57
precession are evaluated, i.e. its errors, including the Poinsot analysis. A fundamental presentation of the theory58
of symmetric Euler gyroscopes with the Poinsot and McCullagh analyses of motion is given in [5][6].59

It should be recalled that elementary particleselectrons, protons, etc. are essentially Euler gyroscopes [3] (one60
can say that the entire Universe consists of corpuscular Euler gyroscopes), which also emphasizes the relevance61
of this study.62

4 b) Formulation of the problem63

The solution to the problem of inertial motion of a symmetric Euler gyroscope is well known and described64
in many works, in particular, in [1][2]. This motion is regular precession, characterized by a constant angle of65
nutation between the kinetic moment axis, superimposed with the inertial basis axis, and the axis of SEG proper66
rotation. At the same time, the angular velocities of precession and nutation are constant.67

The indicated properties have found application in [4] in the process of preparation of an experiment to68
validate the general theory of relativity using a SEG and a telescope on an artificial Earth satellite when solving69
the problem of selection of relations between the primary moments of inertia that provide very low angular70
precession velocities. In the experiment [1], drift angular velocities values were less than 10 -11 angular deg/hr,71
which validated the Einsteinian general theory of relativity with an error of less than 1%.72

It should be noted that the solution to the problem of regular precession was possible with the following73
restrictions on the initial Euler angles [6, formulas (2.39), (2.41)]:74

where G is the kinetic moment; r 0 is the SEG proper rotation angular velocity component; C is the primary75
moment of SEG inertia around the same axis.76

This paper sets the task of finding the solution to the problem of SEG motion for arbitrary initial angles not77
only along the precession angle 0 ? , but also along the initial angles of nutation and proper rotation. The78
Poisson differential kinematic equations are used for this purpose. To clarify the problem formulation, let us cite79
a statement on this subject from the work ??6, p. 79]. The first step in solving the problem is to determine the80
angular velocities of the body. This is solved analytically regardless of the Euler angles. The second step consists81
of determining the Euler angles by integrating the kinematic equations due to the angular velocities found in the82
first step. This long and arduous process is eased by applying the kinetic moment theorem and the method of83
selection of a coordinate system, one of the axes of which coincides with the kinetic moment vector [5][6], etc.84
For this article, we chose the way of integration of the matrix differential equations in quaternions, as well as of85
Poisson equations by means of solving the Cauchy problem with arbitrary initial angles, which is not related to86
the special selection of a coordinate system, one of the axes of which is directed along the kinetic moment vector87
of the SEG.88

5 II.89

On the Influence of Initial Conditions for Kinematic Equations on the Nature of Motions in a Symmetric Euler90
Gyroscope91

In this section, we set the task to clarify the range of values of the initial Euler angles for the kinematic92
equations of the symmetric Euler gyroscope, with which they are reduced to identities -after substituting their93
analytical solutions given in [7], as well as the solutions of dynamic equations given in [6]. Since these solutions94
describe regular precession, we are talking about the initial conditions under which it is observed, and under95
which it is not.96

Dynamic equations for a symmetric Euler gyroscope have the form ??7, p. 126]: ? ? ? ? const r r dt dr dt dr97
C rp C A dt dq A qr A C dt dp A ? ? ? ? ? ? ? ? ? ? 0 ; 0 ; 0 0 0 (A.1)98

The kinematic Euler equations ??7, p. 115]: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?99
? cos sin cos sin cos sin sin r q p (A.2)100

The solutions of these equations obtained in ??7, p. 37 ]: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 0 1101
0 0 0 cos ; ; cos ; ? ? ? ? ? ? ? ? n r n t n const G Cr G Cr A G n nt (A.3) G Cr const const 0 0 0 0 cos ; 0 ;102
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? ? ? ? ? ? ? , Where G r , 0 are the constants, ? ? 2 0 2 2 2 2 2 2 r C q A p A G ? ? ? . Equations (A.2),103
resolved in relation to ? ? ? ? ? ? , , [ [6, p. 46]: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?104
? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? C A G A n n H G C A G r r t q t p ? ? ? ? ? ? ? ? ? ? ? ? ? ?105
? ? (A.5)106

Substitution of solutions into equations (A.4) Substituting (A.5) into (A.4), we obtain, in consideration of107
(A.3) for the third equation in (A.4):(A.6)108

The equality (A.6) is reduced to an identity when0 0 ? ? ; ? ? ,... 3 , 2 , 1 2 ? ? m m ? . (A.7)109
That is, the angle 0 ? should be zero. For the equation (A.2) of the system (A.4) we have:? ? ? ? ? ? 0 0 10110

sin cos cos sin 0 ? ? ? ? ? ? ? ? ? ? ? ? ? t t t t ? ? ? ? ? ? ? ? 0 10 0 10 sin sin 0 ? ? ? ? ? ? ? ? ? ? ? t t111
? ? (A.8)112

The equality (A.8) is reduced to an identity at the angles 0? = 0; ? ? ,... 3 , 2 , 1 ? ? m m ? .113
For the angle nt ? 0 ? from the first equation in (A.4) we have:? ? A G q p n ? ? ? ? ? ? sin cos sin (A.9)114
In consideration of (A.3) and (A.5) we obtain: That is, we obtain the relations (A.7) once again. This means115

that the equation (A.9) is reduced to an identity with 0 ? ? ? ; t n 1 ? ? for any value of 0 ? . From (A.9) it116
also follows that when? ? 0 10 0 10 0 cos cos sin ? ? ? ? ? ? ? ? ? ? ? t t A G ? ? 0 10 10 0 10 10 cos cos ? ?117
? ? ? ? ? ? ? ? G A A G © 2020 Global Journals? ? 0 ? ? of the initial value of the angle 0 ? is varied, i.e. for118
? ? 0 0 ? ? ? ? ? ?119

, the equality (A.9) is not reduced to an identity. From these calculations, we conclude that regular precession120
in a symmetric Euler gyroscope is possible only with the following values of the initial angles:G Cr const const121
0 0 0 0 cos ; 0 ; ? ? ? ? ? ? ? (A.10)122

With any other initial values of the Euler angles, the equations (A.4) are reduced to identities with other123
solutions that do not coincide with the functions (A.3).124

The relevance of the article is further reinforced by publications [4][5][6][7].125

6 III.126

7 Problem Solution127

In this article, we use the method of integration of quaternion and Poisson matrices that are non-degenerate for128
any angle value of the equation:129

(2)130
The choice of the two types of equations is related to their widespread use in science and technology, it also131

enables comparison of their solutions. The coefficients and variables included in the differential equations ( 2)132
are indicated below.133

Following [6], we present the Euler rotation angles diagram depicting the inertialess frames of the cardan134
suspension according to Fig. 1. Let us associate the moving coordinate system Oxyz (corresponds to the135
coordinate system O1’2’3’ in [6]) with the gyroscope body, and also introduce inertial coordinate systems: the136
expanded O???, system, which coincides with the coordinate system Oxyz at the initial moment, and the original137
system ?? ? ? ? ? ? , relative to which the coordinate system ???? is rotated at the initial angles ? ? ,? ? ,? ?138
. Figure ?? shows a similarly constructed diagram of the same gyroscope, but for the Euler -Krylov angles (?, ?,139
?).? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? cos sin sin cos sin cos sin q p ctg r140
dt d q p dt d q p dt d ? ? ? ? . 0 ; 2 1 1 1 E N N t P dt dN ? ? ? ? ? ? ; ; 1 1 1 E t A A t P dt dA ? ? Fig.1141

Fig. ?? The following scheme [12] corresponds to the rotation diagram of the introduced systems according142
to Fig. 1:xyz ? N ? N ? ? ? 1 1 1 1 1 0 0 0 0 0 , , ? ? ? ? ? ? ??? ? ? ? ~xyz ? N ? ? ? ??? , ? ? ? , 0 1 N N143
N ? (3)144

where ? ? , ? ? , ? ? , N ? =N(0) are the initial angles of SEGrotation and the corresponding quaternion145
matrix [10,11]; ? 1 , ? 1 , ? 1 , N 1 are the rotation angles corresponding to the matriciant N 1 , when N ? =?146
(? is the identity matrix); ?, ?, ?, N are the angles of the resulting rotation and the corresponding quaternion147
matrix of the resulting rotation.148

Following the technique described in [8,9] for matrices of directional cosines, we find the analytical solution for149
the quaternion matrix N 1 based on kinematic equations. Note that the quaternion matrices are related to the150
matrices of directional cosines of the angles by the relation A=M T N [10,11]. In the article [8], the formulas for151
the angular velocities p, q, r of the gyroscope are solutions of the dynamic equations of the SEG, which had the152
initial angular velocity p(0)=q(0)=0; r(0)=R, and which was affected by the impact to the axis of the gyroscope153
figure in the form of a rotational pulse ? ? around the axis Ox (hereinafter, ? ? =? ? is the kinetic moment from154
the impact). The dynamic Euler equations for a gyroscope with a dynamic axis of symmetry have the following155
form [8]:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? A A C r dt dr p dt dq t I dt d A M q dt dp ; 0 0 0156
(4)157

p, q, r are the components of the vector of angular velocity of rotation of the gyroscope in the axes associated158
with it; I (t) is the unit function. For initial conditions t=0; p(0)=0; q(0)=0; r(0)=R The solution to the system159
of differential equations (2) has the following form:. ; ; sin ; cos 0 A H A M a R r t a q t a p x ? ? ? ? ? ? ? (5)160

The transformation of coordinate systems from theinertial O??? to the moving Oxyz, in consideration of the161
initial inertial coordinate system ?? ? ? ? ? ? , according to (3) is determined by the relations:? ? ? ?? ? ? ?162
T ? ? ? T ? ? ? T A A A xyz ? ? ? ? ? ? ? ? 0 1163
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7 PROBLEM SOLUTION

or, equivalently, through quaternion matrices [10], [11]:? ? ? ? ? ?? ? ; 0 0 1 1 ? ? ? ? T T T N M M N xyz164
? ? ? ? (6) ? ? ? ? ? ? ? ?, 0 0 0 ; ; 0 ; 1 1 1 1 1 N M A N M A N N N N N N N T T ? ? ? ? ? ? ?165

where N, A are the quaternion matrix and the matrix of directional cosines of the resulting rotation; N 1 , A166
1 are the matriciants; N ? , N ? , N ? are the quaternion matrices of the corresponding simplest rotations. At167
the same time, M and N are the corresponding types of quaternion matrices [10,11].168

The matrix of directional cosines of the Euler angles for Fig. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1169
1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? A (7)170

The matrix of directional cosines of the Euler-Krylov angles (Fig. ??), which is equal to the matrix (7) ? ? ?171
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? k A (8)172

The matrix N 1 corresponding to N 1 (0)=E, i.e. to theangles ?(0)=?(0)=?(0)=0 (that is, the matriciant),173
can be determined by integrating the quaternion matrix equation [10,11]: (10) Which means that it satisfies the174
condition P(t)=P(t+?); ?=2?/?. Therefore, the system ( ??) is Lyapunov reducible [8]. By means of substitution?175
? ? ? . 0 ; 2 1 1 1 E N N t P dt dN ? ? (9) 12 Year 2020 Global Journal of Researches in Engineering ( ) Volume176
Xx X Issue I V ersion I D ? ? . ; 0 0 0 0 0 0 0 0 1 0 1 1 1 2 1 3 1 1 1 0 1 3 1 2 1 2 1 3 1 0 1 1 1 3 1 2 1 1 1 0 1 ?177
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?178
N p? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? t a t a R t a R t a t a R t a R t a t a t P1 N N N Z179
? ? (11)180

The system ( ??), ( ??0) is reduced to an equivalent differential equation with constant coefficients .Z B Z N181
P dt dN ?(12)182

. 0 00 0 0 0 0 0 ; 1 1 1 1 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?183
? ? ? ? ? ? ? ? ? ? ? a R a R R a R a P N B ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (13) . 2 sin ; 0 ; 2 cos ; 3 2 1 0184
1 t t A C R R ? ? ? ? ? ? ? ? ? ? ?185

Given these formulas, we have:186
.2 cos 0 0 2 sin 0 2 cos 2 sin 0 0 2 sin 2 cos 0 2 sin 0 0 2 cos ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?187

? ? ? ? t t t t t t t t N (14)188
The equivalence of equations ( ??) and ( 12), ( ??3) is confirmed by the fulfillment of the identity? ? B P N189

PN N ? ? ? ? ? ? ? 1 1 ? (15)190
The solution to the equation ( 12) with constant coefficients is the Cauchy formula:? ? ? ? ? ?, 0 0 1 Z Z N191

L t L N ? ? (16)192
where L(t) is the fundamental matrix of solutions; N Z (0) is the matrix of initial values of the angles, equal,193

by condition, to the identity matrix: N Z (0)=E.194
After finding the fundamental matrix of solutions and a number of transformations, let us write down the195

expression (16) in the form:? ? ? ? ? ? ? ? . ; ; ; ; 0 2 sin 2 cos 2 / 1 2 1 2 0 1 3 0 1 nt n R a d R d a N D E N196
t t Z Z ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (17)197

After transformations, the matriciant takes the form:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2198
cos 2 sin 0 2 sin 2 sin 2 cos 2 sin 0 0 2 sin 2 cos 2 sin 2 sin 0 2 sin 2 cos 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? n a n R199
n a n R n R n a n R n a N Z (18)200

From the expression (11) we have:? ? ? ? 0 0 ; 1 1 N N N N N N N N N Z T Z T ? ? ? ? ? ; 1 N = ) ( 1 ??201
N ? (k=0,1,2,3). (19)202

In consideration of ( ??3), ( ??4) and ( ??8), the expanded expression for the quaternion matriciant N 1 is203
derived below.204

Since? ? ? ? 0 0 1 N N N N N N Z T ? ? ?205
, we have the following expression for the quaternion matrix of the resulting rotation N for nonzero initial206

conditions:207
. 03 02 01 000 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?208

n n n n n n n n n n n n n n n n n n n n N a a a a a a a a a a a a a a a a209
Formulas for the components of the quaternion matrix N: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?210

? ? ? ? ? ? ? ? ? ? ? ? ? ? 03 0? ? 3 , 0 ? ? i n ai i a ? ,(21)211
We have the explicit form of the formulas for the components of the quaternion matriciant N 1 : ? ? ? ? ? ?212

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ,(22)213
For regular precession, the angles of the initial orientation and the components of the initial quaternion are214

expressed by the formulas: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? n n n n H H tg x ? ? ? ? (23)215
In this regard, we have: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?0 1 0 0 2 0 1 0 0 1 0 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ?216

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? nt t n a nt t n R nt t n nt t n R nt t nt t n a n nt t n R nt t217
nt t n a n nt t n a nt t n R nt t n (24)218

After that, let us similarly determine the trigonometric functions for the Euler-Krylov angles ?, ?, on the basis219
of the matrix (8) and its quaternion counterpart [8,9]. We have:220

These expressions coincide with formulas (18) [8], confirming the fidelity of the solutions to the problem for221
zero initial Euler-Krylov angles both in the quaternion form and in the form associated with the application of222
the Poisson differential kinematic equations.223

For arbitrary initial Euler-Krylov angles, explicit solutions can be obtained from relations (24), (25) (in (25),224
the ? i must be replaced by values? ? 3 , 0 ? i n i ).225

In turn, for the Euler angles we have the following solutions:(27)226
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In consideration of (22), we obtain the solutions in explicit form:= 2 2 ? 2 2 + 2 2 ? 2 2 2 2 + 2 2 2 2 2 2 +227
2 2 + 2 2 ? 2 2 + 2 2 = 2 2 + 2 2 2 2 2 + 2 2 + 2 2 ? ?2 2 2 + 2 2 ? 2 2 ? 2 2 = (28)228

For regular precession in (24), (25), it is necessary to consider ? ? ?? 2 ?????? ????+ ?? 2 ?? 2 ?+ ?? 1 ??229
?????? ???? ?????? ???? ?????? ????? ?? 1 2 ?? 2 ?????? ????+ ?? 2 ?? 2 ?+ ?? 1 ?? ?????? ???? ?????? ????230
? = ? 0 + ????; tan? = ???? ?(????) 2 + ???? 1 2 = ?? ?? ? ; ??????? = ?? 32 ?? 31 = ?? 2 ?? 3 ? ?? 0 ?? 1231
?? 0 ?? 2 + ?? 1 ?? 3 ?????? ? = ?? 33 = ?? 0 2 + ?? 3 2 ? ?? 1 2 ? ?? 2 2 ??????? = ? ?? 23 ?? 13 = ?? 0232
?? 1 +?? 2 ?? 3 ?? 1 ?? 3 +?? 0 ?? 2 ???????? = ? ?? 21 ?? 11 = 2(?? 0 ?? 3 ??? 1 ?? 2 ) ?? 0 2 +?? 1 2 ???233
2 2 ??? 3(29)234

The result coincided with the classical one, which is expressed by the formulas (A.3, A.5).235
Let us now consider a variant of the solution to the problem for irregular precession. It corresponds to the236

initial angles = = 0; = that differ from the angles (23), which generate regular precession, only by the sign of237
the angle of nutation. After transformations, the formulas for determining the Euler angles for the SEG are:238

(30)239
The expressions (30) suggest that only the change of the sign of the initial angle of nutation -with the other240

two initial angles unchanged -caused the appearance of irregular precession motions in the Euler gyroscope.241

8 b) Solution for the Poisson matrix differential equation242

The transformation of the coordinate system Oxyz from the initial position O??? is characterized by the243
formulas:? ? ? ? , ; 1 1 ? ? ? ? ? A A A A A xyz T ??? (31)244

Where ? ? , ? ? , ? ? are the transformation matrices of the coordinates of the simplest rotations. On the245
other hand, this matrix can be determined by integrating the Poisson matrix kinematic equation: ? ? ? ? ; ; 1246
1 1 E t A A t P dt dA ? ? (32)247

9 ? ? ?248

-form (32), and the matrix of directional cosines of the Euler-Krylov angles (Fig. ??) -form (33). The angular249
velocity tensor for gyroscopes with a dynamic axis of symmetry has the form:? ? 0 cos sin cos 0 sin 0 t a t a t a250
R t a R t P ? ? ? ? ? ? ? ? , (34) That is, it satisfies the condition ? ? ? ? ? ? ? ? ? ? ? 2 ; t P t P .251

As a result of this condition, the system (32) -( ??3) is Lyapunov reducible [13]. Indeed, by substitution252
??????? * = ? ?????? ?? ?? 2 ?????? 2 ?? 0 ? ?????? 2 ?? 0 ?????? ?? ?? ?????? ? * = ?????? ?? 0 ?????? 2253
?? 0 ?????? 2 ?? 0 + 2 ?????? 2 ?? 0 ?????? ?? 0 ?????? ?? ?? ??????? * = ?????? ?? 0 ?????? 2?? 0 ??????254
????+?????? 2?? 0 ?????? ???? ?????? ???? ?????? ?? 0 ?????? 2?? 0 ?????? ?????2 ?????? 2?? 0 ?????? ????255
?????? ???? ; 1 0 0 0 cos sin 0 sin cos ) ( ? ? ? ? ? ? t t t t t ?256

The equivalence of the equations (32) and ( ??6) is confirmed by the validity of the identity? ? ? t ? t P? t ?257
? ? ? ? ? ) ( ) ( ) ( 1 1258

. The differential linear homogeneous equation ( ??6) is solved by the Cauchy formula Where Q(t) is the259
fundamental matrix of solutio provided by the condition, Z(0)=E. After finding the fundamental matrix and260
performing a number of transformations, the solution (38) takes the form: ?1 cos 2 2 2 1 1 2 2 1 R a n n aR n R261
n R Z ? ? ? ? ? From (37) it follows that ? ? ? ?nt n aR t nt n R nt n R t t nt n R nt n R t A ? ? ? ? ? ? ? ?262
? ? ? ? ? ? ? ? ? ? ? ?; ; 0 0 0 0 0 ; 1 1 1 ? ? ? ? ? ? ? R R Z Z a a R R B ij263

The equivalence of the equations (32) and ( ??6) is confirmed by the validity of the identity . The differential264
linear homogeneous equation ( ??6) is solved by the Cauchy formula Q(t) is the fundamental matrix of solutions;265
Z(0) is the matrix of initial values of directional cosines, and as provided by the condition, Z(0)=E. After finding266
the fundamental matrix and performing a number of transformations,? ? ? . ; ; cos sin cos sin cos sin cos 1 sin267
cos 1 2 1 2 2 1 2 2 1 2 1 1 2 2 A C R R R n R nt n a nt n a nt nt n a nt nt nt n aR nt n R n a nt ? ? ? ? ? ? ?268
Z t ? ? ) ( 1269

, as a result, the solution to the equation (32) for a gyroscope with a dynamic axis of symmetry is the matrix270
(matriciant): ? ? ? ? ? 2 1 2 2 2 1 1 2 2 2? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?0 0271
0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?272

Formulas for determining the Euler angles:? ? 3 ; 2 ; 1 , ? j i . (37)273
The equivalence of the equations (32) and ( ??6) is confirmed by the validity of the identity . The differential274

linear homogeneous equation ( ??6) is solved by the Cauchy formula (38) ns; Z(0) is the matrix of initial values275
of directional cosines, and as provided by the condition, Z(0)=E. After finding the fundamental matrix and276
performing a number of transformations, (39) , as a result, the solution to the equation (32) for a gyroscope with277
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? A (44)278

In consideration of this we obtain: After calculations we have:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?279
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?280

(52)281
The obtained formulas coincide with the formulas of the classical solution, but with zero initial angles of282

precession and proper rotation. Let us now consider a variant of the solution to the problem for irregular283
precession.284

For the initial angles = = 0; = that differ from the angles (45), which generate regular precession, only by the285
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11 CONCLUSION

sign of the angle of nutation. After transformations, the formulas for determining the Euler angles for the SEG286
are:287

(53)288
The expressions (53) suggest that only the change of the sign of the initial angle of nutation -with the other289

two initial angles unchanged -caused the appearance of irregular precession motions in the Euler gyroscope.290
IV.291

10 Mathematical Modeling292

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (M.1)293
That is, corresponding to the conditions (23) of regular precession in the Euler angles. The relationship294

between the Euler and the Euler-Krylov angles is established due to the equality of the respective elements of the295
matrices (7) and (8). The graphs in Fig. 3 depict the change of the Euler angles for regular precession. The same296
cannot be said about the graphs in Fig. 4 for the Euler-Krylov angles -where one can see harmonic oscillations297
for the angles ? and ? with a frequency slightly higher than 500 Hz, and for the angle ? , its increscent property298
is evident. When applying a stronger rotational pulse around the axis Ox for which = 4000, unchanged other299
conditions for Fig. 3 and 4, the nature Fig. 4 When applying a stronger rotational pulse / > , with unchanged300
other conditions for Fig. 3 and 4, the nature of the motion does not change (therefore, the graphs are not shown),301
however, for the Euler angles we Additionally, with unchanged parameters of modeling of SEG motions according302
to (M.1), (M.2) (figures 3 and 4), but with the sign of the initial angles of nutation reversed and equal to =303
motion patterns shown in figures 5 and 6 were obtained. In Fig. 5, for the Euler angles, the motion has acquired304
the character of irregular precession, namely, along ? a vibrational pattern with frequencies slightly above 500305
Hz of different amplitudes with oscillation centers shifted by about 0.3 rad. For the angle ? , the velocity sign in306
Fig. 3 has changed to the opposite, and the angle become increscent. The graphs confirm the derived formulas307
(30).308

For the Euler -Krylov angles, the motion is of a qualitatively similar character. At the same time, the motion309
for the Euler Krylov angles has changed dramatically (Fig. 8).310

angle ? began to increase monotonically in the up to 0.45 rad, and the oscillation increased 820 Hz. The angle311
? remains to be in crescent with superimposed oscillations.312

At the same time, the motion for the Euler-Krylov angles has changed dramatically (Fig. 8). The began to313
increase monotonically in the direction of the rotational pulse action, which is novel.314

The angle ? is still oscillatory in nature with a frequency of 820 Hz around the shifted center of oscillations,315
and the angle ? has changed the sign to the opposite in relation to Fig. ??.316

V.317

11 Conclusion318

According to the results of mathematical modeling, it is shown that the motions that correspond to regular319
precession in the Euler angles are independent of the magnitude of the angular velocity a , which is caused by320
the action of the rotational pulse. However, a change of the sign of the initial angle of nutation leads to a sharp321
change in the nature of motion -it becomes irregular, which is reflected in the explanation for Fig. 5. The motion322
along the Euler-Krylov angles radically depends on a : with R a ? , the angle ? becomes monotonically increscent323
in the direction of the pulse action, and the angle of proper rotation changes the sign of its monotonic rotation to324
the opposite. Additionally, in the article: As for corpuscular gyroscopes, based on this study, it can be assumed325
that depending on the application of an external magnetic field over time, not only Larmor precession [14], but326
also ”pseudo-Larmor” precession is possible in them. 1 2327
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Figure 12: Figures 3 and 4
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Figure 14: Fig. 3 ©
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Figure 18: Fig. 5 velocity
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Figure 19: Fig. 7
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Figure 20: Figures 7 and 8
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Let us now apply the obtained formulas to the case of regular precession. We use the initial values = = 0; =328
? in the matrix ? ? associated with this type of precession329
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