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I. Annotation 

t is generally accepted that the only type of motion 
present in a symmetric Euler gyroscope (SEG) is 
regular precession.  This paper proves that regular 

precession is not the only type of motion present, but 
corresponds only to the well-known initial coordinated 
Euler angles. At any other initial angles, motions that 
differ from regular precession occur. In the article, the 
problem is solved analytically in two stages: first, 
angular velocities of the gyroscope are determined 
using differential dynamic equations, at the second 
stage, as a result of integration of differential matrix 
kinematic and differential matrix Poisson equations 
(both with periodic coefficients), final relations about the 
SEG motion with arbitrary initial Euler angles are derived. 
Periodic coefficients are the SEG angular velocities that 
are found as a solution to the dynamic equations. From 
the obtained general formulas, special formulas of 
regular precession for particular coordinated initial Euler 
angles that coincide with the well-known ones are 
derived. For other initial angles, formulas for irregular 
precession are obtained. In addition to the solutions for 
the Euler angles, solutions for the Euler-Krylov angles 
were found, which in some cases provide a more 
explicit geometric interpretation of motion. The analytical 
results are supported by mathematical modeling. In 
particular, certain conditions were found – the “strong 
impact” condition when irregular SEG precession for the 
Euler-Krylov angles occurs in the direction of the 
rotational pulse, and the sign of the angular velocity of 
the gyroscope proper rotation changes to the opposite. 
At the Euler angles, the motions of irregular precession 
during the “strong” and “weak” impact conditions are 
qualitatively identical. In relation to the case of regular 
precession under the “strong” impact conditions, the 
changes are significant: the angles of precession and 
nutation become oscillatory, and the angular velocity 
and the angle of proper rotation change their sign to the 
opposite. 

a) Relevance 
Modern gyroscopic technology has achieved 

the highest accuracy in measuring angular motion 
parameters of moving objects (MO) in the field of 
classical symmetric Euler gyroscopes  with  electrostatic 
 
 
Author: Yuri Gagarin Saratov State Technical University, Saratov, 
410016, Russia. e-mail: plotnikovpk@mail.ru 

suspension. In the US Gravity Probe experiment, the 
four axially symmetric Euler gyroscopes with 
electrostatic cryogenic suspension mounted on the 
astronomical Earth satellite had values of drift angular 
velocities of less than 10-11 angular deg/hr. This, 
together with the telescope readings, experimentally 
confirms the Einsteinian general theory of relativity (GTR) 
by detecting a gyro axis shift with the accuracy of 1% 
equal to 6.6 angular seconds per year, which is 
effectively predicted by the GTR [1, 2]. It is noted that 
classical symmetric Euler gyroscopes (SEG) with 
electrostatic suspensions have drift angular velocities 
values of 10-5 angular deg/hr in terrestrial conditions, 
which is a better accuracy level than that of fiber optic 
(FOG) and  laser (LG) gyroscopes, i.e. gyros based on 
new physical measurement principles in which drift 
angular velocities values are in the range of 10-4-10-3 

angular deg/hr, respectively [2]. Considering the fact 
that rotary classical Euler gyroscopes with magnetic 
active and magnetic resonance suspensions are still 
being developed and manufactured, it can be stated 
that studies concerning angular motions of the rotor's 
axis of proper rotation, which characterize its errors, are 
relevant. In this aspect, for a symmetric Euler gyroscope 
designed for GTR validation [1, 4], the parameters of its 
regular precession are evaluated, i.e. its errors, including 
the Poinsot analysis. A fundamental presentation of the 
theory of symmetric Euler gyroscopes with the Poinsot 
and McCullagh analyses of motion is given in [5–6].  

It should be recalled that elementary particles - 
electrons, protons, etc. are essentially Euler gyroscopes 
[3] (one can say that the entire Universe consists of 
corpuscular Euler gyroscopes), which also emphasizes 
the relevance of this study. 

b) Formulation of the problem 
The solution to the problem of inertial motion of 

a symmetric Euler gyroscope is well known and 
described in many works, in particular, in [1-2]. This 
motion is regular precession, characterized by a 
constant angle of nutation between the kinetic moment 
axis, superimposed with the inertial basis axis, and the 
axis of SEG proper rotation. At the same time, the 
angular velocities of precession and nutation are 
constant. 

The indicated properties have found application 
in [4] in the process of preparation of an experiment to 
validate the general theory of relativity using a SEG and 
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a telescope on an artificial Earth satellite when solving 
the problem of selection of relations between the 
primary moments of inertia that provide very low angular 
precession velocities. In the experiment [1], drift angular 
velocities values were less than 10-11 angular deg/hr, 
which validated the Einsteinian general theory of 
relativity with an error of less than 1%. 

It should be noted that the solution to the 
problem of regular precession was possible with the 
following restrictions on the initial Euler angles [6, 
formulas (2.39), (2.41)]: 

where G is the kinetic moment; r0 is the SEG proper 
rotation angular velocity component; C is the primary 
moment of SEG inertia around the same axis. 

This paper sets the task of finding the solution 
to the problem of SEG motion for arbitrary initial angles 

not only along the precession angle 0 , but also along 

the initial angles of nutation and proper rotation. The 
Poisson differential kinematic equations are used for this 
purpose. To clarify the problem formulation, let us cite a 
statement on this subject from the work [6, p. 79]. The 
first step in solving the problem is to determine the 
angular velocities of the body. This is solved analytically 
regardless of the Euler angles. The second step 
consists of determining the Euler angles by integrating 
the kinematic equations due to the angular velocities 

found in the first step. This long and arduous process is 
eased by applying the kinetic moment theorem and the 
method of selection of a coordinate system, one of the 
axes of which coincides with the kinetic moment vector 
[5-6], etc. For this article, we chose the way of 
integration of the matrix differential equations in 
quaternions, as well as of Poisson equations by means 
of solving the Cauchy problem with arbitrary initial 
angles, which is not related to the special selection of a 
coordinate system, one of the axes of which is directed 
along the kinetic moment vector of the SEG. 

II. On the Influence of Initial 
Conditions for Kinematic Equations 

on the Nature of Motions in a 
Symmetric Euler Gyroscope 

In this section, we set the task to clarify the 
range of values of the initial Euler angles for the 
kinematic equations of the symmetric Euler gyroscope, 
with which they are reduced to identities - after 
substituting their analytical solutions given in [7], as well 
as the solutions of dynamic equations given in [6]. Since 
these solutions describe regular precession, we are 
talking about the initial conditions under which it is 
observed, and under which it is not.  

Dynamic equations for a symmetric Euler 
gyroscope have the form [7, p. 126]: 

 

 

constrr
dt

dr

dt

dr
C

rpCA
dt

dq
A

qrAC
dt

dp
A







0;0;0

0

0

     (A.1) 

The kinematic Euler equations [7, p. 115]: 
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      (A.2) 

The solutions of these equations obtained in [7, p. 37]: 
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G
Cr

constconst 0
000 cos;0  ;   , 



Where Gr ,0  are the constants,   2
0

222222 rCqApAG  . 

Equations (A.2), resolved in relation to    ,, [ [6, p. 46]: 

 
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d

qp
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d

qp
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d

     (A.4) 

Considering the solutions of equations (A.1) and the designations from [6, p. 88] we have: 
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 (A.5) 

Substitution of solutions into equations (A.4) 
Substituting (A.5) into (A.4), we obtain, in consideration of (A.3) for the third equation in (A.4):     

    (A.6) 

The equality (A.6) is reduced to an identity when 

00  ;  ,...3,2,12  mm  .     (A.7) 

That is, the angle 0  should be zero. For the equation (A.2) of the system (A.4) we have: 

    0010 sincoscossin0   tttt   

   010010 sinsin0   tt      (A.8) 

The equality (A.8) is reduced to an identity at the angles 0 = 0;  ,...3,2,1 mm . 

For the angle nt0  from the first equation in (A.4) we have: 

 
A

Gqpn  


sin
cossin

     (A.9) 

In consideration of (A.3) and (A.5) we obtain: 

  0100100 coscossin   tt
A

G
  

01010010
10 coscos 




G

A

A

G
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𝑟𝑟0 −
𝐺𝐺
𝐴𝐴

cos 𝜃𝜃0 = 𝑟𝑟0 − 𝜔𝜔10
sin 𝜑̇𝜑𝑡𝑡 ∙ sin(𝜑̇𝜑𝑡𝑡 + 𝜑𝜑0) + cos 𝜑̇𝜑𝑡𝑡 ∙ cos(𝜑̇𝜑𝑡𝑡 + 𝜑𝜑0)

tan𝜃𝜃0

                                                          − G
𝐴𝐴

sin𝜃𝜃0 = −𝜔𝜔10 cos(𝜑̇𝜑𝑡𝑡 + 𝜑𝜑0 − 𝜑̇𝜑𝑡𝑡) = − 𝜔𝜔10 cos𝜑𝜑0

−
G
𝐴𝐴
∙
𝐴𝐴𝜔𝜔10

𝐺𝐺
= −𝜔𝜔10 cos𝜑𝜑0 ≈ −𝜔𝜔10 = −𝜔𝜔10 cos𝜑𝜑0
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 That is, we obtain the relations (A.7) once again. This means that the equation (A.9) is reduced to an identity 

with 0  ;  tn1  for any value of 0 . From (A.9) it also follows that when  0  of the initial value of the 

angle 0  is varied, i.e. for  00   , the equality (A.9) is not reduced to an identity. 

 From these calculations, we conclude that regular precession in a symmetric Euler gyroscope is possible 
only with the following values of the initial angles: 

G
Cr

constconst 0
000 cos;0;  

   
(A.10) 

With any other initial values of the Euler angles, the equations (A.4) are reduced to identities with other 
solutions that do not coincide with the functions (A.3). 

The relevance of the article is further reinforced by publications [4-7]. 

III. Problem Solution 

a) Quaternion problem solution 
Instead of integrating the degenerate Euler equations 

,        (1) 

In this article, we use the method of integration of quaternion and Poisson matrices that are non-degenerate 
for any angle value of the equation: 

           (2) 

The choice of the two types of equations is 
related to their widespread use in science and 
technology, it also enables comparison of their 
solutions. The coefficients and variables included in the 
differential equations (2) are indicated below. 

Following [6], we present the Euler rotation 
angles diagram depicting the inertialess frames of the 
cardan suspension according to Fig. 1. Let us associate 
the moving coordinate system Oxyz (corresponds to the 
coordinate system O1’2’3’ in [6]) with the gyroscope 
body, and also introduce inertial coordinate systems: 
the expanded Oξηζ, system, which coincides with the 
coordinate system Oxyz at the initial moment, and the 
original system Оξнηнζн, relative to which the coordinate 
system Оξηζ is rotated at the initial angles Ψо,Θо,Φо. 
Figure 2 shows a similarly constructed diagram of the 
same gyroscope, but for the Euler - Krylov angles        
(ψ, ϴ, φ). 
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Fig.1 

 

Fig. 2 

The following scheme [12] corresponds to the rotation diagram of the introduced systems according to Fig. 1: 

xyz
АNАN

ННН

111

11

000

00 ,,




~
xyz

АN
ННН



,
  

,0
1NNN 

       (3) 

where Ψо, Θо, Φо, Nо=N(0) are the initial angles of 
SEGrotation and the corresponding quaternion matrix 
[10, 11]; Ψ1, Θ1, Φ1, N1 are the rotation angles 
corresponding to the matriciant N1, when Nо=Е (Е is the 
identity matrix); Ψ, Θ, Φ, N are the angles of the resulting 

rotation and the corresponding quaternion matrix of the 
resulting rotation. 

Following the technique described in [8, 9] for 
matrices of directional cosines, we find the analytical 
solution for the quaternion matrix N1 based on kinematic 
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equations. Note that the quaternion matrices are related 
to the matrices of directional cosines of the angles by 
the relation A=MTN [10, 11]. In the article [8], the 
formulas for the angular velocities p, q, r of the 
gyroscope are solutions of the dynamic equations of the 
SEG, which had the initial angular velocity p(0)=q(0)=0; 

r(0)=R, and which was affected by the impact to the 
axis of the gyroscope figure in the form of a rotational 
pulse Мо around the axis Ox (hereinafter, Мо=Нх is the 
kinetic moment from the impact). The dynamic Euler 
equations for a gyroscope with a dynamic axis of 
symmetry have the following form [8]: 

  





















A

AC
r

dt

dr

p
dt

dq

tI
dt

d

A

M
q

dt

dp

;0

0

0

      

(4) 

p, q, r are the components of the vector of angular velocity of rotation of the gyroscope in the axes associated with 
it; I (t) is the unit function. 
For initial conditions 

t=0; p(0)=0; q(0)=0; r(0)=R 

The solution to the system of differential equations (2) has the following form: 

.;;sin;cos 0

A

H

A

M
aRrtaqtap x

   
(5) 

The transformation of coordinate systems from theinertial Oξηζ to the moving Oxyz, in consideration of the 
initial inertial coordinate system Оξнηнζн, according to (3) is determined by the relations: 

      Tннн

T

ннн

T
AAAxyz   01

 
 

or, equivalently, through quaternion matrices [10], [11]: 

       ;0011 Т

ннн
TTT

NMMNxyz                                          (6) 

       ,000;;0; 11111 NMANMANNNNNNN TT  

 

where N, A are the quaternion matrix and the matrix of directional cosines of the resulting rotation; N1, A1 are the 
matriciants; NΦ, NΘ, NΨ are the quaternion matrices of the corresponding simplest rotations. At the same time, M and 
N are the corresponding types of quaternion matrices [10, 11]. 

The matrix of directional cosines of the Euler angles for Fig. 1 when combining the coordinate systems  

  and ННН  : 

.

cossinsinsincos

sinsincoscossincossincossinsincoscos
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11111111111
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(7) 

The matrix of directional cosines of the Euler-Krylov angles (Fig. 2), which is equal to the matrix (7), has the form: 

.

coscoscossinsin

cossinsinsincoscoscossinsinsincossin
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
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
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kA

  

(8) 

The matrix N1 corresponding to N1 (0)=E, i.e. to theangles Ψ(0)=Θ(0)=Φ(0)=0 (that is, the matriciant), can 
be determined by integrating the quaternion matrix equation [10, 11]: 

    .0;2 11
1
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(9) 
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




















































N

pr

pr

rp

rp

tP  

The angular velocity matrix in consideration of (5) has the form: 

  ,

0cossin

cos0sin

sin0cos

sincos0





























tataR

taRta

taRta

Rtata

tP

   

(10) 

Which means that it satisfies the condition P(t)=P(t+τ); τ=2π/Ω. 
Therefore, the system (9) is Lyapunov reducible [8]. By means of substitution 

1NNNZ         (11) 

The system (9), (10) is reduced to an equivalent differential equation with constant coefficients 

.ZB
Z NP

dt

dN
                                                       (12) 

.

00

00

00

00

;

1

1

1

1

0123

1032

2301

3210























































aR

aR

Ra

Ra

PN B









   

(13) 

.
2

sin;0;
2

cos; 32101
tt

A

C
RR    

Given these formulas, we have: 

.

2
cos00

2
sin

0
2

cos
2

sin0

0
2

sin
2

cos0
2

sin00
2

cos

































tt

tt

tt

tt

N

    

(14) 

The equivalence of equations (9) and (12), (13) is confirmed by the fulfillment of the identity 

  BPNPNN  





11 
      (15) 

The solution to the equation (12) with constant coefficients is the Cauchy formula: 

     ,001
ZZ NLtLN        (16) 

where L(t) is the fundamental matrix of solutions; NZ(0) is the matrix of initial values of the angles, equal, by 
condition, to the identity matrix: NZ(0)=E. 

After finding the fundamental matrix of solutions and a number of transformations, let us write down the 
expression (16) in the form: 

© 2020   Global Journals
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 

      .;;

;

;02
sin

2
cos

2/12
1

2

0

13

0

1 ntnRadRda

NDEN

tt

ZZ





















 






  (17) 

After transformations, the matriciant takes the form: 



































2
cos

2
sin0

2
sin

2
sin

2
cos

2
sin0

0
2

sin
2

cos
2

sin

2
sin0

2
sin

2
cos

1

1

1

1









n

a

n

R
n

a

n

R
n

R

n

a
n

R

n

a

NZ    (18) 

From the expression (11) we have: 

   00; 11 NNNNNNNNN Z
T

Z
T   ;  

1N = )(1
акN  (k=0,1,2,3).           (19) 

In consideration of (13), (14) and (18), the expanded expression for the quaternion matriciant N1 is derived below. 
 

Since    001 NNNNNN Z
T
 , we have the following expression for the quaternion matrix of the 

resulting rotation N for nonzero initial conditions: 

.

03

02

01

00

0123

1032

2301

3210

















































n

n

n

n

nnnn

nnnn

nnnn

nnnn

N

aaaa

aaaa

aaaa

aaaa

 

Formulas for the components of the quaternion matrix N: 





















0300210120033

0310200130022

0320230100011

0330220110000

nnnnnnnnn

nnnnnnnnn

nnnnnnnnn

nnnnnnnnn

aaaa

aaaa

aaaa

aaaa

                                (20) 

By marking 

 3,0 inaiia
 ,                                                  (21) 

We have the explicit form of the formulas for the components of the quaternion matriciant N1: 
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2
sin

2
cos

2
cos

2
sin

2
sin

2
sin

2
sin

2
cos

2
sin

2
sin

2
cos

2
cos

1
33

22

11

1
00

ntt

n

Rntt
n

ntt

n

a
n

ntt

n

a
n

ntt

n

Rntt
n

aa

aa

aa

aa



























,       (22) 

For regular precession, the angles of the initial orientation and the components of the initial quaternion are 
expressed by the formulas: 

 

.0;
2

sin;0;
2

cos

;;0;0;0

033
0

022011
0

000

0000











nnnn

H
H

tg x


  

(23) 

In this regard, we have: 

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

0
1

0
33

0
0

0
22

0
3

0
11

0
2

0
00

























aa

aa

aa

aa

nnn

nnn

nnn

nnn

 

In consideration of (23) we obtain: 

2
sin

2
sin

2
cos

2
cos

2
sin

2
cos

2
cos

2
cos

2
sin

2
sin

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

2
sin

2
sin

2
sin

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

2
sin

2
sin

2
sin

2
cos

2
sin

2
sin

2
cos

2
cos

2
cos

0010
3

0100
2

0100
1

0010
0





































ntt

n

antt

n

Rntt
n

ntt

n

Rnttntt

n

a
n

ntt

n

Rnttntt

n

a
n

ntt

n

antt

n

Rntt
n

 (24) 

After that, let us similarly determine the trigonometric functions for the Euler-Krylov angles ψ, ϴ,  on the 
basis of the matrix (8) and its quaternion counterpart [8, 9]. We have: 

���� = −
���

���

=
2(���� − ����)

��
� + ��

� − ��
� − ��

� 
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��� � = ��� = 2(���� + ����) 

     (25) 

Substituting the quaternion components (22) into these formulas, we obtain 

���� =

�
�

��� � �

��

�� ��� � � +
��

�

���
; 

 

��� � =
���

��
(1 − ��� � �); 

 

    (26) 

These expressions coincide with formulas (18) [8], confirming the fidelity of the solutions to the problem for 
zero initial Euler-Krylov angles both in the quaternion form and in the form associated with the application of the 
Poisson differential kinematic equations. 

For arbitrary initial Euler-Krylov angles, explicit solutions can be obtained from relations (24), (25) (in (25), 

the λi must be replaced by values  3,0ini ). 

In turn, for the Euler angles we have the following solutions: 

 

    (27) 

 

      

 
In consideration of (22), we obtain the solutions in explicit form: 
 

���� =

�
�

���
��
2

���
��
2

�− ���
��
2

���
��
2

+
��

�
���

��
2

���
��
2

� −
�
�

���
��
2

���
��
2

����
��
2

���
��
2

+
��

�
���

��
2

���
��
2

�

�
�

���
��
2

���
��
2

����
��
2

���
��
2

+
��

�
���

��
2

���
��
2

� +
�
�

���
��
2

���
��
2

�− ���
��
2

���
��
2

+
��

�
���

��
2

���
��
2

�
 

 

��� � = �����
��

2
����

��

2
� + 2

��

�
���

��

2
���

��

2
���

��

2
���

��

2
+

��
�

��
����

��

2
����

��

2
+ ����

��

2
����

��

2
− 

�−2
��

�
���

��

2
���

��

2
+

��
�

��
����

��

2
����

��

2
−

��

��
����

��

2
����

��

2
−

��

��
����

��

2
����

��

2
� 

 

���� =
�

�
���

��

�
���

��

�
����

��

�
���

��

�
�

��
�

���
��

�
���

��

�
��

�

�
���

��

�
���

��

�
�� ���

��

�
���

��

�
�

��
�

���
��

�
���

��

�
�

�

�
���

��

�
���

��

�
�� ���

��

�
���

��

�
�

��
�

���
��

�
���

��

�
��

�

�
���

��

�
���

��

�
����

��

�
���

��

�
�

��
�

���
��

�
���

��

�
�
   (28) 

 

For regular precession in (24), (25), it is necessary to consider  3,0ii  according to the expressions 

(23), and then, after transformations, we obtain: 
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𝑡𝑡𝑡𝑡𝑠𝑠𝜑𝜑 =
−𝑐𝑐𝑠𝑠𝑠𝑠 𝛺𝛺𝑡𝑡�𝑅𝑅1

2

𝑠𝑠2 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑡𝑡+𝑡𝑡2

𝑠𝑠2�+𝑅𝑅1
𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝑡𝑡�
𝑅𝑅1

2

𝑠𝑠2 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑡𝑡+𝑡𝑡2

𝑠𝑠2�+𝑅𝑅1
𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑐𝑐𝑠𝑠𝑠𝑠 𝛺𝛺𝑡𝑡

ψ = ψ0 + 𝑠𝑠𝑡𝑡;

tanΘ =
𝑡𝑡𝐴𝐴

�(𝑡𝑡𝐴𝐴)2 + 𝐶𝐶𝑅𝑅1
2

= 𝑡𝑡 𝑠𝑠⁄ ;

𝑡𝑡𝑡𝑡𝑠𝑠Ψ =
𝑡𝑡32

𝑡𝑡31
=
𝜆𝜆2𝜆𝜆3 − 𝜆𝜆0𝜆𝜆1

𝜆𝜆0𝜆𝜆2 + 𝜆𝜆1𝜆𝜆3

𝑐𝑐𝑐𝑐𝑐𝑐Θ = 𝑡𝑡33 = 𝜆𝜆0
2 + 𝜆𝜆3

2 − 𝜆𝜆1
2 − 𝜆𝜆2

2

𝑡𝑡𝑡𝑡𝑠𝑠Φ = −𝑡𝑡23
𝑡𝑡13

= 𝜆𝜆0𝜆𝜆1+𝜆𝜆2𝜆𝜆3
𝜆𝜆1𝜆𝜆3+𝜆𝜆0𝜆𝜆2

𝑡𝑡𝑡𝑡𝑠𝑠𝜑𝜑 = −𝑡𝑡21
𝑡𝑡11

= 2(𝜆𝜆0𝜆𝜆3−𝜆𝜆1𝜆𝜆2)
𝜆𝜆0

2+𝜆𝜆1
2−𝜆𝜆2

2−𝜆𝜆3
2
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      (29) 

 
The result coincided with the classical one, which is expressed by the formulas (A.3, A.5). 

Let us now consider a variant of the solution to the problem for irregular precession. It corresponds to the 

initial angles �� = �� = 0; ����� =
��

��
 that differ from the angles (23), which generate regular precession, only by 

the sign of the angle of nutation. After transformations, the formulas for determining the Euler angles for the SEG are: 

 

 

  (30) 

The expressions (30) suggest that only the change of the sign of the initial angle of nutation – with the other 
two initial angles unchanged – caused the appearance of  irregular precession motions in the Euler gyroscope. 
 
b) Solution for the Poisson matrix differential equation 
The transformation of the coordinate system Oxyz from the initial position Oξηζ is characterized by the formulas: 

    ,; 11  AAAAAxyz
T       (31) 

Where АΦ, АΘ, АΨ are the transformation matrices of the coordinates of the simplest rotations. On the other hand, 
this matrix can be determined by integrating the Poisson matrix kinematic equation: 

    ;; 11
1

EtAAtP
dt

dA
       (32) 

 










































0

0

0

;
1
33

1
32

1
31

1
23

1
22

1
21

1
13

1
12

1
11

1

pq

pr

qr

tP

aaa

aaa

aaa

A     (33) 

The matrix of directional cosines of the Euler angles for Fig. 1 when combining the coordinate systems 

  and  ННН   – form (32), and the matrix of directional cosines of the Euler-Krylov angles (Fig. 2) – form (33). 

The angular velocity tensor for gyroscopes with a dynamic axis of symmetry has the form: 

 
0cossin

cos0

sin0

tata

taR

taR

tP







 ,     (34) 

That is, it satisfies the condition    






2

;tPtP . 

As a result of this condition, the system (32) - (33) is Lyapunov reducible [13]. Indeed, by substitution 

1)( АtФZ         (35) 

it is reduced to a matrix equivalent differential equation with constant coefficients 

BZ
dt

dZ
 ,       (36) 

© 2020   Global Journals
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Φ = �1 − 𝐶𝐶
𝐴𝐴� �𝑅𝑅𝑡𝑡.

𝑡𝑡𝑡𝑡𝑠𝑠Ψ∗ = −
𝑐𝑐𝑠𝑠𝑠𝑠 𝑠𝑠 𝑡𝑡

2 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛩𝛩0 − 𝑐𝑐𝑐𝑐𝑐𝑐 2𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠 𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐Θ∗ =
𝑐𝑐𝑐𝑐𝑐𝑐 𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 2𝛩𝛩0

𝑡𝑡𝑡𝑡𝑠𝑠2𝛩𝛩0
+ 2 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠 𝑡𝑡

𝑡𝑡𝑡𝑡𝑠𝑠Φ∗ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 2𝛩𝛩0 𝑐𝑐𝑠𝑠𝑠𝑠 𝛺𝛺𝑡𝑡+𝑐𝑐𝑠𝑠𝑠𝑠 2𝛩𝛩0 𝑐𝑐𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝑡𝑡
𝑐𝑐𝑠𝑠𝑠𝑠 𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 2𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝑡𝑡−2 𝑐𝑐𝑠𝑠𝑠𝑠 2𝛩𝛩0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝑡𝑡
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The equivalence of the equations (32) and (36) is confirmed by the validity of the identity 
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. The differential linear homogeneous equation (36) is solved by the Cauchy formula

Where Q(t) is the fundamental matrix of solutio
provided by the condition, Z(0)=E. After finding the fundamental matrix and performing a number of transformations, 
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The equivalence of the equations (32) and (36) is confirmed by the validity of the identity 

. The differential linear homogeneous equation (36) is solved by the Cauchy formula

 

Q(t) is the fundamental matrix of solutions; Z(0) is the matrix of initial values of directional cosines, and as 
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Formulas for determining the Euler angles: 

  3;2;1, ji .  (37) 

The equivalence of the equations (32) and (36) is confirmed by the validity of the identity 

. The differential linear homogeneous equation (36) is solved by the Cauchy formula 

   (38) 

ns; Z(0) is the matrix of initial values of directional cosines, and as 
provided by the condition, Z(0)=E. After finding the fundamental matrix and performing a number of transformations, 

   

(39) 

, as a result, the solution to the equation (32) for a gyroscope with 
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  (42) 

The following kinematic Euler equations correspond to the Poisson equations: 

 
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.    (43) 

Let us now apply the obtained formulas to the case of regular precession. 

We use the initial values �� = �� = 0; ����� = −
��

��
 in the matrix Ао associated with this type of precession 
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In consideration of this we obtain: 
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    (45) 

   (46) 

After conversion we obtain: 

  (47) 

.sin;cos 00
H

Aa

H

CR
     (48) 

    (49) 

The solution (49) coincided with the classical one. 
Let us now determine the value of the angle of nutation Θ: 

��� � = ��� = −���
� ��� �� + ���

� ��� �� 

After calculations we obtain: 

     (50) 

The solution to Θ by the formula (50) also coincides with the classical solution for regular precession. 
Let us now consider a solution in consideration of the angle of proper rotation Φ. 

   (51) 
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tanΨ = 𝑡𝑡32
𝑡𝑡31

= ∑ 𝑡𝑡3𝑘𝑘
1 𝑡𝑡𝑘𝑘2

03
𝑘𝑘=1

∑ 𝑡𝑡3𝑘𝑘
1 𝑡𝑡𝑘𝑘1

03
𝑘𝑘=1

; cosΘ = 𝑡𝑡33 = ∑ 𝑡𝑡3𝑘𝑘
1 𝑡𝑡𝑘𝑘3

03
𝑘𝑘=1 ; tanΦ = −𝑡𝑡23

𝑡𝑡11
= −∑ 𝑡𝑡2𝑘𝑘

1 𝑡𝑡𝑘𝑘3
03

𝑘𝑘=1
∑ 𝑡𝑡1𝑘𝑘

1 𝑡𝑡𝑘𝑘1
03

𝑘𝑘=1
. 

tanΨ = 𝑡𝑡32
𝑡𝑡31

= 𝑡𝑡32
1

𝑡𝑡31
1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛩𝛩0+𝑡𝑡33

1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛩𝛩0

tanΨ =
−𝑡𝑡𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐 𝛩𝛩0⋅
𝑡𝑡𝑅𝑅1
𝑠𝑠2 (1−𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑡𝑡)+𝑐𝑐𝑠𝑠𝑠𝑠 𝛩𝛩0⋅�

𝑡𝑡2

𝑠𝑠2 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑡𝑡+
𝑅𝑅1

2

𝑠𝑠2�

tanΨ = tannt;Ψ = nt = H
A

t; Ψ̇ = H
A

= n

cosΘ = cosΘ0 = RC
H

.

tanΦ = − a23
a11

= −a21
1 sin Θ0+a23

1 cos Θ0
−a11

1 sin Θ0+a13
1 cos Θ0
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After calculations we have: 

     (52) 

The obtained formulas coincide with the formulas of the classical solution, but with zero initial angles of 
precession and proper rotation. 
Let us now consider a variant of the solution to the problem for irregular precession. 

For the initial angles �� = �� = 0; ����� =
��

��
 that differ from the angles (45), which generate regular 

precession, only by the sign of the angle of nutation. After transformations, the formulas for determining the Euler 
angles for the SEG are: 

 

 

   (53) 

The expressions (53) suggest that only the change of the sign of the initial angle of nutation – with the other 
two initial angles unchanged – caused the appearance of  irregular precession motions in the Euler gyroscope. 

IV. Mathematical Modeling 

Figures 3 – 8 show the results of mathematical modeling using the kinematic Euler equations, which confirm 
the obtained analytical results. 

Figures 3 and 4 present graphs of the modeling process for the Euler  ,,  and the Euler-Krylov 

angles change, respectively, for the initial angles 

,0;)0(;)0( 0000000     (M.1) 

That is, corresponding to the conditions (23) of regular precession in the Euler angles. The relationship 
between the Euler and the Euler-Krylov angles is established due to the equality of the respective elements of the 
matrices (7) and (8). 
SEG parameters 

� = 0.1,  �� ⋅ �� ⋅ �; � = 0.2,  �� ⋅ �� ⋅ �;    � = 10�, ���/�;  � = 1570, ���/�; 

 
� = ��

�� − 1�� = 1.57 ⋅ 10�, ���/�    (M.2) 

The graphs in Fig. 3 depict the change of the Euler angles for regular precession. The same cannot be said 

about the graphs in Fig. 4 for the Euler-Krylov angles – where one can see harmonic oscillations for the angles   

and    with a frequency slightly higher than 500 Hz, and for the angle  , its increscent property is evident. 
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tanΦ ∗= −tanΩt Φ ∗= −Ωt, Φ̇ ∗= −Ω.

tanΨ∗ = −
sin n t

2 cos2 Θ0 − cos 2Θ0 cos n t

cosΘ∗ =
cosΘ0 cos 2Θ0

tan2Θ0
+ 2 sin2 Θ0 cosΘ0 cos n t

tanΦ∗ = sin Θ0 cos 2Θ0 sin Ωt+sin 2Θ0 sin nt cos Ωt
sin Θ0 cos 2Θ0 cos Ωt−2 sin 2Θ0 cos nt cos Ωt

Θ0 = − arctan �
aA
Rc
� = −0.308,  rad.
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Fig. 3 
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When applying a stronger rotational pulse 
around the axis Ox for which � = 4000, ���
unchanged other conditions for Fig. 3 and 4, the nature 
 

Fig. 4 

When applying a stronger rotational pulse 
���/� > �, with 

unchanged other conditions for Fig. 3 and 4, the nature 

of the motion does not change (therefore, the graphs 
are not shown), however, for the Euler angles we 

Additionally, with unchanged parameters of 
modeling of SEG motions according to (M.1), (M.2) 

(figures 3 and 4), but with the sign of the initial angles of 

nutation reversed and equal to �� =

motion patterns shown in figures 5 and 6 were obtained. 

 

 

of the motion does not change (therefore, the graphs 
are not shown), however, for the Euler angles we have: 

Additionally, with unchanged parameters of 
motions according to (M.1), (M.2) 

(figures 3 and 4), but with the sign of the initial angles of 

= �� = 0.308���, the 

motion patterns shown in figures 5 and 6 were obtained. 

  
  
 

  

22

Y
e
a
r

20
20

G
lo
ba

l 
J o

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
Vo

lu
m
e 

 X
xX
  

Is
su

e 
I 
V 
er
si
on

 I
  

D

© 2020   Global Journals

For the Euler-Krylov angles in Fig. 6, the 
oscillation amplitudes along 𝑡𝑡 and θ are equal to 0.905 
rad, the frequencies are approximately equal to 870 Hz. 
The angle 𝜑𝜑 is increscent with superimposed frequency 
fluctuations of 1740 Hz.

Ψmax (0.01) ≅ 50rad,Θ = Θ0 = −0.905rad = const,Φmax (0.01) = −15.7rad.

About the Presence of Irregular Precession Motions in a Symmetric Euler Gyroscope



In Fig. 5, for the Euler angles, the motion has 

the character of irregular precession, namely, along 

and   - a vibrational pattern with frequencies slightly 
above 500 Hz of different amplitudes with oscillation 

centers shifted by about 0.3 rad. For the angle 

 

In Fig. 5, for the Euler angles, the motion has acquired 

the character of irregular precession, namely, along   

a vibrational pattern with frequencies slightly 
above 500 Hz of different amplitudes with oscillation 

centers shifted by about 0.3 rad. For the angle  , the 

velocity sign in Fig. 3 has changed to the opposite, and 
the angle become increscent. The graphs confirm the 
derived formulas (30). 

For the Euler - Krylov angles, the motion is of a 
qualitatively similar character. 

Fig. 5 

velocity sign in Fig. 3 has changed to the opposite, and 
ncrescent. The graphs confirm the 

Krylov angles, the motion is of a 
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Fig. 6 
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Fig. 7 
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Figures 7 and 8 show the results of modeling of 
the SEG parameters and motions that correspond to 
figures 5 and 6 with the only difference: angular velocity 

is provided equal to  � = 4000, ���/�, a
result, the nature of motions along the Euler angles (Fig. 
7) did not change qualitatively, while quantitatively, the 

vibration centers moved apart to the angles 

Fig. 8 

Figures 7 and 8 show the results of modeling of 
the SEG parameters and motions that correspond to 
figures 5 and 6 with the only difference: angular velocity 

Ra  . As the 

ns along the Euler angles (Fig. 
7) did not change qualitatively, while quantitatively, the 

vibration centers moved apart to the angles   and to 

  up to 0.45 rad, and the oscillation frequencies 

increased up to 820 Hz. The angle 
crescent with superimposed oscillations.

At the same time, the motion for the Euler
Krylov angles has changed dramatically (Fig. 8). 

angle   began to increase monotonically in the 

 

 

up to 0.45 rad, and the oscillation frequencies 

increased up to 820 Hz. The angle   remains to be in 
crescent with superimposed oscillations. 

At the same time, the motion for the Euler-
Krylov angles has changed dramatically (Fig. 8). The 

began to increase monotonically in the 
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direction of the rotational pulse action, which is novel. 

The angle   is still oscillatory in nature with a frequency 
of 820 Hz around the shifted center of oscillations, and 

the angle   has changed the sign to the opposite in 
relation to Fig. 6. 

V. Conclusion 

According to the results of mathematical 
modeling, it is shown that the motions that correspond 
to regular precession in the Euler angles are 
independent of the magnitude of the angular velocity 

a , which is caused by the action of the rotational 
pulse. However, a change of the sign of the initial angle 
of nutation leads to a sharp change in the nature of 
motion — it becomes irregular, which is reflected in the 
explanation for Fig. 5. The motion along the Euler-Krylov 

angles radically depends on a : with Ra  , the angle 

  becomes monotonically increscent in the direction of 
the pulse action, and the angle of proper rotation 
changes the sign of its monotonic rotation to the 
opposite. Additionally, in the article: 

 It was proven that regular precession in SEG is 
possible only for the initial Euler angles determined 
by the known formulas: 

G
Cr

constconst 0
000 cos;0;   . 

For any other initial angles regular precession is 
not possible. 

 An analytical solution to the problem of the SEG 
motion was found by integrating the matrix 
differential quaternion kinematic equations, as well 
as the Poisson equations. Formulas for determining 
the Euler and the Euler-Krylov angles were derived. 

 The obtained formulas and mathematical modeling 
confirmed that for the angles, that are different from 
the initial Euler angles (1), precession that is 
different from the regular one is present in SEG. 

© 2020   Global Journals
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As for corpuscular gyroscopes, based on this 
study, it can be assumed that depending on the 
application of an external magnetic field over time, not 
only Larmor precession [14], but also “pseudo-Larmor” 
precession is possible in them.

References Références Referencias

1. Peshekhonov V.G. A unique gyroscope provided 
verification of the general theory of relativity // 
Gyroscopy and navigation, 2007, No. 4 (59), pp. 
111 - 114.

2. Peshekhonov V.G. The current state and 
development prospects of gyroscopic systems // 
Gyroscopy and navigation, 2011, No. 1 (72), pp.     
3 - 16.

3. Holahan J. - “Space Aeronautics”, 1959, v. 31, No. 
5, p. 131.

4. Kennon R. A special gyroscope for measuring the 
effects of the general theory of relativity on board an 
astronomical satellite. Design requirements. / In the 
collection "Problems of Gyroscopy", editor G. 
Ziegler, M.: Mir Publishing House, 1967. - pp.     
129 - 143.

5. Grammel R. Gyroscope. His theory and application. 
volume 1. - M.: Publishing house of foreign 
literature, 1952. - 352 p.

6. Magnus K. Gyroscope. Theory and application. -
M.: Mir Publishing House, 1974. - 528 p.

7. Buchholz NN the main course of theoretical
mechanics. Part 2. - M. - L., GRTTL, 1937. - 224 p.

8. Plotnikov P.K. On the effect of shock on the 
movement of the gyroscope. / Saratov, SPI, NPTM-
72, pp. 53 - 62.

9. Plotnikov P.K. Gyroscopic measuring systems. -
Publishing house of Sarat. University, 1976. - 168 p.

10. ChelnokovYu.N. Quaternion and biquaternion 
models and methods of solid mechanics and their 
applications. - M.: Fizmatlit, 2006. - 512 p.

11. Plotnikov P.K., ChelnokovYu.N. Application of 
quaternionic matrices in the theory of finite rotation 
of a solid / Sat. scientific-methodical articles on 
theoretical. mechanics. - M.: Higher School, 1981. -
Issue. 11. - pp. 122 - 129.

12. IshlinskyA.Yu. The mechanics of gyroscopic 
systems. - M.: Publishing House of the Academy of 
Sciences of the USSR. - 1963. - 483 p.

13. Malkin I.G. Theory of motion stability. - M.: 
Fizmatgiz. 1966 . - 531 p.

14. Maleev P.I. New types of gyroscopes. - M.: 
Shipbuilding. 1971. = 160 p.

About the Presence of Irregular Precession Motions in a Symmetric Euler Gyroscope


	About the Presence of Irregular Precession Motions in a Symmetric Euler Gyroscope
	Author	
	I. Annotation
	a) Relevance
	b) Formulation of the problem

	II.	On the Influence of Initial Conditions for Kinematic Equations on the Nature of Motions in a Symmetric Euler Gyroscope
	III.	Problem Solution
	a) Quaternion problem solution

	IV.	Mathematical Modeling
	V.	Conclusion
	References Références Referencias



