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About the Presence of Irregular Precession
Motions in a Symmetric Euler Gyroscope

P.K. Plotnikov

[.  ANNOTATION

t is generally accepted that the only type of motion

present in a symmetric Euler gyroscope (SEG) is

regular precession. This paper proves that regular
precession is not the only type of motion present, but
corresponds only to the well-known initial coordinated
Euler angles. At any other initial angles, motions that
differ from regular precession occur. In the article, the
problem is solved analytically in two stages: first,
angular velocities of the gyroscope are determined
using differential dynamic equations, at the second
stage, as a result of integration of differential matrix
kinematic and differential matrix Poisson equations
(both with periodic coefficients), final relations about the
SEG motion with arbitrary initial Euler angles are derived.
Periodic coefficients are the SEG angular velocities that
are found as a solution to the dynamic equations. From
the obtained general formulas, special formulas of
regular precession for particular coordinated initial Euler
angles that coincide with the well-known ones are
derived. For other initial angles, formulas for irregular
precession are obtained. In addition to the solutions for
the Euler angles, solutions for the Euler-Krylov angles
were found, which in some cases provide a more
explicit geometric interpretation of motion. The analytical
results are supported by mathematical modeling. In
particular, certain conditions were found — the “strong
impact” condition when irregular SEG precession for the
Euler-Krylov angles occurs in the direction of the
rotational pulse, and the sign of the angular velocity of
the gyroscope proper rotation changes to the opposite.
At the Euler angles, the motions of irregular precession
during the “strong” and “weak” impact conditions are
qualitatively identical. In relation to the case of regular
precession under the “strong” impact conditions, the
changes are significant: the angles of precession and
nutation become oscillatory, and the angular velocity
and the angle of proper rotation change their sign to the
opposite.

a) Relevance

Modern gyroscopic technology has achieved
the highest accuracy in measuring angular motion
parameters of moving objects (MO) in the field of
classical symmetric Euler gyroscopes with electrostatic
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suspension. In the US Gravity Probe experiment, the
four axially symmetric Euler gyroscopes with
electrostatic cryogenic suspension mounted on the
astronomical Earth satellite had values of drift angular
velocities of less than 10" angular deg/hr. This,
together with the telescope readings, experimentally
confirms the Einsteinian general theory of relativity (GTR)
by detecting a gyro axis shift with the accuracy of 1%
equal to 6.6 angular seconds per year, which is
effectively predicted by the GTR [1, 2]. It is noted that
classical symmetric Euler gyroscopes (SEG) with
electrostatic suspensions have drift angular velocities
values of 10° angular deg/hr in terrestrial conditions,
which is a better accuracy level than that of fiber optic
(FOG) and laser (LG) gyroscopes, i.e. gyros based on
new physical measurement principles in which drift
angular velocities values are in the range of 10*-10°
angular deg/hr, respectively [2]. Considering the fact
that rotary classical Euler gyroscopes with magnetic
active and magnetic resonance suspensions are still
being developed and manufactured, it can be stated
that studies concerning angular motions of the rotor's
axis of proper rotation, which characterize its errors, are
relevant. In this aspect, for a symmetric Euler gyroscope
designed for GTR validation [1, 4], the parameters of its
regular precession are evaluated, i.e. its errors, including
the Poinsot analysis. A fundamental presentation of the
theory of symmetric Euler gyroscopes with the Poinsot
and McCullagh analyses of motion is given in [5-6].

It should be recalled that elementary particles -
electrons, protons, etc. are essentially Euler gyroscopes
[3] (one can say that the entire Universe consists of
corpuscular Euler gyroscopes), which also emphasizes
the relevance of this study.

b) Formulation of the problem

The solution to the problem of inertial motion of
a symmetric Euler gyroscope is well known and
described in many works, in particular, in [1-2]. This
motion is regular precession, characterized by a
constant angle of nutation between the kinetic moment
axis, superimposed with the inertial basis axis, and the
axis of SEG proper rotation. At the same time, the
angular velocities of precession and nutation are
constant.

The indicated properties have found application
in [4] in the process of preparation of an experiment to
validate the general theory of relativity using a SEG and
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a telescope on an artificial Earth satellite when solving
the problem of selection of relations between the
primary moments of inertia that provide very low angular
precession velocities. In the experiment [1], drift angular
velocities values were less than 10" angular deg/hr,
which validated the Einsteinian general theory of
relativity with an error of less than 1%.

It should be noted that the solution to the
problem of regular precession was possible with the
following restrictions on the initial Euler angles [6,
formulas (2.39), (2.41)]:

_ Cr/
cos@ =const= OG’

where G is the kinetic moment; r, is the SEG proper
rotation angular velocity component; C is the primary
moment of SEG inertia around the same axis.

This paper sets the task of finding the solution
to the problem of SEG motion for arbitrary initial angles

Y, =const; @ =0

not only along the precession angle ¥o, but also along
the initial angles of nutation and proper rotation. The
Poisson differential kinematic equations are used for this
purpose. To clarify the problem formulation, let us cite a
statement on this subject from the work [6, p. 79]. The
first step in solving the problem is to determine the
angular velocities of the body. This is solved analytically
regardless of the Euler angles. The second step
consists of determining the Euler angles by integrating
the kinematic equations due to the angular velocities

found in the first step. This long and arduous process is
eased by applying the kinetic moment theorem and the
method of selection of a coordinate system, one of the
axes of which coincides with the kinetic moment vector
[5-6], etc. For this article, we chose the way of
integration of the matrix differential equations in
quaternions, as well as of Poisson equations by means
of solving the Cauchy problem with arbitrary initial
angles, which is not related to the special selection of a
coordinate system, one of the axes of which is directed
along the kinetic moment vector of the SEG.

[I.  ON THE INFLUENCE OF INITIAL
CONDITIONS FOR KINEMATIC EQUATIONS
ON THE NATURE OF MOTIONS IN A
SYMMETRIC EULER GYROSCOPE

In this section, we set the task to clarify the
range of values of the initial Euler angles for the
kinematic equations of the symmetric Euler gyroscope,
with which they are reduced to identities - after
substituting their analytical solutions given in [7], as well
as the solutions of dynamic equations given in [6]. Since
these solutions describe regular precession, we are
talking about the initial conditions under which it is
observed, and under which it is not.

Dynamic equations for a symmetric Euler
gyroscope have the form [7, p. 126]:

Ad—p+(C—A)qr:O

dt
d.
A 4 (4-Chp=0 (A1)
dt
Cﬁ:o; ﬂ:O; r =1, = const
dt dt
The kinematic Euler equations [7, p. 115]:
p=ysinfsinp+6Hcosp
g =y sinfcosp—0Osing (A.2)
r=ycosl+¢o
The solutions of these equations obtained in [7, p. 37]:
W =nt+y,; n= %
C
Cosﬂz%:i' 9200 = const (A.3)
p=nt+@,; n, =r, —ncoso,
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Where %> G are the constants, G’ = (A2p2 + A2q2)+ Czroz_
Equations (A.2), resolved in relation to v, 0, (b[ [6, p. 46]:

dy _(psing+qcosp)
dt - sin6’

ﬁ:(cos—sin)
dt pCosg—gsmg

%zr—ctg@-(psin(o+qcos¢)

Considering the solutions of equations (A.1) and the designations from [6, p. 88] we have:

P=0, =0,sInVt; q=0,=00,,C08V; F=r =0;

G’ =Aw), +C’w; G =H; @=n =v;
. ) A A
n=y; sin@, = Dio : tan @, = Do
G Cow,,

Substitution of solutions into equations (A.4)
Substituting (A.5) into (A.4), we obtain, in consideration of (A.3) for the third equation in (A.4):

sin ¢t - sin(@t + ¢@g) + cos ¢t - cos(pt + ¢q)

Ty —Zcosﬂo =1y — Wqp

tan 6,
G . . .
— - sinfy = —wyg cos(@t + @y — Pt) = — wyy COS P
G Awqy
- Z G = —W1p0 COS@Pp = —wW19 = —wW1p COS Py

The equality (A.6) is reduced to an identity when
@, =0. £2mm (m=123,..)

That is, the angle %o should be zero. For the equation (A.2) of the system (A.4) we have:
0=0, (sin ot - cos((pt + @, )— cos¢r - sin(gbt + @, ))
0=0w, Sin((bt —pt— g, ) = Sin(("o)

The equality (A.8) is reduced to an identity at the angles @o = 0; £ 7m (m = 1,2,3,'--).

For the angle ¥o T 7 from the first equation in (A.4) we have:
n= (psing+qcosp) - (y
sin @ A
In consideration of (A.3) and (A.5) we obtain:
G . . .
Zsm 6, = o, cos(got + @, — (pt) = @, COS @,

Aw,,
G

G
Z’ = Wy COS Py = Wy = ), COS P,
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That is, we obtain the relations (A.7) once again. This means that the equation (A.9) is reduced to an identity
with & = 90; @ =mnt for any value of ¥o. From (A.9) it also follows that when AQ(O) of the initial value of the

angle 90 is varied, i.e. for 0= ‘90 +A‘9(O), the equality (A.9) is not reduced to an identity.
From these calculations, we conclude that regular precession in a symmetric Euler gyroscope is possible
only with the following values of the initial angles:

w, =const; ¢, =0; cos 8, = const = C% (A10)

With any other initial values of the Euler angles, the equations (A.4) are reduced to identities with other
solutions that do not coincide with the functions (A.3).

The relevance of the article is further reinforced by publications [4-7].
I11. PROBLEM SOLUTION

a) Quaternion problem solution
Instead of integrating the degenerate Euler equations

dy _(psing +gcosg)

dt sin &

ﬁz(cos—sin)
r pcosg—gsme

%zr—ctg@-(psin¢+qcos¢)

t , (1)

In this article, we use the method of integration of quaternion and Poisson matrices that are non-degenerate
for any angle value of the equation:

1
2 dg =P(¢)N'; N'(0)=E

1
A p)a' A()=E:
dt @)

The choice of the two types of equations is
related to their widespread use in science and
technology, it also enables comparison of their
solutions. The coefficients and variables included in the
differential equations (2) are indicated below.

Following [6], we present the Euler rotation
angles diagram depicting the inertialess frames of the
cardan suspension according to Fig. 1. Let us associate
the moving coordinate system Oxyz (corresponds to the
coordinate system 012’3’ in [6]) with the gyroscope
body, and also introduce inertial coordinate systems:
the expanded O&ng, system, which coincides with the
coordinate system Oxyz at the initial moment, and the
original system O&m,G,, relative to which the coordinate
system Oé&n( is rotated at the initial angles ¥,,0,,®,.
Figure 2 shows a similarly constructed diagram of the
same gyroscope, but for the Euler - Krylov angles

(v, ©,9).
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Gu(x)

oy Mu(y)

The following scheme [12] corresponds to the rotation diagram of the introduced systems according to Fig. 1:

N, A

EiuCy ————End ————xyz &Nyl y ———=Xy2

YOO

Fig. 2

NO’AO NIJAI

¥,0,0,” "7 ¥,0,0,
N=N'N,,

where ¥, 0, @, N,=N(0) are the initial angles of
SEGrotation and the corresponding quaternion matrix
[10, 11]; ¥, ©,, @, N' are the rotation angles
corresponding to the matriciant N', when N,=E (E is the
identity matrix); ¥, ©, ®, N are the angles of the resulting

3)

rotation and the corresponding quaternion matrix of the
resulting rotation.

Following the technique described in [8, 9] for
matrices of directional cosines, we find the analytical
solution for the quaternion matrix N' based on kinematic
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equations. Note that the quaternion matrices are related
to the matrices of directional cosines of the angles by
the relation A=M'N [10, 11]. In the article [8], the
formulas for the angular velocities p, g, r of the
gyroscope are solutions of the dynamic equations of the
SEG, which had the initial angular velocity p(0)=q(0)=0;

r(0)=R, and which was affected by the impact to the
axis of the gyroscope figure in the form of a rotational
pulse M, around the axis Ox (hereinafter, M,=H, is the
kinetic moment from the impact). The dynamic Euler
equations for a gyroscope with a dynamic axis of
symmetry have the following form [8]:

dp M, d
g ="0.21r
dt+dq —-e )
q
Y _qp=
dt P (4)
£=O; 0o Cc-4
dt A

P, g, r are the components of the vector of angular velocity of rotation of the gyroscope in the axes associated with
it; 1 (1) is the unit function.
For initial conditions

t=0; p(0)=0; q(0)=0; r(0)=R
The solution to the system of differential equations (2) has the following form:

a_MO_Hx 5
1 1 ()

The transformation of coordinate systems from theinertial O&n( to the moving Oxyz, in consideration of the
initial inertial coordinate system O&nm,(,, according to (3) is determined by the relations:

[zl = 4'4(0)em g, | = denc, |

or, equivalently, through quaternion matrices [10], [11]:
[oz]" = N'MT M (0)N(0)E, 7,8, T ©)
N'=N°N®N¥; N=N'N(0) 4'=M"N"; 4(0)=Mm"(0)N(0),

p=acosQt; g=asinQt; r=R,

where N, A are the quaternion matrix and the matrix of directional cosines of the resulting rotation; N', A" are the
matriciants; N®, N®, N¥ are the quaternion matrices of the corresponding simplest rotations. At the same time, M and
N are the corresponding types of quaternion matrices [10, 11].

The matrix of directional cosines of the Euler angles for Fig. 1 when combining the coordinate systems

En¢ and $pMuSy -

cos ¥, cos®, cos®, —sin ¥, sin D, sin't, cos®, cos® +cos¥,sin®, —sin®, cosd,
A" =|—cos ¥, cos®, sin®, —sin ¥, cos®, —sin'¥,cos®,sin®, +cos'¥,cos®, sin®, sind, | (7)
cos 'V, sin®, sin', sin @, cos 0,

The matrix of directional cosines of the Euler-Krylov angles (Fig. 2), which is equal to the matrix (7), has the form:

cospcos@  sinysindcosp+cosysing —cosy sinfcose +siny sing
A* =| —sinpcos@ —sinysin@sing+cosycosp  cosy sinfsinp+sinycose | 8)
sin @ —siny cosé cosdcosy

The matrix N' corresponding to N' (0)=E, i.e. to theangles ¥(0)=0(0)=®(0)=0 (that is, the matriciant), can
be determined by integrating the quaternion matrix equation [10, 11]:
dN'
——=P(t)N';

N'(0)=E.
” (0) ©)
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2 3 0 1

r 0 -p 0 A A A A

The angular velocity matrix in consideration of (5) has the form:

0 —acosQt —asinQt - R
acosQt 0 R —asin Q¢
Plt)=|
asin Qt -R 0 acosQt
R asinQt —acosQt 0

Which means that it satisfies the condition P(t)=P(t+1); t=21/Q.
Therefore, the system (9) is Lyapunov reducible [8]. By means of substitution

N, =N,N'
The system (9), (10) is reduced to an equivalent differential equation with constant coefficients
dN
7 Z — P,N,.
t
Vo —V, =V, —V, 0 -a 0 =R
14 14 1% -V a 0 R 0
Nq) — 1 0 3 2 : PB 1
v, =V, V, Vv, 0 -R O a
v, Vv, =V, Vv, R 0 —-a O

C .
Rl:RZ; v0=coth2; v, =v, =0; v3=st%.

Given these formulas, we have:

_cos Q% 0 0 —sin Q%_
N - 0 cos Q% sin Q% 0
¢ 0 —sin Q% cos Q% 0
_sin Q% 0 0 cos Q%
The equivalence of equations (9) and (12), (13) is confirmed by the fulfillment of the identity
N, (PN, - N,')=P,
The solution to the equation (12) with constant coefficients is the Cauchy formula:

N, = L{t)L" (0N, (0).

(12)

(14)

(15)

(16)

where L(t) is the fundamental matrix of solutions; N,(0) is the matrix of initial values of the angles, equal, by

condition, to the identity matrix: N,(0)=E.

After finding the fundamental matrix of solutions and a number of transformations, let us write down the

expression (16) in the form:
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D=jPB(T)dr;Z=(Zf+Z§)1/2=<aZ+Rf)l/2t:n t (17)
0

X = ja(f)dr; X = le (c)dr; (@ +R) " =n; y=nt
0 0

After transformations, the matriciant takes the form:

_ | R _
cos% —gsm% 0 ——lsm}(2
n n
. R, .
gsm;% cos% —lsm;(2 0
N, =" R, " p p (18)
0 —7sm 5 cos”/y ;sm 5
R i 7 @ inZ x
—sin 0 ——sin cos
L n 2 n 2 2 |

From the expression (11) we have:
N'=NgN,;N=NgN,N(0)=N'N(0); N'=N'(4,)K=0123). (19)

In consideration of (13), (14) and (18), the expanded expression for the quaternion matriciant N' is derived below.

1 T
Since N =N N(0)= NcpNzN(O), we have the following expression for the quaternion matrix of the
resulting rotation N for nonzero initial conditions:

Ry —Ny —Np —H | | By
N = Ry My Nz THay | | My
R,y —Ng Ny n, i
Ny Ny —Hy Ny Aoy

Formulas for the components of the quaternion matrix N:

Ny =N,y Ny =Ny Aoy =y "Ry —Nu3 "N

al

Ny =Ny Mgy + Ny Mgy +Ry3 Ny =Ny Ny

(20)
Ny =Ny Mgy =Ny =Ny + 1,0 Ny 1,y Mg
Ny =Ny Moy Ny Moy =Ny Mgy + 14 Ny
By marking
lai =n, (l = 0’3)’ (21)

We have the explicit form of the formulas for the components of the quaternion matriciant N':

© 2020 Global Journals



Qt nt R . Qt . nt
n,, =A, =C0S— Cc0S— +—sin—sin—
2 2

n
a Qt . nt
n, =A, =—Ccos—sin—
n 2 -
a . Qt . nt ' (©2)
n, =A~4, =—sin—sin—
n
. Ot nt R, Qt . nt
n, =A,; =—sin—CO0S—+—Ccos—sin—
2 n 2

For regular precession, the angles of the initial orientation and the components of the initial quaternion are
expressed by the formulas:

KPO=0; CI)OZO; @(0)2605 tg@OZ_H%—];

(23)
Ay =y, ZCOSTO; A =n, =0, A, =n, —sin 0 5 Ay =ny=0.
In this regard, we have:
0 . 0
n, =n, COST—I’ZM SIDT
0 : 0
n,=n, COST-I- N, s1n7
n, =n,, COS—>=+n,, sin—-
2 2
0 . 0
ny =n,CoS— —n, SIn—
3 3 2 1 2
In consideration of (23) we obtain:
Q . O, R . Q. . nt O, a. Q. nt . O
n, = COS——CO0S—COS—— + —SIN ——SIN—COS—— — —SIN ——SIN —SIn——
2 2 n 2 2 2 n 2
a . m O, . QO n . O, R Qt . nt . O
n, = —C0S——SIN—COS—— — SIN —— COS—SIN—— + —COS——SINn—SIn——
n 2 2 2 2 2 2 n 2 2 2
(24)
a . . n O, . O n . 0O, R Qt . nt . O
n, = —SIN——SIN—COS—— — SIN——COS— SIN—— + — COS——SIN —SIN ——
n 2 2 2 2 2 2 n
Q nt 0, . Qt . nt 0O, Qt N CN
n, ——sm—cos—cos—+—005751n?cos———cos—sm—sm—
n n

After that, let us similarly determine the trigonometric functions for the Euler-Krylov angles vy, 6, ¢ on the
basis of the matrix (8) and its quaternion counterpart [8, 9]. We have:

a3z 2(Ag2y — A343)

tan) = —— =
Y BAE-E-2
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SlTl@ = a31 = 2(1012 + 1113)

az; _ 2(AoA3—24117) (25)

tangp = — =
Y= T T B4

Substituting the quaternion components (22) into these formulas, we obtain

a .
—=sinnt
n

tany = >

a
—cosnt
) T 2

. aR,
sin@ = —2(1 — cosnt);
n

2 2
. R R .
—sin .()t(;%—cos nt+%2—>+715m ntcos 0t

tang = (26)

2 2
R R . .
cos !)t(—z—nl cos nt+—2—: >+—n1 sin nt sin 0t

These expressions coincide with formulas (18) [8], confirming the fidelity of the solutions to the problem for
zero initial Euler-Krylov angles both in the quaternion form and in the form associated with the application of the
Poisson differential kinematic equations.

For arbitrary initial Euler-Krylov angles, explicit solutions can be obtained from relations (24), (25) (in (25),

the A, must be replaced by values 7; {i = 0,3 ).
In turn, for the Euler angles we have the following solutions:

tan¥ = — =
az;  Agdy + 123
cos© = azy = % + 25 — At ~ 25 7)
tan® = — 43 = tohitlads

a3 A1A3+2017
In consideration of (22), we obtain the solutions in explicit form:

i 25 (i 2 s 4 R g2 i) _ 8 g 08y (o BE ot Ry B ey
SlTlZSlTLZ SanCOSZ CSZSlle COSZSLTLZ COSZCOSZ SlTlZSlTLZ

n
tan¥ = —r Tt 0t _nt R, . 0t nt
ﬁSlTlTSlTLT(COS

70057+ WSlnTSlTLT) +%cos%sinrg( smgtcos%t+ %Cos%sin%t)

o ( t s R, Nt 0Ot nt nt N R} 0t . nt N L0t ot
cos = COS —COS - — Sin—Cc0Ss — Sin —co0s — —sm —sm - sm —COS -_— =
2 2 n 2 2 2 2 2 2 2 2
2R1 ot 0t LR Rf 0t .nt a® Ot . nt a2 L0t omt
—2—sSsin—cos — COS —sm ———COS —Sin ———SlTl —sm -
n 2 2 n? 2 2 n? 2 2 n? 2 2
a 0t . nt Ot  nt Ry . 0t . 0t . nt it cosTELRL o2t ot
zCOS—Sln—(COS—COS—‘F Sin—— Sln—)+ sm—sm—( Sln COS + 0S—— Sln—)
tan® = ;—r——¢ at - mt Ry 2 2 At e R1 — (28)
;COSTSWL7( stn7cos—+ 0S—— > SLnT)——SlTLTSlTlT(COSTCOS—+ Sin— > SLTlT)

For regular precession in (24), (25), it is necessary to consider /1i (i = 0,3) according to the expressions
(23), and then, after transformations, we obtain:

Y =Y, +nt;

aA
tan@ = ———=4/,,;

J(@A)? + CR?

© 2020 Global Journals



®=(1-C/,)Re. (29)

The result coincided with the classical one, which is expressed by the formulas (A.3, A.5).

Let us now consider a variant of the solution to the problem for irregular precession. It corresponds to the
A

initial angles @, = ¥, = 0; tan®, = ﬁthat differ from the angles (23), which generate regular precession, only by

the sign of the angle of nutation. After transformations, the formulas for determining the Euler angles for the SEG are:

W sinnt
tan¥" = —
2¢0s%2 60y —cos20ycosnt
. €0sBycos20, i
c0s©O = —————+ 25in“ Oy cos Oy cosnt

tan?@,

sin O cos 20¢ sin Qt+sin 20¢ sin nt cos Nt

tan®” = (30)

sin Oq cos 20 cos Nt—2 sin 20 cos nt cos Nt

The expressions (30) suggest that only the change of the sign of the initial angle of nutation — with the other
two initial angles unchanged — caused the appearance of irregular precession motions in the Euler gyroscope.

b) Solution for the Poisson matrix differential equation
The transformation of the coordinate system Oxyz from the initial position O&n¢ is characterized by the formulas:

[xyz] =4'[eng} A'=4°4°4Y, (31)

Where A®, A® AY are the transformation matrices of the coordinates of the simplest rotations. On the other hand,
this matrix can be determined by integrating the Poisson matrix kinematic equation:

dA'
" P(t)4'; A'(t)=E; (32)
alll allz a113 0 r —-q
A'=lay ay, ayl Plt)=[-r 0 p (33)
a;l aéz a;3 g -p 0

The matrix of directional cosines of the Euler angles for Fig. 1 when combining the coordinate systems

$NS and SuMySy —form (32), and the matrix of directional cosines of the Euler-Krylov angles (Fig. 2) — form (33).
The angular velocity tensor for gyroscopes with a dynamic axis of symmetry has the form:

0 R —asin Q¢
P(t)=| —-R 0 acosQ | (34)
asinQt —acosQt 0
2r

That is, it satisfies the condition P(t)=P(t+7), 7= o
As a result of this condition, the system (32) - (33) is Lyapunov reducible [13]. Indeed, by substitution

Z=d(1)A4' (35)
it is reduced to a matrix equivalent differential equation with constant coefficients

dz

= = BZ’ (36)

dt
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cosQt sin€x 0 0 R O
D(t)=|-sinQt cosQt Of; B=|-R, 0 a4 Z :HZU ; R =R+ (i,j):1;2;3_ (37)
0 0 1 0 —-a O
The equivalence of the equations (32) and (36) is confirmed by the validity of the

identity

D(1)- (qu_l () - o (l))E B . The differential linear homogeneous equation (36) is solved by the Cauchy formula

Z(t)=Q(® -Q7(0)-z(0),

Where Q(t) is the fundamental matrix of solutions; Z(0) is the matrix of initial values of directional cosines, and as
provided by the condition, Z(0)=E. After finding the fundamental matrix and performing a number of transformations,

the solution (38) takes the form:

; a® R, . ak,
—-cosnt+— —sinnt ——z(l—cosnt
n n n n

| a .
Z =| ——sinnt cosnt —sinnt :
n n

2 2

arR, a . a R;
—2(1 —cosnt) ——sinnt —cosnt+—-

n n n n

C

n*=a*+R}; R =R
A

(38)

From (37) it follows that A' =0 (1) Z | as aresult, the solution to the equation (32) for a gyroscope with

a dynamic axis of symmetry is the matrix (matriciant):

R? a’
cos Q¢ —lzcosnt+—2 +
n n

n

R . )
+—Lsinnt-sinQt

—sin Q¢ - cosnt

aR

a . .
——sin ntsin Q¢

n n
) R} a’ aR .
sinQ¢| —-cosnt+— |- R, . : —L(1-cosnt)sin Qs +

n n —sin Q¢ -sinnt+ 52
A = n
R, . +cosQ - cosnt i Q
— ginnt-cosOr n +—sim ntcos{lt
n
n
ak, a . a’ R}
—z(l—cosnt) ——sinnt —cosnt +—-
n n n n

For the initial Euler angles, the matrix A, has the form:

cos'¥,cos®,cos®, —sin'¥,sin®,,
AO

—cos¥, cos®;sin®, —sin'¥ cos D

cos'¥,sin@®,

Formulas for determining the Euler angles:

© 2020 Global Journals

sin'¥, cos®, cos®, +cos'¥,sind,

—sin't; cos®,sin® +cos'¥,cosD,

sin't, sin@®,

R . —L(1-cosnt)cosQt —
—LcosQt-sinnt— ;2 ( )

—sin®, cos D,

sin®, sin®,,

cos®,
(41)



3 1 o0 3 1 0
_a32 _ Xk=193k%:2 , _ _ v3 1.0 . _ a3 Xk=192k%3

tanW = == = =1 3K 005 O = ag3 = Do A3, Qp3; tand = — = = — =2 (42)
asr  Xg=193k%1 arn Yie=191k %1

The following kinematic Euler equations correspond to the Poisson equations:

W :(qsmd)—pcosq))sin®; P =acosQ;

® = psin® + gcos D; q = asin Q¢
b= r—(qsinCD —pcosCD)ctg@; r=R : (43)

=1, ‘{1(10)=1P0; ®(to):®o; q)(to):q)o

Let us now apply the obtained formulas to the case of regular precession.
We use the initial values @4 = ¥, = 0; tan@, = —?—: in the matrix A, associated with this type of precession

cos®, 0 -sin®,
4,=] 0 1 0 | (44)
sin®;, 0 cos®,

In consideration of this we obtain:

1 1 :
a,, a, a;||cos®;, 0 -sin®,

—

—| 5! 1 —
A=|a, a, a,; 0 1 0 =
1 1 :
a, 4y, a4y | |sm®, 0 cos®,
1 (45)
1 : 1 1 : 1
a,, cos®, +a,sm®;, a, -—a,sin®,+a;cos®,
_ 1 1 1 1 1
=|a, cosO,+a,sin®, a, —a,sin®@;+a,cos®,
1 1 : 1 1 : 1
a, cos®, +a;;sin®, a;, —a;sin®;+a;; cos0,
asz a%z
tan¥ = == =+ T (46)
azi azq cos Op+azz sin O
After conversion we obtain:
—Lsinnt
tan¥ = 2 > Y (47)
cos 90‘%1(1 —cos nt)+sin 9@(%2— cos nt+TT}—)
. Aa
cos®, =——; smO, =——-. (48)
H H
H : H
tanW = tannt; ¥ = nt = Kt; Y = L =n (49)
The solution (49) coincided with the classical one.
Let us now determine the value of the angle of nutation ©:
cos @ = az; = —al; sin Oy + al; cos O,
After calculations we obtain:
RC
cos© = cos Qg = . (50)
The solution to © by the formula (50) also coincides with the classical solution for regular precession.
Let us now consider a solution in consideration of the angle of proper rotation ®.
tan® = — a3 _ —a%l sin 00+a%3 cos Qg (51)

alg —a}y sin @g+al; cos O
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After calculations we have:
tan® *= —tanQt ® *= —Qt, ® x= —Q. (52)

The obtained formulas coincide with the formulas of the classical solution, but with zero initial angles of
precession and proper rotation.
Let us now consider a variant of the solution to the problem for irregular precession.

For the initial angles @, = ¥, = 0;tan®, = ?—: that differ from the angles (45), which generate regular
precession, only by the sign of the angle of nutation. After transformations, the formulas for determining the Euler
angles for the SEG are:

. sinnt
tan¥" = —

2c0s20@; —cos20O;cosnt

cos @y cos20,

+ 2sin® ©, cos Oy cosn't
tan20, 0 0

cos@* =

sin ©g cos 20 sin Qt+sin 20 sin nt cos Qt
sin ©g cos 20 cos Qt—2 sin 20 cos ntcos Qt (53)

tan®” =

The expressions (53) suggest that only the change of the sign of the initial angle of nutation — with the other
two initial angles unchanged — caused the appearance of irregular precession motions in the Euler gyroscope.

[V. MATHEMATICAL MODELING

Figures 3 — 8 show the results of mathematical modeling using the kinematic Euler equations, which confirm
the obtained analytical results.

Figures 3 and 4 present graphs of the modeling process for the Euler LP,(’D,(D and the Euler-Krylov
angles change, respectively, for the initial angles

0(0)=0,;0(0)=0,=0,%, =0, =y, =0, =0, (M.1)

That is, corresponding to the conditions (23) of regular precession in the Euler angles. The relationship
between the Euler and the Euler-Krylov angles is established due to the equality of the respective elements of the
matrices (7) and (8).

SEG parameters

A=01, sN-cm-s;5=02, sN-cm-s; a=10%rad/s; R =1570,rad/s;

0= (°/4=1)R=157-10%rad/s (M.2)

@, = — arct (aA)— 0.308, rad
0= arctan RC = . , rad.

The graphs in Fig. 3 depict the change of the Euler angles for regular precession. The same cannot be said
about the graphs in Fig. 4 for the Euler-Krylov angles — where one can see harmonic oscillations for the angles ¥
and @ with a frequency slightly higher than 500 Hz, and for the angle ¢ , its increscent property is evident.

© 2020 Global Journals
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When applying a stronger rotational pulse
around the axis Ox for which a = 4000,rad /s > R, with
unchanged other conditions for Fig. 3 and 4, the nature

of the motion does not change (therefore, the graphs
are not shown), however, for the Euler angles we have:

W ax (0.01) = 50rad, ® = O3 = —0.905rad = const, ®,,,, (0.01) = —15.7rad.

For the Euler-Krylov angles in Fig. 6, the
oscillation amplitudes along ¥ and 6 are equal to 0.905
rad, the frequencies are approximately equal to 870 Hz.
The angle ¢ is increscent with superimposed frequency
fluctuations of 1740 Hz.

© 2020 Global Journals

Additionally, with unchanged parameters of
modeling of SEG motions according to (M.1), (M.2)
(figures 3 and 4), but with the sign of the initial angles of
nutation reversed and equal to 6, = 6, = 0.308rad, the
motion patterns shown in figures 5 and 6 were obtained.



In Fig. 5, for the Euler angles, the motion has acquired  velocity sign in Fig. 3 has changed to the opposite, and

the character of irregular precession, namely, along ' the angle become increscent. The graphs confirm the
derived formulas (30).

For the Euler - Krylov angles, the motion is of a
qualitatively similar character.

and © - a vibrational pattern with frequencies slightly
above 500 Hz of different amplitudes with oscillation

centers shifted by about 0.3 rad. For the angle D | the
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Figures 7 and 8 show the results of modeling of
the SEG parameters and motions that correspond to
figures 5 and 6 with the only difference: angular velocity

is provided equal to a = 4000,rad/s, @ > R As the
result, the nature of motions along the Euler angles (Fig.
7) did not change qualitatively, while quantitatively, the

vibration centers moved apart to the angles Y and to

© 2020 Global Journals

) up to 0.45 rad, and the oscillation frequencies

increased up to 820 Hz. The angle D remains to be in
crescent with superimposed oscillations.

At the same time, the motion for the Euler-
Krylov angles has changed dramatically (Fig. 8). The

angle v began to increase monotonically in the



direction of the rotational pulse action, which is novel.

The angle  is stil oscillatory in nature with a frequency
of 820 Hz around the shifted center of oscillations, and

the angle ? has changed the sign to the opposite in
relation to Fig. 6.

V. (CONCLUSION

According to the results of mathematical
modeling, it is shown that the motions that correspond
to regular precession in the Euler angles are
independent of the magnitude of the angular velocity

a , which is caused by the action of the rotational
pulse. However, a change of the sign of the initial angle
of nutation leads to a sharp change in the nature of
motion — it becomes irregular, which is reflected in the
explanation for Fig. 5. The motion along the Euler-Krylov

angles radically depends on @ : with @ > R, the angle

V¥ becomes monotonically increscent in the direction of
the pulse action, and the angle of proper rotation
changes the sign of its monotonic rotation to the
opposite. Additionally, in the article:

— It was proven that regular precession in SEG is
possible only for the initial Euler angles determined

by the known formulas:
Cr
cos@, =const= %;

For any other initial angles regular precession is
not possible.

— An analytical solution to the problem of the SEG
motion was found by integrating the matrix
differential quaternion kinematic equations, as well
as the Poisson equations. Formulas for determining
the Euler and the Euler-Krylov angles were derived.

— The obtained formulas and mathematical modeling
confirmed that for the angles, that are different from
the initial Euler angles (1), precession that is
different from the regular one is present in SEG.

Y, =const, @ =0

As for corpuscular gyroscopes, based on this
study, it can be assumed that depending on the
application of an external magnetic field over time, not
only Larmor precession [14], but also “pseudo-Larmor”
precession is possible in them.
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