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6

Abstract7

The determination of optimal feeding profile of fed-batch fermentation requires the solution of8

a singular optimal control problem. The complexity in obtaining the solution to this singular9

problem is due to the nonlinear dynamics of the system model, the presence of control10

variables in linear form and the existence of constraints in both the state and control11

variables. Traditionally, during the optimization process, uncertainties associated with design12

variables, control parameters and mathematical model are not considered. In this13

contribution, a systematic methodology to evaluate uncertainties during the resolution of a14

singular optimal control problem is proposed. This approach consists of the Multi-objective15

Optimization Differential Evolution algorithm associated with Effective Mean Concept. The16

proposed methodology is applied to determine the feed substrate concentration in fed-batch17

penicillin fermentation process. The robust multi- objective singular optimal control problem18

consists of maximizing the productivity and minimizing the operation total time.19

20

Index terms—21

1 Introduction22

Singular Optimal Control Problem (SOCP) consists in determining the control variable profiles that minimize23
an objective function, subject to algebraic and differential constraints. In the last decade, a significant increase24
of control techniques in the industrial context was observed. The reason for this is mainly due to the high25
popularity of dynamic simulation tools and the existence of a competitive global market, in which environmental26
constraints and demanding market specifications require a continuous improvement of process operation.27
Dynamic optimization enables an automatic decision-making procedure. Therefore, as it gets established as28
an useful and trustworthy technology, other industrial applications are driven forward even more efficiently, such29
as: the addressing of hard constrained problems, the synthesis of chemical reactors networks, the uncertainties30
description in multiple period problems and the development of tools such as automatic differentiation (Biegler31
et al., 2002).32

In order to solve this kind of problem, several numerical methods have been proposed (Bryson and Ho, 1975).33
They are usually classified according to three broad categories, regarding their underlying formulation: direct34
optimization methods, Pontryagin’s Minimum Principle (PMP) based methods, and HJB-based methods. The35
PMP approach is based on the optimal control theory and requires the numerical solution of multipoint boundary36
value problems involving state and adjoint (costate) variables. The main difficulty associated with using this37
type of method is the initial estimate for the costate variables (Costa, 1996;Biegler et al., 2002).38

In the context of chemical engineering, a typical example of a SOCP is the fermentation process, where the39
substrate concentration can be maintained at a fairly low level and unfavorable effects of a high concentration,40
such as growth inhibition, can be avoided. This phenomenon leads to unimodal reaction rate expressions, which41
exhibit a maximum point with respect to a single reactant concentration or in terms of two or more reactant42
concentrations. Although only one single control variable, in the form of the feed rate, may appear to characterize43
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3 OPTIMAL CONTROL PROBLEM

a simple optimal control problem, considerable difficulties have been reported in the determination of the optimal44
feed rate policy for fedbatch processes, due to the intrinsic nonlinearity of these systems (Hong, 1986;Modak et al.,45
1986;Modak and Lim, 1989;Fu and Barford, 1993;Xiong and Zhang, 2003). In this problem, the usual objective46
considered in the optimization of a fed-batch bioreactor is to maximize the metabolite production or the yield,47
that is, the production per unit of substrate fed (Hong, 1986).48

Traditionally, during engineering system design, the model, the vector of design variables, and the parameter49
vector are considered free of errors, i.e., they do not contain uncertainties. However, more realistically, small50
variations in the vector of design variables may cause significant modifications in the vector of objective functions51
(Ritto et al., 2008). As a consequence, the system to be optimized can be very sensitive to small changes in the52
vector of design variables, and thus, small variations in this vector can cause significant changes in the vector of53
objective functions (Ritto et al., 2008). In this context, it is important to determine a methodology that produces54
solutions less sensitive to small variations in the vector of design variables. Solutions with this characteristic are55
called robust solutions and the procedure to find these solutions is named Robust Optimization ??Taguchi, 1984).56

In this contribution, the Multi-objective Optimization Differential Evolution (MODE) algorithm (Lobato,57
2008), associated with the Effective Mean Concept-EMC (Deb and Gupta, 2006) is applied to determine the58
feed substrate concentration in fed-batch penicillin fermentation process. This robust multiobjective singular59
optimal control problem consists of maximizing the productivity and minimizing the operation total time. In the60
post-processing stage of the results, the criterion adopted to choose a point on the Pareto curve is the overall61
profit. This work is organized as follows. Sections 2 and 3 presents the mathematical description of the SOCP62
and the mathematical model that describes the fed-batch penicillin fermentation process, respectively. Section63
4 shows a brief review about the MODE algorithm. The EMC strategy considered to deal with uncertainties is64
presented in Section 5. The results obtained are presented in Section 6. Finally, the conclusions are outlined in65
Section 7.66

2 II.67

3 Optimal Control Problem68

The solution of an OCP consists in the determination of the control variables profiles that maximize or minimize69
a measure of performance. The OCP performance index is given by:70

(1)71
where ? and L are the first and second terms of the performance index, respectively. The objective is subject72

to the implicit Differential-Algebraic Equations (DAE) system:73
(2) with initial conditions assumed consistent and given by: (74
A comparison among methods for solving the OCP had great attention around the first part of the eighties75

with the development of numerical methods, appropriate to a more restricted class of problems, identified mainly76
by the differential index (Brenan et al., 1996).77

The indirect strategy for solving the OCP is based on variational principles. These conditions, from the78
Pontryagin’s Minimum Principle (Bryson and Ho, 1975), generate a set of Euler-Lagrange equations, which are79
boundary value problems (BVPs), inherently formed by the DAE, regardless of whether the problem is restricted80
or not. Some difficulties in the OCP solution must be highlighted: (i) the existence of end-point conditions or81
region constraints implies in multipliers and associated complementary conditions that significantly increase the82
difficulty of solving the BVP by the indirect method; (ii) the existence of constraints in the state variables and83
the application of the slack variables method may produce DAE of higher indexes, regardless of the constraint84
activation status, even in problems where the number of inequality constraints is equal to the number of control85
variables; and (iii) the Lagrange multipliers may be very sensitive to the initial conditions. The direct approach, on86
the other hand, uses the control parameterization (sequential method) or the state and control parameterizations87
(simultaneous method), transforming the original problem into a finite dimensional optimization problem. By88
all means, the implementation of direct methods is simpler because it does not demand the generation of the89
costate equations, which, at very least, duplicates the dimension of the set of DAE in the indirect method. On90
the other hand, the solution of NLP (Nonlinear Programming) problems of great dimension or the attainment of91
the gradients of the objective function in the sequential method is not trivial (Feehery, 2001).92

The solution of OCP with inequality constraints presents an additional complexity because it demands the93
knowledge of the sequence and the number of constraint activations and deactivations along the trajectory. When94
the amount of constraints is reduced, it is usually possible to determine this sequence examining the solution of95
the problem without constraints. However, the presence of a large number of restrictions leads to a problem of96
combinatorial nature (Feehery, 2001).97

A particular case of great interest is the presence of a linear control variable in the Hamiltonian function. In98
general, no minimum optimal solution exists for such problems, unless inequality constraints in the state and/or99
control are specified. If the inequality constraints are linear in the control variable, it is reasonable to expect100
that the minimizer, if it exists, will( ) ( ) ( ) ( ) , min , , , t f f f u t t f t o J z t t L z u t dt ? = + ? ( ) , , , 0 f z101
z u t = ! ( ) ( ) ( ) ( ) , , ,0o o o o z t z t u t t ? = ! , ,, , , and . (.) J (.) L ( ) . ? ? ! ( ) . f ( ) . n x ? ? ! n z102
z ? ! n u u ? !103

always demand that the control variables are located at a point on the limits of the feasible region of control104
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(Bryson and Ho, 1975). For this purpose, consider the following system of equations: (4) (5) with control variable105
given by: (106

The Hamiltonian function (H) is defined as: (7) For this class of control, we have:(8) ( ) o o z t z = ( ) ( ) z F107
z g z u = + ! min max u u u ? ? ( ) ( ) ( ) T H F z g z u ? = + max min 0 0 0 T T T u g u g u g ? ? ? ? < ?108
? = ? = ? ? > ? ?109

where ? is the Switching Function ??Lobato, 2004).110

4 III.111

5 Optimization of Feed-Batch Penicillin Fermentation Process112

The mathematical model of the feed-batch penicillin fermentation process considered in this contribution was113
described and studied by San and Stephanopoulos (1989). Mathematically, this model consists of the following114
constraints:115

In this work, we formulate a robust multi-objective singular optimal control problem, based on the feedbatch116
penicillin fermentation process, which consists of maximizing the productivity and minimizing the operation total117
time, describe as: where t is the time (h), X is the biomass concentration (g/L), P is the amount of existing118
penicillin product (g/L), S is the substrate concentration-control variable (g/L), V is the volume of biological119
reactor, F is the feed rate (1666.67 L/h), µ is the growth rate and ? is the specific product formation rate.(16) (120
) 0.01 0 0 g/L dP FP X P P dt V ? = ? ? = ( ) 0 1 g/L dX FX X X dt V µ = ? = 41 g/L X ? 0.001 0.5 g/L S121
? ? 0.004 1 0.0001 0.1 S S ? = + + 0.11 0.006 S S X µ = + ( ) 0 2.5E5 L dV F V dt = = ( ) ( ) max f f f P t V122
t t © 2020123

()17124
In order to choose a point that belongs to the Pareto Curve obtained, taking into account a multi-objective125

optimization strategy, the overall profit (OP) is considered. This relation is defined as (San and Stephanopoulos,126
1989): (18) IV.127

6 Multi-Objective Optimization Differential Evolution128

Aiming to solve the multi-objective optimization problem proposed, in this section is presented a brief review129
about the multi-objective optimization problem and the MODE strategy, respectively. When dealing with multi-130
objective optimization problems, the notion of ”optimality” needs to be extended. The most common approach131
in the literature was proposed by Edge worth (1881) and later generalized by Pareto (1896). This notion is132
called Edge worth-Pareto optimality, or simply Pareto optimality, and refers to finding good trade-offs among133
all the objectives. This definition leads us to find a set of solutions that is called the Pareto optimal set, whose134
corresponding elements are called no dominated or no inferior.135

Multi-objective optimization deals with optimization problems which are formulated with some or possibly all136
of the objective functions in conflict with each other. Such problems can be formulated as a vector of objective137
functions f (x) = [f1(x) f2(x) ? f m (x)] subject to a vector of input parameters x = [x1 x2 ? x n ],138

where m is the number of objectives, and n is the number of parameters. According to the criterion of Pareto,139
multi-objective problems have a set of trade-off solutions, where a solution may be better on objective f1 but140
worse on objective f2, whilst other solutions may be worse on objective f1 but better on objective f2.141

The literature shows a large number of multiobjective optimization techniques, although these methods have142
limitations when it comes to highly complex applications (Deb, 2001). Metaheuristics have established themselves143
as a complementary approach that can be applied even when no prior information is known about the underlying144
problem. The growing popularity of evolutionary algorithms in this field is mainly due to their flexibility to deal145
with a wide variety of multi-objective optimization problems (both numerical and combinatorial) and to their146
easiness of use. Also, due to their population-based nature, evolutionary algorithms can be modified such that147
they generate several nondominated solutions in a single run. These features have made them popular when148
tackling complex real world multi-objective optimization problems (Deb, 2001).149

In order to solve the multi-objective optimization problem, ??obato (2004) proposed the MODE strategy. This150
is based on the association between the Differential Evolution (DE) algorithm (Storn and Price, 1995) with two151
operators: ranking ordering and crowding distance.152

This algorithm has the following structure: an initial population of size N is generated at random. All153
dominated solutions are removed from the population through the operator Fast Non-Dominated Sorting. This154
operator calculates, for each population member, represented by x i, the number of individuals that dominate x155
i (generating a domination count, n i) and the set of candidates S i that are dominated by x i.156

Afterwards, the population is sorted into non-dominated fronts F j (sets of vectors that are non-dominated157
with respect to each other) as described in the following: the vectors with n i = 0 constitute the first front, F0.158
For every vector in the front F j (beginning with j = 0), the domination count n i of vectors of the corresponding159
sets S i is reduced by one. If a domination count becomes zero, the corresponding vector is put into the next160
nondominated front F j+1. This procedure is repeated until each vector becomes the member of a front. The161
remaining nondominated solutions are retained for recombination. In this step, three parents are selected at162
random. A child is generated from these three parents (this process continues until N children are generated).163
Starting from population P 1 of size 2N, neighbours are generated from each one of the individuals of the164
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10 CONCLUSION

population. Those generated candidates are classified according to the dominance criterion described before and165
only the nondominated neighbours (P2) are put together with P 1 to form P3. The population P 3 is then166
classified according to the dominance criterion. If the number of individuals of the population P 3 is larger than167
a predefined number, the population is truncated according to the criterion defined by the Crowding Distance168
criterion (Deb, 2001). The crowding distance describes the density of solutions surrounding a vector. To compute169
the crowding distance for a set of population members the (or an arbitrary large number for practical purposes).170
For all other vectors, the crowding distance is calculated according to:171

(172
V.173

7 Effective Mean Concept174

Traditionally, the introduction of robustness in the multi-objective context require the consideration of new175
constraints and/or new objectives (relationship between the mean and the standard deviation of the vector of176
objective functions) and probability distribution functions for the design variables and/or objectives (Ritto et177
al., 2008).178

As an alternative to these classical formulations, Deb and Gupta (2006) extended the Effective Mean Concept179
(EMC), originally proposed for mono objective problems, to the multi-objective context. In this approach, no180
additional constraints are inserted into the original problem. Thus, the problem is rewritten as the mean of the181
original objectives. In this case, the robustness measure and the solution of a robust multiobjective optimization182
problem are defined as (Deb and Gupta, 2006):(20) (21)183

Where g is the inequality constraints vector and m is the number of objectives.184
In the present paper, the EMC is used to assess the robustness in each candidate generated by using the MODE185

algorithm. In this case, the original objective function vector is transformed by considering Eq. ( ??1). The user186
needs to input the objective functions vector, the constraints vector, the design space, MODE parameters, the187
perturbation ? added to the vector of design variables, and the sample size N sample.188

8 VI.189

9 Results and Discussion190

In order to solve the proposed robust multiobjective singular optimal control problem, the following parameters191
are considered in MODE: population size (25), number of generations (200), perturbation rate (0.8), crossover192
rate (0.8), number of pseud-curves (10) and reduction rate (0.9). The control variable was discretized considering193
5 control elements. Three cases are considered, according to the level of uncertainty: ? = 0 % (nominal solution,194
i.e., without uncertainty), ? = 5 % and ? = 10%. For each test case, the number of samples was equal to 50195
(Nsample). Considering the parameters presented above, 25+25×200 objective function evaluations are necessary196
to solve the nominal case by using the MODE. In order to solve the robust cases by the MODE, 25+25×200×50197
objective function evaluations are necessary.198

Figure 1 presents the Pareto Curve obtained by using the MODE strategy. We can observe that the increase199
in total operation time (tf) implies an increase in productivity. In addition, the productivity is higher for the200
nominal case due to higher t f values, following the robust cases. The overall profit (OP) is favored by increase201
of t f, as observed in Tab. 1.202

( ) ( )1 , 1 , 1203
,max ,min 0 Where f j corresponds to the j-th objective function and m is equals to the number of objective204

functions. This process is executed until the total number of generations is reached.m j i j i x i j j j f f dist f f ?205
+ ? = ? = ? ? ( ) 1 ( , ) ( ) ( ) eff y B x f x f y dy B x ? ? ? ? = ? ( )206

Where x is the design variables vector, f is the objective function, f eff is the EMC applied to this function,207
? is the robustness parameter, |B?|is the hyper-volume of the neighborhood in relation to the design variable208
x. To evaluate this integral, sample points are created randomly by using the Latin Hypercube method, in the209
vicinities of x. In the multi-objective context, the optimization problem is given by: As mentioned earlier, Fig. 2210
presents the evaluation of OP for each individual considering nominal and robust solutions. In this case, a good211
diversity, in terms of individuals of the population obtained by using MODE is observed.212

The best individuals (see Tab. 1), in terms of the OP, are chosen to simulate the process, as observed in Figs.213
3-6. In these curves, it is important to observe that, initially, the profiles are similar, due to the proximity of the214
feed substrate concentration of maximum value (S=0.5 g/L) to increase the cells concentration rapidly. For each215
value of ?, after a determine value, the feed substrate concentration reaches a value close to the minimum (S=0216
g/L) to increase the product concentration rapidly. In Fig. ?? we can observe that during the first step (S?0.5217
g/L), the process is not profitable due to the product concentration.218

10 Conclusion219

In this paper, the MODE strategy was associated with the EMC approach to determine the feed substrate220
concentration in a fed-batch penicillin fermentation process. The results demonstrated that the insertion of221
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robustness implies in the reduction of diversity of the Pareto Curve and the deterioration of the Pareto Curve in222
relation to nominal result.223

Since a systematic study introducing robustness in multi-objective optimization problems (Deb and Gupta,224
2006) is not easily available, the problem studied may serve as comparison for future evaluations of other225
methodologies for robust multiobjective optimization. Regarding optimal robust design, the determination of226
robustness regions may represent a criterion for the choice of a specific point of the Pareto Curve for a possible227
practical implementation. However, it is important to observe that the main disadvantage of this approach is the228
increase of the number of objective function evaluations, which are necessary to evaluate the integral considered229
in the Effective Mean Concept, independently from the optimization strategy considered. Further works will be230
dedicated to approaches related to dynamically updating the parameters and mutation strategies of the MODE231
together with its parallelization to reduce the computational time. 1

1

?
(%)

Operation Time Total
(h)

-Productivity (g/L) -overall profit ($/g) 0

0 187.853 -27613.673 -1.066E+06
5 176.652 -26317.889 -9.660E+05
10 155.605 -25369.781 -8.444E+05

Figure 1: Table 1 :
232
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