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5

Abstract6

This novel article presents the multi-objective version of the recently proposed Dragonfly7

Algorithm (DA) known as Non-Dominated Sorting Dragonfly Algorithm (NSDA). This8

proposed NSDA algorithm works in such a manner that it first collects all non-dominated9

Pareto optimal solutions in achieve till the evolution of last iteration limit. The best solutions10

are then chosen from the collection of all Pareto optimal solutions using a crowding distance11

mechanism based on the coverage of solutions and swarming strategy to guide dragonflies12

towards the dominated regions of multi-objective search spaces. For validate the efficiency and13

effectiveness of proposed NSDA algorithm is applied to a set of standard unconstrained,14

constrained and engineering design problems. The results are verified by comparing NSDA15

algorithm against Multi objective Colliding Bodies Optimizer (MOCBO), Multi objective16

Particle Swarm Optimizer (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II)17

and Multi objective Symbiotic Organism Search (MOSOS).The results of proposed NSDA18

algorithm validates its efficiency in terms of Execution Time (ET) and effectiveness in terms19

of Generalized Distance (GD), Diversity Metric (DM) on standard unconstraint, constraint20

and engineering design problem in terms of high coverage and faster convergence.21

22

Index terms— non-dominated; crowing distance; NSDA algorithm; multi-objective algorithm; economic23
constrained emission dispatch24

1 Introduction25

ptimization is a work of achieving the best result under given limitation or constraints. Now a day, optimization26
is used in all the fields like construction, manufacturing, controlling, decision making, prediction etc. The27
final target is always to get feasible solution with minimum use of resources. In this field computers make a28
revolutionary impact on every field as it provides the facility of virtual testing of all parameters that are involved29
in a particular design with less involvement of human efforts, benefits in less time consuming, human efforts and30
wealth as well.31

Today we use computer-aided design where a designer designs a virtual system on computer and gives only32
command to test all parameters involved in that design without even the need for a single prototype. A designer33
only to design and simulate a system and set all the parameter limitation for the computer.34

Computer-aided design technique becomes more effective with the additional feature of auto-generation of35
solutions after it’s mathematically formulation of any system or design problem. Auto generation of solution,36
this feature is come into nature with the development of algorithms. In past years, real world designing problems37
are solved by gradient descent optimization algorithms. In gradient descent optimization algorithm, the solution38
of mathematically formulated problem is achieved by obtaining its derivative. This technique is suffered from39
local minima stagnation [1,2] more time consuming and their solution is highly dependent on their initial solution.40

The next stage of development of optimization algorithms is population based stochastic algorithms. These41
algorithms had number of solutions at a time so embedded with a unique feature of local minima avoidance.42
Later population based algorithms are developed to solve single objective at a time either it may be maximization43
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4 CO MF ORT

or minimization on accordance the problems objective function. Some popular algorithms for single objective44
problems are Moth-Flame optimizer (MFO) [3], Bat algorithm (BA) [4], Particle swarm optimization (PSO) [5],45
Ant colony optimization (ACO) [6], Genetic algorithm (GA) [7], Cuckoo search (CS) [8], Mine blast algorithm46
(MBA) [9], Krill Herd (KH) [10], Interior search algorithm (ISA) [11] etc. These algorithms have capabilities47
to handle uncertainties [12], local minima [13], misleading global solutions [14], better constraints handling [15]48
etc. To overcome these difficulties different algorithms are enabled with different powerful operators. As mention49
above here is only objective then it is easy to measure the performance in terms of speed, accuracy, efficiency50
etc. with the simple operational operators.51

In general, real world problems are nonlinear and multi-objective in nature. In multi-objective problem there52
may be some objectives are consisting of maximization function while some are minimization function. So now53
a day, multi-objective algorithms are in firm attention.54

Let’s take an example of buying a car, so we have many objectives in mind like speed, cost, comfort level,55
space for number of people riding, average fuel consumption, pick up time required to gain particular speed,56
type of fuel requirement either it is diesel driven, petrol driven or both etc. To simply understand multiobjective57
problem, from Fig. 1, we consider two objectives, first cost and second comfort level. So we go for sole objective of58
minimum cost possible then we have to deny comfort level objective and vice-versa. It means real word problems59
are with conflicting objectives. So as, we are disabled to find an optimal solution like single objective problems.60
About multiobjective algorithm and its working is detailed described in next portion of the article. The No free61
launch [16] theorem that logically proves that none of the only algorithm exists equally efficient for all engineering62
problem. This is the main reason that it allows all researcher either to propose new algorithm or improve the63
existing ones. This paper proposed the multi-objective version of the well-known dragonfly algorithm (DA) [17].64
In this paper non-sorted DA (NSDA) is tested on the standard un-constraint and constraint test function along65
with some well-known engineering design problem, their results are also compared with contemporary multi-66
objective algorithms Multi objective Colliding Bodies Optimizer (MOCBO) [18], Multi objective Particle Swarm67
Optimizer (MOPSO) [19][20], Non-dominated Sorting Genetic Algorithm (NSGA) [21][22][23], non-dominated68
sorting genetic algorithm II (NSGA-II) [24] and Multi objective Symbiotic Organism Search (MOSOS) [25]that69
are widely accepted due to their ability to solve real world problem.70

The structure of the paper can be given as follows: -Section 2 consists of literature; Section 3 includes the71
proposed novel NSDA algorithm; Section 4 consists of competitive results analysis of standard test functions72
as well as engineering design problem and section 5 includes real world application, finally conclusion based on73
results and future scope of work is drawn.74

2 II.75

3 Literature Review76

As the name describes, multi-objective optimization handles simultaneously multiple objectives. Mathematically77
minimize/maximize optimization problem can be written as follows:/ : ( ?) = { ( ?), ( ?), ? , ( ?)} (2.1) ? ( ?)78
? 0, = 1,2, ? ,(2.2)( ?) = 0, = 1,2, ? ,(2.3)? ? , = 1,2, . . . ,(2.4)79

Where q is the number of inequality constraints, r is the number of equality constraints, k is the number of80
variables, is the i th inequality constraints, no is the number of objective functions, indicates the i th equality81
constraints, and ?? , ] are the boundaries of i th variable.82

Obviously, relational operators are ineffective in comparing solutions with respect to multiple objectives.83

4 Co mf ort84

The most common operator in the literate is Pareto optimal dominances, which is defined as follows for85
minimization problems:? ? {1,2, ? , }: ( ?) ? ( ?) ? ? ? {1,2, ? , }: ( ?) < ( ?) (2.5)86

where ? = ( , , ? , ) and ? = ( , , ? , ).87
For maximization problems, Pareto optimal dominance is defined as follows:? ? {1,2, ? , }: ( ?) ? ( ?) ? ? ?88

{1,2, ? , }: ( ?) > ( ?)(2.6)89
where ? = ( , , ? , ) and ? = ( , , ? , ).90
These equations show that a solution is better than another in a multi-objective search space if it is equal in91

all objective and better in at least one of the objectives. Pareto optimal dominance is denoted with ? and ?.92
With these two operator’s solutions can be easily compared and differentiated.93

Population based multi-objective algorithm’s solution consists of multiple solution. But with multiobjective94
algorithm we cannot exactly determine the optimal solution because each solution is bounded by other objectives95
or we can say there is always conflict between other objectives. So the main function of stochastic/population96
based multi-objective algorithm is to find out best trade-offs between the objectives, so called Pareto optimally97
set [26][27][28].98

The principle of working for an ideal multiobjective optimization algorithm is as shown in Fig. ??.99
Step No. -1 Find maximum number of non-dominated solution according to objective, it expresses the number100

of Pareto optimal set so as shows higher coverage101
Step No. -2 Choose one of the Pareto optimal solution using crowding distance mechanism that fulfills the102

objectives.103
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Fig. ??: Multi-objective optimization (Ideal) procedure.104
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Now a day recently proposed sole objective algorithms are equipped with powerful operators to provide them107
a capability to solve multi-objective problems as well. In the same manner we proposed NSDA algorithm in108
a hope that it will perform efficiently for multi-objective problems. These are: Multi-objective GWO [29],109
Multi-objective Bat Algorithm [30], Multiobjective Bee Algorithm [31],Pareto Archived Evolution Strategy110
(PAES) [32], Pareto-frontier Differential Evolution (PDE) [33], Multi-Objective Evolutionary Algorithm based111
on Decomposition (MOEA/D) [34], Strength-Pareto Evolutionary Algorithm (SPEA) [35,36] and Multi-objective112
water cycle algorithm with unconstraint and constraint standard test functions [37] [38].Performance measurement113
for approximate robustness to Pareto front of multi-objective optimization algorithms in terms of coverage,114
convergence and success metrics.115

The computational complexity of NSDA algorithm is order of ( )where N is the number of individuals in the116
population and M is the number of objectives. The complexity for other good algorithms in this field: NSGA-II,117
MOPSO, SPEA2 and PAES are (118

). However, the computational complexity is much better than some of the algorithms such as NSGA and119
SPEA which are of ( ).120

6 III.121

Non-Dominated Sorting Dragonfly Algorithm (NSDA)122
Dragonfly Algorithm (DA) with sole objective was proposed by Mirjalili Seyedali in 2015 [17]. It is basically a123

stochastic population based, nature inspired algorithm. In this algorithm the basic strategy based on swarming124
nature of dragonflies for exploration and exploitation. DA algorithm originated from the static and dynamic125
swarming behaviors of dragonflies. These two swarming behaviors are similar to the basic stage of working of126
any optimization algorithm in all metaheuristic algorithms as: exploration and exploitation. Dragonflies build127
small number of group and fly in different directions in search of food is known as static swarm, this function is128
very similar to exploration phase in meta-heuristic techniques. Whereas, dragonflies make a big group and fly in129
only direction for either attacking to prey or migration to other place is known as dynamic swarm, this function130
is very similar to exploitation phase. 1. For Separation part formulating equation:j 1 SEP. =- N i i L L ? ? ?131
(3.1)132

2. For Alignment part formulating equation:1 j Alig. = N i i L N ? ? (3.2)133
3. For cohesion part formulating equation: This collection set is similar to the term achieve used in MOSOS134

and NSGA-II. It is a repository to store the best non-dominated solutions obtained so far. The search mechanism135
in NSDA is very similar to that of DA, in which solutions are improved using step vectors. Due to the existence136
of multiple best solutions, however, the best dragon flies position should be chosen from the collection set.1 j137
Coh. = N i i L L N ? ? ? (3.3)138

In order to select solutions from the archive to establish tunnels between solutions, we employ a leader selection139
mechanism. In this approach, the crowding distance between each solution in the archive is first selection and140
the number of solutions in the neighbourhood is counted as the measure of coverage or diversity. We require the141
NSDA to select solutions from the less populated regions of the archive using the following equation to improve142
the distribution of solutions in the archive across all objectives.143

This subsection proposes multi-objective version of the DA algorithm called NSDA algorithm. The non-144
dominated sorting has been of the most popular and efficient techniques in the literature of multiobjective145
optimization. As its name implies, nondominated sorting sort Pareto optimal solutions based on the domination146
level and give them a rank. This means that the solutions that are not dominated by any solutions is assigned147
with rank 1, the solutions that are dominated by only one solution are assigned rank 2, the solutions that are148
dominated by only two solutions are assigned rank 3, and so on. Afterwards, solutions are chosen to improve the149
quality of the population base on their rank. The better rank, the higher probability to be chosen. The main150
drawback of non-dominated sorting is its computational cost, which has been resolved in NSGA-II.151

The success of the NSGA-II algorithm is an evidence of the merits of non-dominated sorting in the field152
of multi-objective optimization. This motivated our attempts to employ this outstanding operator to design153
another multi-objective version of the DA algorithm. In the NSDA algorithm, solutions are updated with the154
same equations presented in equation 3.9. In every iteration, however, the solutions to have optimal position of155
dragonflies are chosen using the following equation:= (3.9)156

where c is a constant and should be greater than 1 and is the rank number of solutions after doing the157
non-dominated sorting.158

This mechanism allows better solutions to contribute in improving the solutions in the population. It should159
be noted that non-dominated sorting gives a probability to dominated solutions to be selected as well, which160
improves the exploration of the NSDA algorithm. Flow chart of NSDA algorithm is represented as Fig. 5.161
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12 SELECT A POSITION VECTOR BASED ON CROWING DISTANCE
VALUE

7 Constraint Handling Approach:162

With the extended literature survey we find that the population based algorithms are the common way to solve163
the multi-objective problems as they are more commonly provides the global solution and capable of handling164
both continuous and combinational optimization problem with a very high coverage and convergence. Multi-165
objective problems are subjected to various type of constraints like linear, non-linear, equality, inequality etc.166
So with these problems embedded it is very difficult to find simple and good strategy to achieve considerable167
solutions in the acceptable criterion. So in this paper NSDA algorithm uses a very simple approach to get feasible168
solutions. In this mechanism, after generating number of solutions at each generation, all the desirable constraint169
checked and then some solution that fulfills the criterion of acceptable solution are selected and collected them in170
achieve. Afterward non dominated solutions added in archive as we find more suitable solution to get acceptable171
solution. So as if achieve is full then less dominated solutions are removed. Finally according to crowing distance172
mechanism all these solutions (more suitable position of dragonflies) from archive is selected to get desired173
solution.174

8 IV. Results Analysis on Test Functions175

For determine the performance of proposed NSDA algorithm is applied to: ? A set of unconstraint and constraint176
standard multiobjective test functions ? Tested on well-known engineering design problems ? Non-linear, highly177
complex practical application known as formulation of economic constrained emission dispatch (ECED) with178
stochastic integration of wind power (WP) in the next section NSDA algorithm is tested on seventeen different179
multi-objective case studies, including eight unconstrained test functions, five constrained test functions, and four180
real world engineering design problem, later algorithm is applied to the main application economic constrained181
emission dispatch with wind power (ECEDWP). These can be classified into four groups given below:182

9 Initialize the no. of dragonflies, no. of variable, maximum183

iterations s, a, c, f, e, w, i, t (1, 2, 3?n) Generate random184

initial population & store them into matrices (3.1)-(3.5)185

10 Calculate the fitness of all the step & position vectors eq.186

(3.6) & (3.7) Determine the non-dominated solutions in the187

initial population & save them in Pareto archive188

11 Calculate crowding distance for each Pareto archive member189

12 Select a position vector based on crowing distance value190

Now calculate the position vector and update the position of dragonflies using equations ??3.6) with distinct191
characteristics like non-linear, non-convex, discrete pareto fronts and convex etc. are selected to measure the192
performance of proposed NSDA algorithm. To deal with real world engineering design problem is really a typical193
task with unknown search space, in this article we includes four different engineering problems are considered194
and performance is compared with various well known algorithms like MOWCA, NSGA-II, MOPSO, PAES and195
?-GA multi-objective algorithms. Each algorithm is separately runs fifteen times and numeric results are listed196
in tables below. To measure the quality of obtained results we match their coverage of obtained true pareto front197
with respect to their original or true pareto fronts.198

For numeric as well as qualitative performance of purposed NSDA algorithm on various case studies we consider199
Generational Distance (GD) given by Veldhuizen in 1998 [39]for measuring the deviation of the distance between200
true pareto front and obtained pareto front, Diversity matric (Î?”) also known as matrix of spread to measure201
the uniformly distribution of nondominated solution given by Deb [24]and Metric of spacing (S) to represent the202
distribution of nondominated distribution of obtained solutions by purposed algorithm given by Schott [40].203

The mathematical representation of these performance indicating metric are as follows:(4.1)204
where205
shows the Euclidean distance (calculated in the objective space) between the Pareto optimal solution achieved206

and the nearest true Pareto optimal solution in the reference set, is the total number of achieved Pareto optimal207
solutions.? = ? | | ( ) (4.2)208

where, , are Euclidean distances between extreme solutions in true pareto front and obtained pareto front.209
shows the Euclidean distance between each point in true pareto front and obtained pareto front.210

and ’d’ are the total number of achieved Pareto optimal solutions and averaged distance of all solutions.= ? (211
? ) (4.3)212

where ”d” is the average of all , is the total number of achieved Pareto optimal solutions, and= min | ( ?) ? (213
?)| + | ( ?) ? ( ?)214

for all i,j=1,2,?,n. Smallest value of ”S” metric gives the global best non-dominated solutions are uniformly215
distributed, thus if numeric value of and are same then value of ”S” metric is equal to zero.216
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13 a) Results on unconstrained test problems217

Like as above mentioned, the first set of test problems consist of unconstrained standard test functions. All the218
standard unconstrained test functions mathematical formulation is shown in Appendix A. Later, the numeric219
results are represented in Table 1 and best optimal pareto front is shown in Fig. ??.220

All the statistical results are shown Table 1 suggests that the NSDA algorithm effectively outperforms with221
most of the unconstraint test functions compare to the MOSOS, MOCBO, MOPSO and NSGA-II algorithm. The222
effectiveness of proposed nondominated version of DA (NSDA algorithm) can be seen in the Table 1, represents a223
greater robustness and accuracy of NSDA algorithm in terms of mean and standard deviation with the help of GD,224
diversity matrix along with computational time. However, proposed NSDA algorithm shows very competitive225
results in comparison with the MOPSO, MOCBO and MOSOS algorithms and in some cases these algorithms226
performs better than proposed one. Pareto front obtained by proposed NSDA algorithm shows almost complete227
coverage with respect to true pareto front. 2 suggests that the NSDA algorithm comparatively performs better228
than other four algorithms for most of the standard constrained test functions employed. The best Pareto optimal229
fronts in Fig. 7 also helps in proving since all the Pareto optimal exactly follow the true pareto fronts obtained230
from by NSDA algorithm.231

CONST function consists of concave front with linear front, OSY is similar to CONST but consists of many232
linear regions with different slops while TNK almost similar to wave shaped. These also suggests that NSDA233
algorithm has a capability to solve various type of constraint problem. All the constraint test functions are234
mathematically given in Appendix B.235

14 c) Results on constrained engineering design problems236

The third set of test functions is the most complicated one and consists of four real engineering design problems.237
Mathematical model of all engineering design problem are given in Appendix C. Same as before both GD and238
diversity matrix is employed to measure the performance of NSDA Best Pareto optimal front TNK, OSY, algorit239
Table 2 suggests that the NSDA algorithm comparatively performs better than other four algorithms for most of240
the standard constrained test functions employed. The best Pareto optimal fronts in Fig. 7 also helps in proving241
since all the Pareto optimal solutions exactly follow the true pareto fronts obtained from by CONST function242
consists of concave front with linear front, OSY is similar to CONST but consists of many linear regions with243
different slops while TNK haped. These also suggests that NSDA algorithm has a capability to solve various All244
the constraint test functions are mathematically given in Appendix B.245

15 Results on constrained engineering design problems246

functions is the most complicated one and consists of four real engineering design problems. Mathematical model247
of all the four engineering design problem are given in Appendix C. Same as before both GD and diversity matrix248
is rmance of NSDA algorithm with respect to other algorithms to solve them, numeric results are given in Tables249
and Figure ??espectively shows the best optimal front obtained by NSDA algorithm.250

16 i. Four-bar truss design problem251

The statistical results of four bar problem [42] in given in Table 3 and best optimal front is given in Fig. 8. It252
consists of two minimization objectives displacement and volume with four design control variable mathematically253
given in Appendix C. ??espectively shows the best optimal front obtained by bar truss design problem The254
statistical results of four bar truss design problem [42] in given in Table 3 and best optimal front is given in255
Fig. 8 The statistical results of speed reducer design problem [43] is given in Table ?? and best optimal front is256
given in Fig. ??. It is a well-known mechanical design iii. Welded-beam design problem The statistical results of257
welded beam design problem [44] is given in Table ?? and best optimal front is given in Fig. 10. It is a well-known258
mechanical design The statistical results of welded beam design problem [44] is given in Table 6 and best opti259
given in Fig. 11. It is a well-known mechanical design Due to high complexity of engineering design problem it is260
really hard to gain results alike true pareto front but we can clearly see that optimal pareto obtained by NSDA261
algorithm is covers almost whole solutions that are the actual/true solutions of an engineering design problem.262
From all above tested function we that problem either it consists of constraints or unconstraint problem NSDA263
algorithm shows its capability solve any kind of linear, non complex real world problem. So in the next section264
we attached a highly non-linear complex real problem to show its effectiveness regarding the real world complex265
application with many objectives.( ) = ( ? ( ) = 1 ?266

Where, S(v) and s(v) are CDF and PDF respectively. Shape factor and scale factor are k and c respectively.267
The wind speed and output wind power are related as:= 0,268
Where, and are the rated speed of wind and rated power output. speed of wind respectively. The CDF of of269

wind can be formulated as:( ) = 1 ? ?270
Above equation is very meaningful to calculate the ECED problems with speculative wind power with variable271

speed.272
optimal front Algorithm for ”Disk brake design problem”273
Due to high complexity of engineering design sults alike true pareto front but we can clearly see that optimal274

pareto obtained by NSDA algorithm is covers almost whole solutions that are the actual/true solutions of an275
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21 V. GENERATIONAL CAPACITY CONSTRAINT

engineering design problem. From all above tested function we can roblem either it consists of constraints or276
unconstraint problem NSDA algorithm shows its capability to solve any kind of linear, non-linear and So in the277
next section we linear complex real problem to its effectiveness regarding the real world complex278

17 d) Formulation of Economic Constrained Emission Dispatch279

(ECED) with integration of Wind Power (WP)280

i. Mathematical formulation of wind power In case of wind power generation t power of wind generator is281
calculated with the help of a stochastic variable wind speed ? (meter/seconds). Wind speed is a variable282
function so there probability distribution plays a very important role. Wind speed mathematically formulated283
as two distribution function, probability density function (PDF) and cumulative distribution function (CDF) as284
follows:) ( ) ? * exp ?( ) ? , ? 0 (4.1) exp ?( ) ? , ? 0(4.2)285

, S(v) and s(v) are CDF and PDF respectively. Shape factor and scale factor are k and c respectively.286
The wind speed and output wind power are related as:, < ? ? < ? < (4.3)287
are the rated speed of wind and rated power output. and are cut in the boundary of [0, ] on an accordance288

with the speed range1 + * } + exp [?( ) ? ], 0 ? < (4.4)289
Above equation is very meaningful to calculate the ECED problems with speculative wind power with variable290

speed.291
optimal front obtained by the NSDA Algorithm for ”Disk brake design problem”292

18 Formulation of Economic Constrained Emission Dispatch293

(ECED) with integration of Wind Power (WP) Mathemat-294

ical formulation of wind power295

In case of wind power generation the output power of wind generator is calculated with the help of a296
(meter/seconds). Wind speed is a variable function so there probability distribution plays a very important297
role. Wind speed o-parametric Weibull distribution function, probability density function (PDF) and cumulative298
distribution function (CDF) as follows:299

ii.300

19 Modeling of ECEDWP problem301

As wind power is formulated as system constraint, so the objective function of economic emission dispatch problem302
(EEDP) stays on unchanged as classical EEDP: Fuel cost objective is given by:( ) = ? ( + + )(4.5)303

where, the thermal power generators cost coefficients are , , for i-th generator, Sum of the total fuel cost of304
the system and N is the total number of generators.305

Total Emission is calculated by:( ) = ? [{( + + ) * 10 } + * exp ( * )](4.6)306
where, , , , and are emission coefficients with valve point effect taking into consideration for i-th thermal307

generator.308

20 iii. System Constraints309

As wind power generation is considered as system constraint with the summation of stochastic variables the310
classical power balance constraint changes to fulfill the predefined confidence level.? ( + ? + ) ? (4.7)311

where, is confidence level that a power system must follow the load demand and so as it is selected nearer to312
unity as values lesser than unity represents high operational risk.313

represents system losses can be calculated by B-coefficient method given below:= ? ? + ? +(4.8)314
So as to change above described power balance constrained equation into deterministic form can be solved315

as:{ < + ? ? } = ( + ? ? ) ? 1 ?(4.9)316
Assume that the wind turbine have same speed and same direction and combination of Eqs. ( 4) and ( ??),317

the power balance constraint is represented as:+ ? ? ? ln + * ? *(4.10)318
iv. Reserve capacity system constraint So as to reduce the impact of stochastic wind power on system, up319

and down spinning reserve needs to be maintained [22]. Such reserve constraints formulated as [15] and [16]320
respectively:{? ( ? ) ? + * } ? (4.11) ? ? ? * ( ? ) ?(4.12)321

where, represents the reserve demand of conventional thermal power plant system and it generally keeps the322
maximum value of thermal unit, and are maximum and minimum output level of operational generators of i-th323
unit, and are predefined down and upper confidence level parameter respectively, and are the demand coefficients324
of up and down spinning reserves.325

21 v. Generational capacity constraint326

The real output power is bounded by each generators upper and lower bounds given as: ? ? (4.13)327
V.328
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22 40-Operational Thermal Generating Unit329

a) Case study I-40 thermal-generator lossless system without wind power In this case forty operational generating330
unit is consider without integration of wind power means all the generating units are coal fired. Input parameters331
like generators operating limit, fuel cost coefficients and emission coefficients are given in Appendix D extracted332
from ??45]. System is considered lossless and its solution is compared with three well known multi-objective333
algorithms like SMODE [45], NSGA-II [45]and MBFA ??46] in terms of various objectives such as best cost, best334
emission and best compromise between both objectives. Best compromise solution is then obtained by the fuzzy335
based method ??47]. Total power demand for this system is 10500 MW. Results obtained by NSDA optimal336
front obtained by the NSDA Algorithm for ”40 thermal-generator lossless system without wind power”337

generator lossless system ns are remaining same as case study I like input parameters and power demand.338
While integrating with wind power plant, the total rated output power of wind farm is set to 1000 MW ??45,339
??7].Statistical results obtained by NSDA algorithm is reported in Table 8 and best optimal front is represented340
in Fig. 13.341

objective NSDA algorithms for case study II-40 thermallossless system with wind power342

23 Result Discussion343

In almost all the cases that we consider in this article where NSDA algorithm proves its effectiveness both344
prospective quantitative and qualitative. From plots also evident that NSDA algorithm follows the exact pareto345
front similar to the true pareto front for all constrained, unconstrained and complex engineering design problem.346
So as for real world application of economic emission dispatch problem and its integration with stochastic wind347
power generation. So for this application Wilcoxon test (statistical test) In Table 9 the signed rank test is348
presented in thir optimal front obtained by the NSDA Algorithm for ”40 thermal-generator lossless system with349
wind power” In almost all the cases that we consider in this hm proves its effectiveness in both prospective350
quantitative and qualitative. From plots also evident that NSDA algorithm follows the exact pareto front similar351
to the true pareto front for all constrained, unconstrained and complex engineering em. So as for real world352
application of economic emission dispatch problem and its integration with stochastic wind power generation.353
So for this is performed. In Table 9 the signed rank test is presented in third row of each results whereas the354
calculation time is represented in forth row. For this test null hypothesis cannot be rejected at 5% level for355
numeric value ’0’ while null hypothesis is rejected at 5% level with the value of ’1’. Where NSDA algorithm356
performs superior to other algorithms that are considered for comparative purpose. NSDA algorithm shows good357
performance in both coverage and convergence as main mechanism that guarantee convergence in DA and NSDA358
continuously shrink its virtual limitation using Levy strategy in the movement of dragonflies for their random359
walk. Both mechanism emphasizes convergence and exploitation proportional to maximum number of generator360
ation/computational time or speed of each results whereas the calculation time is represented in forth row. For361
this test null hypothesis cannot be rejected at 5% level for numeric value ’0’ while null hypothesis is rejected362
at 5% level with the value of forms superior to other algorithms that are considered for comparative purpose.363
NSDA algorithm shows good performance in both coverage and convergence as main mechanism that guarantee364
convergence in DA and NSDA algorithms are limitation using Levy strategy in the movement of dragonflies for365
their random walk. Both mechanism emphasizes convergence and exploitation proportional to maximum number366
of generation (iteration). Since this complex task might degrade its performance compare to without limitation367
or free movement should be a concern. However the numerical results expresses that NSDA algorithm has a little368
effect of slow convergence at all.369

NSDA algorithm has an advantage of high coverage, which is the result of the selection of position of dragonflies370
and archive selection procedure. All the position are updated according to their fitness value that enable the371
algorithm to direct the search space in right direction to find the best solution without trapped in local solution.372
Archive selection criteria follow all the rules of the entrance and exhaust of any value in it for each iteration and373
updated when its size full. Solutions of higher fitness in archive have higher probability to thrown away first to374
improve the coverage of the pareto optimal front obtained during the optimization process.375

24 VII.376

25 Conclusion377

In this paper the non-dominated sorting dragonfly algorithm-multi-objective version of recently proposed378
dragonfly algorithm (DA) is proposed known as NSDA algorithm. This paper also utilizes the static and dynamic379
swarming strategy for exploration purpose used in its parent DA version. NSDA algorithm is developed with380
equipping dragonfly algorithm with crowding distance criterion, an archive and dragonflies position (accordance381
to ranking) selection method based on Pareto optimal dominance nature. The NSDA algorithm is first applied382
on 17 standard test functions (including eight unconstraint, five constraint and four engineering design problem)383
to prove its capability in terms of qualities and quantities showing numerical as well as convergence and coverage384
of pareto optimal front with respect to true pareto front. Then after NSDA algorithm is applied to real world385
complex ECEDWP problem where algorithm proves its dominance over other well recognized contemporary386
algorithms. The numeric results are stored and represented in performance indices: GD, metric of diversity,387
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metric of spacing and computational time. The qualitative results are reported as convergence and coverage in388
best pareto optimal front found in 15 independent runs. To check effectiveness of proposed version of algorithm389
the results are verified with SMODE, MOSOS, MOCBO, MOPSO, NSGA-II and other well recognize algorithms390
in the field of multi-objective algorithms. We can also conclude from the standard test functions results that391
NSDA algorithm is able to find pareto optimal front of any kind of shape. Finally, the result of complex real392
world ECEDWP problem validates that NSDA algorithm is capable of solving any kind of non-linear and complex393
problem with many constraint and unknown search space. Therefore, we conclude that proposed nondominated394
version of DA algorithm has various merits among the contemporary multi-objective algorithms as well as provides395
an alternative for solving multi or many objective problems.396

For future works, it is suggested to test NSDA algorithm on other real world complex problems. Also, it is397
worth to investigate and find the best constrained handling technique for this algorithm. 44. T. Ray and K.398
M. Liew, ”A swarm metaphor for multiobjective design optimization,” Engineering optimization, vol. The disk399
brake design problem has mixed constraints and was proposed by Ray and Liew ??44]. The objectives to be400
minimized are: stopping time (f1) and mass of a brake (f2) of a disk brake. As can be seen in following equations,401
there are four design variables: the inner radius of the disk (x1), the outer radius of the disk (x2), the engaging402
force (x3), and the number of friction surfaces (x4) as well as five constraints. 1 2 3 4

1

Figure 1: Fig. 1 :

3

Figure 2: Fig. 3 :
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1

MONSDA: -A Novel Multi-Objective Non-Dominated Sorting Dragonfly Algorithm
Year 2020
36
( ) Volume XX Issue II Ver-
sion I F Global Journal of Re-
searches in Engineering

??
=

?? ?=1 ? ??? ? (?
?
)
2

Algorithm? Function â??” PFs NSDA
MEAN±SD

MOSOS
MEAN±SD

MOCBO
MEAN±SD

MOPSO
MEAN±SD

NSGA-II
MEAN±SD

GD 0.00729±0.00241 0.0075±0.00420.0083±0.00620.015±0.00750.0301±0.0043
KUR Î?” 0.02704±0.01025 0.0295±0.01220.0357±0.02360.0991±0.0310.0362±0.0240

CT 7.65853±0.44369 10.7413±0.8227.9531±0.58238.0532±0.62120.4368±3.102
GD 0.00173±0.00032 0.0019±0.00020.0022±0.00030.0042±0.0000.0026±0.0003

© 2020 Global Journals

Figure 15: Table 1 :
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2

Results of the multi-objective NSDA algorithms on constrained test problems algorithms on constrained test problems
Algorithm?
Func-
tion
â??”

PFs NSDA MEAN±SD MOSOS
MEAN±SD

MOCBO
MEAN±SD

MOPSO MEAN±SD NSGA-II
MEAN±SD

GD 0.14466±0.00210 0.1508±0.00400.1528±0.00510.1576±0.0062
0.1576±0.0062

0.1542±0.0072

TNKÎ?” 0.57896±0.05587 0.1206±0.04230.1242±0.05120.1286±0.0522
0.1286±0.0522

0.126±0.06242

CT 10.7895±0.04748 15.1286±0.06311.0104±0.05212.0212±0.054
12.0212±0.054

17.4204±0.055

GD 0.10054±0.00020 0.1196±0.00310.1210±0.00410.1282±0.0042
0.1282±0.0042

0.1242±0.0043

OSYÎ?” 0.54789±0.05679 0.5354±0.06160.5422±0.07120.5931±0.0721
0.5931±0.0721

0.5682±0.0751

CT 15.5578±0.02047 20.2124±0.03212.2104±0.03014.6420±0.042
14.6420±0.042

24.2204±0.039

GD 0.14458±0.00375 0.1436±0.00620.1498±0.00760.1644±0.0078
0.1644±0.0078

0.1566±0.0042

BNHÎ?” 0.44587±0.03789 0.4288±0.06250.4798±0.07210.4975±0.0632
0.4975±0.0632

0.4892±0.0832

CT 07.5254±0.04587 16.2664±0.0549.1544±0.04209.7452±0.0464
9.7452±0.0464

19.652±0.0511

GD 0.05001±0.01478 0.0988±0.00140.1018±0.00150.1125±0.0026
25±0.0026

0.1024±0.0032

SRNÎ?” 0.20458±0.00090 0.2295±0.00170.2352±0.00190.2730±0.0023
0.2730±0.0023

0.2468±0.0018

CT 7.24456±0.00102 12.3254±0.0127.3251±0.00829.2134±0.0083
9.2134±0.0083

17.0231±0.023

GD 0.32145±0.04002 0.5162±0.00210.5202±0.00340.5854±0.0036
0.5854±0.0036

0.5532±0.0041

CONSTÎ?” 0.7056±0.000706 0.7122±0.00720.7235±0.00830.7344±0.0084
0.7344±0.0084

0.8126±0.0087

CT 16.8556±0.00054 10.0112±0.0035.2252±0.00286.4766±0.0035
6.4766±0.0035

14.0892±0.003

Figure 16: Table 2 :
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3

of the multi-objective NSDA
on four-bar truss design problem in terms mean

and standard deviation
PFs? GD
Methods â??” MEAN±SD
NSDA 0.1756±0.0235
MOWCA 0.2076±0.0055
NSGA-II 0.3601±0.0470
MOPSO 0.3741±0.0422
?-GA 0.9102±1.7053
PAES 0.9733±1.8211

[Note: Best Pareto optimal front TNK, OSY, BNH, SRN and CONST obtained by NSDA algorithm algorithm
with respect to other algorithms to solve them, numeric results are given in Tablesand Figure]

Figure 17: Table 3 :

objective NSDA algorithm
bar truss design problem in terms mean
and standard deviation
S
MEAN±SD
1.8717±0.1205
2.5816±0.0298
2.3635±0.2551
2.5303±0.2275
8.2742±16.831
3.2314±5.9555

Figure 18:
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6

problem consists of two minimization objectives problem consists of two minimization
The statistical results
of welded

fabrication cost and deflection of beam with four design fabrication cost and deflection of beam with four design

problem [44] is given in Table 5 and best optimal front is control variable mathematically given in Appendix C. control variable mathematically given in Appendix C.
known mechanical design
objective NSDA algorithms on welded-beam design problem
terms mean and standard deviation

GD Î?”
MEAN±SD MEAN±SD
0.03325±0.01693 0.75844±0.03770
0.04909±0.02821 0.22478±0.09280
0.16875±0.08030 0.88987±0.11976
0.09169±0.00733 0.58607±0.04366

( )
Vol-
ume
XX
Issue
II Ver-
sion
I
of Re-
searches
in
Engi-
neer-
ing

PFs? Methods â??”
NSDA

GD MEAN±SD 0.0587±0.27810 Î?”
MEAN±SD
0.43551±0.08237

Global
Jour-
nal

pa?-ODEMO 2.6928±0.24051 0.84041±0.20085
NSGA-II 3.0771±0.10782 0.79717±0.06608
MOWCA 0.0244±0.12314 0.46041±0.10961

[Note: optimal front obtained by the NSDA Algorithm for ”Welded Beam Design problem”The statistical results
of welded beam design problem [44] is given in Table6and best optimal front is known mechanical design problem
consists of two minimization objectives stopping time and mass of brake of a disk brake with four design control
variable mathematically given in Appendix C.objective NSDA algorithms on the Disk brake design problem terms
mean and standard deviation beam design problem in optimal front obtained by the NSDA Algorithm for ”Welded
Beam Design problem” problem consists of two minimization objectives stopping time and mass of brake of a disk
brake with four design control variable mathematically given in the Disk brake design problem in]

Figure 19: Table 6 :
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7

SMODE [45]
Case
Study I Best Best Best Best

emission cost compromise emission
Cost ($/h) 156,700 119,650 124,230 128,490
Emission (tons/h) 66,799 377,560 96,578 93,002

Figure 20: Table 7 :

8

SMODE[45]
Case Study-
II

Best emission Best cost Best Compromise
point

Best emission

?P G 10,245.76 10,177.55 10,225.71 10,241.72
PW 254.24 322.45 274.29 258.28
Cost 153,830 116,430 123,590 132,410
Emission 54,055 385,770 68,855 73,894

Figure 21: Table 8 :

algorithm is added to table 7
obtained by NSDA algorithm is represented in Fig. 12.

-generator
NSDA
Best Best

emission cost compromise
119,310 124,830
408,025 94,450

generator
integrating with wind -generator

NSGAII
[45]

MOEA/D[51] NSDA

emissionBest
cost

Best Compromise
Point

Best
emis-
sion

Best
cost

Best
Com-
pro-
mise

Best emission
sion

Best cost Best
Com-
promise
Point

10,241.7210,242.0910,241.63 10,244.4310,242.7110,242.810,242.7
10,242.7

10,224.18 10,236.58

257.91 258.37 255.568 257.294 257.156 257.321
257.321

275.82 263.42

122,610 126,240 154,0
0 0

115,770 120,950 146,685
146,685

118,689 123,459

121,850 78,860 55,754 440,240 79,485 56,509 56,509 179,099 68,801

Figure 22:
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NSDA
Case Best 119310
Study I Worst 127568
Cost Mean Wilcoxon 124830

test (H/P) 1/ 5.40e ?10
Simulation speed (s) 11.89

Case Study I
Emission

Best Worst Mean Wilcoxon test (H/P) 87,124 408.025 189,284 1/
5.55e?10

Simulation speed (s) 20.57
VI.

Figure 23: Table 9 :

Figure 24:
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.1 Global

Where:404

.1 Global405

.2 A x A ? ? ?406

Where: value of can be from 10 to 10^5.407

.3 SCHN-2 :408

Minimize:409

.4 Four-bar truss design problem:410

The 4-bar truss design problem is a well-known problem in the structural optimisation field [42], in which411
structural volume (f1) and displacement (f2) of a 4-bar truss should be minimized. As can be seen in the412
following equations, there are four design variables (x1-x4) related to cross sectional area of members 1, 2, 3, and413
4.414

.5 Minimise:415

(416

.6 Speed reducer design problem:417

The speed reducer design problem is a well-known problem in the area of mechanical engineering [43], in which418
the weight (f1) and stress (f2) of a speed reducer should be minimized. There are seven design variables: gear419
face width (x1), teeth module (x2), number of teeth of pinion (x3 integer variable), distance between bearings 1420
(x4), distance between bearings 2 (x5), diameter of shaft 1 (x6), and diameter of shaft 2 (x7) as well as eleven421
constraints.422

.7 Minimise:423

( ) = 0.7854 * (1) * ( ??424
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