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5

Abstract6

Deployable structure system using flexible members is necessary to construct a large structure7

in the space. The flexible members easily buckle as seen in wrinkles and slack. Therefore, it is8

available at designing of spacecraft to grasp when, where and how large the buckling occurs in9

the entire structure during the deployment. When dynamic analysis of large flexible structures10

which can ignore bending is conducted, the truss element and the membrane element, which11

do not consider the bending of an element, are often used from the viewpoint of calculation12

cost. Therefore, this paper proposes a comprehensive and efficient visualization method of13

buckling occurrence region and buckling magnitude during dynamic response analysis using14

the truss element to progress convenience in design. The method proposed in this paper is15

based on two previous studies. The proposed method is verified by a simple truss model, and16

an application example is shown.17

18

Index terms— deployable structures, buckling, visualization, fem, truss element, dynamic structural analysis,19
transient response.20

From the viewpoint of calculation cost, truss element and membrane element, which do not consider the21
bending of an element, are often used for analyses of large-scale dynamic FEM (Shirasawa et al., 2011;Ono et al.,22
2014).However, there are few studies that efficiently detect buckling from the entire structure during response23
analysis using the element model which does not consider bending. Because solution of buckling analysis is24
generally acquired from equation of bending moment. Therefore, the authors have proposed and developed a25
method to detect wrinkle and slack using the membrane elements (Arita et al., 2014) and a method to detect26
snap through buckling during the dynamic analysis using the truss element (Arita and Miyazaki, 2018). This27
paper proposes a comprehensive and efficient visualization method of buckling occurrence region and buckling28
magnitude during dynamic response analysis by using these two theories to progress convenience in actual design29
of gossamer spacecraft. By visualizing the buckling region, it is expected at actual designing that it will be easier30
to specify the part where buckling easily occurs, and to control or deal with the buckling part. A general method31
of visualization of buckling is to display the buckling mode shape in order to examining the buckling load and32
the shape after buckling (Noguchi and Fujii, 2000; ??keda dt al., 2003). On the other hand, the purpose of the33
method proposed in this paper is not to obtain the mode shape but to grasp comprehensively when and what34
area the buckling displacement occurs during transient response of the deployment. Visualization based on such35
a concept is a unique point of this research. In a previous study, a method using tension field theory has been36
proposed as a method of calculating the amount of deformation after buckling (Conci, 2007).However, it is pointed37
that the assumption of tension field theory does not establish for the buckling of flexible structures (Iwasa et al.,38
2004).Therefore, the method proposed in this paper is to calculate the buckling displacement amount without39
using the tension field theory.40

The theory of the visualization method is shown in Section 2. Section 3 shows the results of verification of41
the proposed method by a simple truss model, and Section 4 shows an analysis example assuming development42
of flexible membrane.43
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3 B) LONG COLUMN BUCKLING OF ELEMENTS IN TRUSS ELEMENTS I.
INTRODUCTION OF MOD-SRM

1 II. Theories of Buckling Analysis and Visualization44

In the proposed method, the dynamic response of the entire structure is analyzed by the truss element, and the45
amount of the snap through buckling displacement of the node is visualized by color contour. However, since the46
truss element cannot express the deformation other than in the axial direction, it is necessary to calculate the long47
column buckling of the element itself in order to grasp the comprehensive buckling of the entire structure. Since48
a flexible member such as a membrane has a characteristic that compression rigidity is very small compared with49
tension and it is easy to buckle, it is necessary to devise modeling of the compressive stiffness in post buckling50
analysis. Hence, we adopt the theory called Mod-SRM, which models appropriately such features, to detect and51
visualize the buckling of each truss element. In other words, this paper proposes the method to visualize the52
comprehensive buckling of the entire structure by displaying the color contour of the snap through buckling of53
nodes and the long column buckling of elements with respect to the dynamic transient response diagram of the54
truss element. In this chapter, the detection and visualization method of the snap through buckling of nodes is55
explained in Section 2.1, and the detection and visualization method of the long column buckling of elements by56
Mod-SRM is explained in Section 2.2.57

Only the snap through buckling of the node is detectable in the truss element. Since detection and58
quantification of the snap through buckling are described in detail in the previous work (Arita and Miyazaki,59
2018) by the authors, in this section, a schematic view of the method is shown in Fig. 1 Q from each eigen mode60
of the stiffness matrix K , the eigen mode is judged if buckling or not according to the work of deformation.61

Multiple buckling modes often appears at the same time. In such a case, quantification is carried out in order62
to determine the most likely buckling mode considering the motion state of the structure. Assuming that buckling63
displacement x is caused by external disturbance force F , F is obtained by solving the equation of motion. Then,64
the norm of the obtained F is defined as a validation parameter ”DF value”. It is determined that the mode with65
the smallest DF value is the most likely buckling mode. Moreover, the norm of the buckling displacement x is66
also defined as another validation parameter ”BD value”.67

2 ii. Visualization of Buckling of Nodes Based on Buckling68

Displacement69

In this section, the authors propose a method of visualization using the detected buckling mode and the BD value70
explained above. The visualization method is to display the amount of the snap through buckling displacement71
of each node is visualized by color contour for the most likely buckling mode.72

The element used in this theory is a two-node truss element having three degrees of freedom of x, y, z per73
node. We define n as the number of nodes of the entire structure, and define h as the most likely buckling mode.74
h is a normalized vector, in which the proportion of x , y and z displacements of each node is arranged. Then,75
the component corresponding to ( , , )76

x y z of the j th node in h is defined as ( , , )j j j77
x y z , and j h is defined as follows.78
[ , , ] T j j j j79
x y z º h (1) buckling by calculating the work for each node. Nodes of which deformation work becomes 080

or less are considered as buckling nodes because the displacement proceed by negative deformation work. To81
calculate the deformation work, it is necessary to extract only the deformation component from the mode that82
includes rigid-body motion. The orthogonal component * h to the rigid-body modal space , which means the83
deformation component, is extracted by Eq. ( 2). The deformation work of each node * j w in the buckling mode84
j h is calculated by using the stiffness matrix K as Eq. ( 3).85

()286
(87
Buckling displacement amount (BD value) is calculated for the node of which * j w is 0 or less by Eq. ( ??). ?88

is a scalar giving the magnitude of the displacement in the buckling mode direction, and the details are explained89
in the previous study (Arita and Miyazaki, 2016). Therefore, only the results are shown here.90

(4) (5) where (6) b is the coefficient of the Newmark-? method, t D is the time step width in the time integration91
of the Newmark-? method, M is the mass matrix, and are the velocity and acceleration of the previous time step92
respectively. Note that although Newmark-? method was used in the previous paper (Arita and Miyazaki, 2016),93
the concept of this method is also effective for other numerical integration methods, and similar equations can94
be derived by other methods. The magnitude of the displacement by the buckling is visualized by color contour95
display of nodes according to the BD value.96

3 b) Long Column Buckling of Elements in Truss Elements i.97

Introduction of Mod-SRM98

A flexible member is easy to buckle because the compressive stiffness of the flexible member is very small compared99
to tensile stiffness. Therefore, methods that determine the compressive stiffness by multiplying the tensile stiffness100
by a coefficient smaller than 1 has been proposed for the element model that does not consider bending (e.g.101
Miyazaki, 2006). Mod-SRM, which is one of them, proposed to be able to determine the compressive stiffness ratio102
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uniquely according to the amount of the out-of-plane buckling by introducing the stretchable elastic theory into103
the element model (Arita et al., 2014). Because Mod-SRM is based on the bending deformation of a beam, the104
visualization method proposed this paper is to apply Mod-SRM to the truss element. The outline of Mod-SRM105
and the derivation of physical quantities for the visualization are introduced in this section.106

First of all, supposing one truss element of which total length is defined / 2 l deforms like a slack of a cable,107
the equilibrium equation is expressed as Eq.( 7) in an infinitesimal line element dx subjected to the load P as108
shown in Fig. ??.Eventually, Eq.( ??) and ( ??)are obtained from the equilibrium equation. Details of this109
derivation are written in the previous work (Arita et al., 2014). Fig. ??: Mathematical modeling of Mod-SRM.110
Supposing one truss element deforms like a slack of a cable, the equilibrium of forces and moments are obtained111
in an infinitesimal line element dx subjected to the load P . P P 0 q q dx 0 q q 0 M = ds z x y Before deformation112
After deformation / 2 l d + M M M e P P s x Q * 1 () () n k k kk k hq h h q qq ( ) * * * jj j w h Kh =? j BD h113
= 2 a b a c a 1 2 1 0 1 0 1 ( [ ] ) 1 ( [ ] ) 1 ( [ ] ) 2 TT TT TT t t a I Q Q Q Q Mh b I Q Q Q Q Mx c I Q Q Q114
Q Mx 0 x 0 x © 2020115

is the equivalent in-plane compressive strain, defined as shown in Fig. 3. * E means Young’s modulus after116
buckling, and denotes the ratio of stiffness in the compressive direction to the tensile direction. l is a material117
constant and is defined by Eq. (10). is a non dimensional compressive load and is defined by Eq. ( ??1). E118
means Young’s modulus, A means crosssectional area and I means moment of inertia of area. C q and ( ) f t are119
functions defined by Eq. ( ??2) and ( ??3) respectively. The compressive stiffness ratio is obtained by Eq. ( ??4120
E is Young’s modulus after buckling, and is the compressive stiffness ratio.121

That is to say, given the equivalent plane compressive strain and the material constant l , the relation between122
the non-dimensional compressive load and strain can be obtained when the load and angle 0 are determined123
under Eq.( ??) and ( ??).In the actual calculation, 0 is given and h is obtained by Newton’s method so as to124
satisfy Eq. ( ??), and is obtained by Eq. ( ??5):125

(15)126
It is convenient to calculate the approximation of as the polynomial of by using the relation obtained by Eq. (127

??5) in advance, and in the transient response analysis, is calculated from the polynomial according to the value128
of at the time step. Hence, the compressive stiffness ratio is decided every time step by Eq. ( ??4).129

4 ii. Visualization of Buckling of Elements Based on Buckling130

Displacement131

In visualization, the buckling of each element is judged and the buckling elements are displayed in color contour132
according to the magnitude of .133

The calculated value of compressive buckling load is used for the judgement of the buckling. In general, when134
an axial compressive load P is applied to a simply supported beam at both ends of bending stiffness EI and135
length l shown in Fig. 4, the Euler buckling load 0 cr P is obtained as Eq. ( ??7) from Eq. ( ??6), which is the136
equilibrium equation assuming no expansion, contraction and shear deformation. On the other hand, considering137
expansion and contraction and shear deformation, if the equilibrium equation can be written as Eq. ( ??8), the138
buckling load cr P is written as Eq.(19).139

The integral term in the Eq. ( 21) can be written as below;140
(22)141
Here, the following variable transformation is defined;142
The following equation is obtained from Eq. (23);0 1 ( ) d d ( ) cos C u u C u ? ? + = ?(24)143
Using Eq. ( 21), ( ??2) and (23), the following relation is obtained:144
(25) Furthermore, using Eq. ( 23) and (24), the ( ) h u is written as below;145
(26) Because 0 0 ? ? in the case of buckling, the values of ( ) C u , ? and ( ) h u are as follows;(cos cos ) ( )146

(cos cos ) ’( ) cos f d f f f d f f f d f f f d f f d ?? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?147
? ? ? ? ? ? ? ? ? ?? ? ? ? ? = ? ? ? ? = ? ? ? + ? ? + = ? ? ? ?? ? ? ? 00 00 1 cos 1 cos cos ( ) cos 22 : :148
C u u u ?? ? ? ? ? ?? +? = = + ?? ? ? ?? ? ? ? 0 0 0 d d d d d d 21 (1 ( )) ( ) ( ( ) cos ) ’( ) ( ) cos 2 (1 ( ))149
( ) ( )uu ss P C u f C u f d EI C u P C u f h u EI ? ? ? ? ? ? ? ? ? ? ? = ?? = + ? ? ?? ? ?? ? + ? ? 0 0 0 0150
0 0 0 3 2 0 1 ( ) ( ( ) cos ) ’( ) ( ) cos 2 (1 cos )(1 cos ) ’( ) (1 cos )(1 cos ) 2 ( ) cos 1 (1 cos ) ’( ( )) 1 cos 1 ( ) 1151
cos (1 cos ) ’( ( )) 2 1 cos 1 ( ) u u h u C u f d Cu u fd u C fd u C f d u C ? ? ? ? ? ? ? ? ? ? ? ?? ? ?? ? ? ?152
? ? ? ? ? ? ? ? ? ? ? ? =? ? ?+ = ?+ ? =+ + + ?+ = + + ? ? ? ? © 2020153

( ) 1 , 0 , ( ) 0C u h u ? ? ? ? (27)154
Thus, Eq. ( ??9) is derived by Eq. (25) as follows;155
(28)Q.E.D.156
In the case of Mod-SRM, the equilibrium equation is Eq. ( 7). Therefore, cr P is below;157
(29)158
where cr P is smaller of the two solutions. From Eq. ( ??1), is below;159
(30)160
The same solution is obtained by setting in Eq.( ??) and ( ??3).When 0 0 = ,161
Thus, applying it to Eq.( ??),162
Solving this for ,163
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7 V. CONCLUSIONS

Two solutions are obtained. Since the buckling load is the one with a smaller value, cr is obtained as Eq. (30).164
Incidentally, the buckling strain is obtained from Eq. (15) as follows.165

(35)166

5 III. Verification of Visualization of Buckling by Numerical167

Experiment168

The authors verified the visualization method with a simple truss model consisting of 3 elements and 4 nodes.169
The truss model is shown in Fig. 5, and its specifications are shown in Table 1. Before transient response and170
visualization, the relationship and polynomial approximation between and were obtained in advance by Mod-171
SRM as shown in Fig. ??.The tensile strain is the positive value, and the compressive strain is the negative value.172
The buckling load of an element was obtained as 1.000129 = that is, 0.005623[N] cr P = and 0.0001285 cr =173

. Note that the compressive stiffness ratio a is calculated in each time step of the transient response analysis174
based on the polynomial approximation and Eq. ( ??4). The relationship between and , incidentally, is shown175
in Fig. ??.176

The result of the buckling analysis is shown in Fig. 8. The horizontal axis is the time step. The first vertical177
axis at the left side is the strain of the element. The second vertical axis at the right side represents the detection178
result of the snap through buckling of the nodes. Since the nodes ? and ? are fixed, they are excluded. Figure 8179
shows the sharp fluctuation of the In the previous study, Mod-SRM only defined the compressive stiffness ratio for180
the post buckling analysis of a membrane. The study of the dynamic buckling of a truss element only quantified181
the ease of buckling and degree of buckling deformation as representative values for the entire structure. On the182
other hand, the method proposed in this paper enables visually recognizing where and how large the buckling183
occurs in a transient analysis by calculating the magnitude of buckling displacement for each node and element.184

6 IV. Application Example of Membrane Structure185

The authors conducted a calculation as an application example with a model assuming that the triangular186
membrane deploys with booms. The triangular membrane folded into a bellows deploys as shown in Fig. 12187
and Table 2. The transient response is shown in Fig. 13. Buckling occurring at the nodes and the elements are188
visualized, indicating that we can confirm when, where and how large the buckling occurs in the structure. [s]189

Young’s ratio E 3.5×10190

7 V. Conclusions191

The authors proposed a comprehensive and efficient visualization method of buckling region during dynamic192
response analysis based on two previous studies to progress convenience in actual design of gossamer spacecraft.193
The proposed method is verified by a simple truss model, and the calculation of an application example is194
conducted. The result indicates that using this method, we can confirm when, where and how large the buckling195
occurs in the structure.
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Figure 1: Fig. 1 :
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Figure 2: 3 :
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Figure 3: Fig. 4 :
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Figure 4:
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Figure 5: Fig. 5 :
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Figure 6: Fig. 6 :Fig. 7 :

8

Figure 7: Fig. 8 :
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Figure 8: Fig. 9 :
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Figure 9: Fig. 10 :
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Figure 10: Fig. 12 :
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Figure 12: Fig. 11 :
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Figure 13: Fig. 13 :
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Figure 14: Table 1 :
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7 V. CONCLUSIONS

2

Parameter Symbol Value Unit
time step size dt 5×10 -6

Figure 15: Table 2 :
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