Global Journals LATEX JournalKaleidoscopeTM

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

TCAD Based Simulation and Performance Optimization of 1 InxGa(1-X)N based Solar Cell 2 Deepak Kumar Mangal¹, A. D. D. Dwivedi², Md. Asif Iqbal³ and Surender Kumar 3 Sharma⁴ 4 ¹ Poornima University Jaipur 5 Received: 15 December 2018 Accepted: 4 January 2019 Published: 15 January 2019 6

Abstract 8

Solar cells are a promising renewable and carbon-free electric energy resource to address the g

fossil-fuel shortage and global warming. Various studies on solar cells using IIInitrides 10

semiconductors in the photovoltaic applications have been done. Among them the InGaN 11

alloy is a promising candidate for the photovoltaic applications because it exhibits attractive 12

photovoltaic properties such as high tolerance to radiation, high mobility, and large absorption 13

coefficient allowing thinner layers of material to absorb most of the solar spectrum.Indium 14

Gallium Nitride (InGaN) solar cells might yield high bene fits concerning efficiency and 15

reliability, because its bandgap can be tuned through the Indium composition (from 0.7 eV to 16

3.42 eV) and It's energy range covering approximately the total solar spectrum [1]. 17

18

Index terms— indium gallium nitrite (InGaN), energy band gap (EG), efficiency, fill factor (FF), opencircuit 19 voltage, short-circuit current density, iii-nitride. 20

1 I. INTRODUCTION 21

roup III-V nitride are now a widely studied class of semiconductor materials. In x Ga (1-x) N, with small x, 22 are very efficient light emitters, even in samples with relatively high densities of structural defects are used as 23 component layers in a wide range of optoelectronic devices. Its high light absorption and its Indium-composition-24

tuned band gap, the Indium Gallium Nitride (InGaN) ternary alloy is a good candidate for high-efficiency-high-25

reliability solar cells able to operate in harsh environments. 26

Moreover, the most important advantage of InGaN alloy might be the direct band gap energy which can be 27 adjusted according to the indium composition. 28

Thus, the InGaN's energy band gap can be tuned from 0.7 eV to 3.42 eV, covering approximately the total 29 solar spectrum ??1]. In this paper, we present simulation of InGaN based p-n homo junction solar cell at different 30

Indium composition. The layers of InGaN solar cell can be deposited using the cost-effective techniques, such 31

as Metal Organic Chemical Vapor Deposition (MOCVD), Metal Organic Vapor Phase Epitaxy (MOVPE), and 32

Molecular Beam Epitaxy (MBE) ??2]. Whatever the deposition technique used, higher growth rates (~1.0 33

Angstrom/second) and lower temperature(~550 °C) characterize the InGaN growth 34

$\mathbf{2}$ (35

) In
N GaN g x g g 1-x In Ga N $= \! \mathrm{x.E} + (1 \text{-} \mathrm{x}).\mathrm{E}$ -
b.x.(1-x) E (1) 36

where the band gap energy of InN denoted as ?? ð ??"ð ??"?????? and band gap energy of GaN denoted as 37 ?? ð ??"ð ??" ?????? is 0.7eV and 3.42eV, respectively, x is the indium content and ?? is the bowing parameter 38 (?? = 1.43) ??5] ??6]. 39

The other modeling parameters of the In??Ga (1-??)N alloy were calculated using the following equations-40 41

Electron Affinity [7][8][9]: -()() 1 4.1 0.7(3.4) x g x In Ga N E ? ? = +? (2)

Relative permittivity $[6]: -() ()\mathbf{1}$ 42

- 43 15.3 8.9(1) ??) 18 1 (0.9 2.3(1)).10x x In Ga N x x ? ? = + ? (3)C x x N In Ga N x x ? = + ? (4)
- Effective density of valence band [8][9]: -() () 19 1

⁴⁶ 3 b) Physical & Optical Perameters

- ⁴⁷ The energy band gap of In x Ga (1-x) N is depended on concentration of Indium (x) and energy band gap of In
- 48 x Ga (1-x) N is given by following formula $\ref{solution}$)(GaN) 1 (524* x) n x n x U In Ga N U ?=+(11) () ()h(GaN)
- 49 1 (6.5* x) h x x U In Ga N U ? = +(12)
- 50 Where the U n(GaN) is 1000 & U h(GaN) is 170.
- 51 For the In??Ga 1-?? N alloys, Adachi's wavelengthdependent refractive index model is given by the following
- 54 Where Eph is photon Energy A & B is coefficient dependent on material composition that equation giving by
- following equation. This real part of refractive index is approximate same 2.32 Its slightly worry for InGaN alloy with different composition of x from 2.30 to 2.34.
- 57 The InGaN alloys absorption coefficient ?? is given by equation (??6) [13] ()

58 **4**

- 59) Mobility [11]: -5 2 1 10 (E E) D(E E) x ph g ph g x In Ga N C ? ? = ? + ? ??????????????(B B i i B
 60 U U T U N T U ? ? ? ? = + ? ? ? ? + ??????????????(10)() . . % SC OC in I V FF P ? =(9)
- 61 Where I SC is short circuit current, V OC is open circuit voltage, P in is incident optical power and FF is fill 62 factor of the solar cell. [10] () () 1 0.17 1.0(1) Intrinsic carrier concentration: $-h \ge m$ In Ga N $\ge m \ge 2$ 63 (7)2 g B E K T i C V N N e n ? =(8)
- Where K B is Boltzmann constant and T is lattice temperature Efficiency: -Velocity of electron & hole (S n,h 55) [cm/s] 10 3

⁶⁶ 5 Recombination time of electron & hole (? n,h)[sec.] 1ns

For the case studied, the initial physical and geometrical parameter values used for In x Ga (1-x) N single p-n junction solar cell are presented in table 6. After modeling & simulation get results with the help of above work following results are tabulates ??)5 1 1.24 2.2*10 E x g x In Ga N ? ? ? = ? ????.(19)

following results are tabulates ??)5 1 1.24Where ? is photon wavelength

For the In??Ga 1-?? N alloys, wavelength-dependent imaginary part of refractive index is given by the following equation4 K ?? = ? ??????????(20)

Where pie (?) is 3.14. Following Fig. ?? Spectral response with respect to wavelength has been shown above 73 in Fig. 5. Source photo current is maximum possible total current due to incident photons, available photo 74 current is current due to total generated electron-hole pair and cathode current is total current collected at 75 terminals. Among these three, source current is always greater than other two. Total photons incident losses 76 due to reflection, transmission, thermalization etc. Further there is loss of some of the generated electron-hole 77 pairs due to recombination and hence collected cathode current is less than or equal available photo current. 78 After getting all results we gets maximum efficiency is 19.36% at In 0.50 Ga 0.50 N single p-n junction solar cell. 79 This above table 9 shows simulation results of fill factor and efficiency at different composition of x for single 80 p-n junction solar cell. In this paper we report the TCAD simulation and performance optimization of In x Ga 81 (1-x) N based solar cell. Evaluation of the performance of the device has been performed for various values of 82 mole fraction x of In in InGaN. Extracted performance parameters such as current, voltage, power, fill factor and 83 efficiency from the proposed structure are: open circuit voltage (V oc) of 1.08 V. Short circuit current (I sc) is 84 0.027A, Fill Factor (FF) is 88.58%, Maximum voltage (V max) is 0.99 V, Maximum current (I max) is 0.26A 85 and overall efficiency is 19.36%. IV. 86

87 6 Conclusion

88

1

 $^{^{1}}F^{\odot}$ 2019 Global Journals

Figure 1:

Figure 2: Fig. 1 :

Figure 3:

 $\mathbf{2}$

of electron affinity and relative permittivity		
of In x Ga $(1-x)$ N at different value of x		
Material	Electron	Relative
In x Ga (1-x) N	$\operatorname{Affinity}(X)$	permittivity(E)
GaN	4.092	8.9
In 0.20 Ga 0.80 N	4.3955	10.18
In 0.35 Ga 0.65 N	4.5931	11.14
In $0.50 \text{ Ga} 0.50 \text{ N}$	4.765	12.1
In 0.62 Ga 0.38 N	4.884	12.868
In 0.78 Ga 0.22 N	5.017	13.892
In $0.90 \text{ Ga} 0.10 \text{ N}$	5.0975	14.66
InN	5.152	15.3

[Note: ()]

Figure 4: Table 2 :

3

	Energy Band Gap of In x Ga $(1-x)$ N at x	
	Material In x Ga (1-x) N	Energy band
		gap (Eg)
	GaN	3.42
	In 0.20 Ga 0.80 N	2.6612
	In 0.35 Ga 0.65 N	2.1672
	In 0.50 Ga 0.50 N	1.7375
	In 0.62 Ga 0.38 N	1.4401
	In 0.78 Ga 0.22 N	1.1076
	In 0.90 Ga 0.10 N	0.9063
Year 2019	InN	0.77
18		
of Researches in En-		
gineering () Volume		
XIX Issue IV Version		
ΙF		
Global Journal		

© 2019 Global Journals

Figure 5: Table 3 :

1

Material	Effective density of Conduction	Effective density of Valance
In x Ga (1-x) N	band (Nc)	Band(Nv)
	(1×10 18)	(1×10 20)
GaN	0	0
In 0.20 Ga 0.80 N	1.8	1.06
In 0.35 Ga 0.65 N	3.15	1.855
In 0.50 Ga 0.50 N	4.5	2.65
In 0.62 Ga 0.38 N	5.58	3.286
In 0.78 Ga 0.22 N	7.02	4.134
In 0.90 Ga 0.10 N	8.1	4.77
InN	9	5.3
Effective mass of electron[7]		

Figure 6: Table 1 :

$\mathbf{5}$

Material In x Ga (1-x) ${\rm N}$	Mobility of Electron (MUN or Un)	Mobility of Hole (MUP or Uh)
GaN	1000	170
In 0.20 Ga $0.80~{\rm N}$	1104.8	171.3
In 0.35 Ga 0.65 N	1183.4	172.275
In 0.50 Ga $0.50~{\rm N}$	1262	173.25
In 0.62 Ga 0.38 N	1324.9	174.03
In 0.78 Ga $0.22~{\rm N}$	1408.7	175.07
In 0.90 Ga $0.10~{\rm N}$	1471.6	175.85
InN	1524	176.5

Figure 7: Table 5 :

$\mathbf{4}$

Material	Effective Mass of	Effective Mass
In x Ga $(1-x)$ N	Electron (Mn)	of Hole (Mh)
GaN	0.2	1
In 0.20 Ga 0.80 N	0.184	0.834
In 0.35 Ga 0.65 N	0.172	0.7095
In 0.50 Ga 0.50 N	0.16	0.585
In 0.62 Ga 0.38 N	0.1504	0.4854
In 0.78 Ga 0.22 N	0.1376	0.3526
In 0.90 Ga 0.10 N	0.128	0.253
InN	0.12	0.17

Figure 8: Table 4 :

7

1						
Material In x Ga (1-x) N In 0.20 Ga 0.80 N	Isc 0.0	e (mA/cr)0813315	m^2)	Voc (V) 1.9963		
In 0.35 Ga 0.65 N	0.0	0.0158621		1.51555		
In 0.50 Ga 0.50 N	0.0274789		1.08184			
In 0.62 Ga 0.38 N	0.0)385468		0.781803		
In 0.78 Ga 0.22 N	0.0)539032		0.446001		
In 0.90 Ga 0.10 N	0.0	1054447		0.242227		
	Figure 9: 7	Table 7 :				
6						
() 1 x D In Ga N (x? Following equation is simplified	expression of)	0.665 3.616	2.460 x = ? + ?		x
Imaginary Part of Refractive	Index(K)	0 200	00 4000 6000 8	8000 10000 12000		
			0		0.9	0.4
			0		0.2	0.4
	Fig. 2: Grapl	h of wave	elength vs ima	aginary part of ref	rective in Some i	idex at differ
Parameter Used					Some n	Value
Thickness of n-InGaN laver						0.015
Ű						mi-
						cron
Thickness of p-InGaN layer						0.63
						mi-
						cron
n-type doping [cm -3]						2e18
[Note: ()]						
	Figure 10:	Table 6	:			

TCAD Based Simulation and Performance Optimizat	tion of	of In x ga (1	l-X)	Ν	Ba	sed Sol	ar (Cell		
() 1 x C In Ga N (x ?)	3.525	x	2	?	37.52	3	+ 12.77	: 4	?????
		18.29								
		$40.22 \ x =$								
		? +								

III. RESULT & DISCUSSION

Figure 11:

6 CONCLUSION

8

Material In x Ga (1-x) N	$Im (mA/cm^2)$	Vm(V)
In 0.20 Ga 0.80 N	0.00798644	1.88
In 0.35 Ga 0.65 N	0.01556	1.41
In 0.50 Ga 0.50 N	0.0265989	0.99
In 0.62 Ga 0.38 N	0.0372977	0.69
In 0.78 Ga 0.22 N	0.0507992	0.369998
In 0.90 Ga 0.10 N	0.0563837	0.19

Figure 12: Table 8 :

9

Material In x Ga $(1-x)$ N	Fill Factor	Efficiency
In 0.20 Ga 0.80 N	92.4754	11.0401
In 0.35 Ga 0.65 N	91.2636	16.1321
In 0.50 Ga 0.50 N	88.5801	19.3624
In 0.62 Ga 0.38 N	85.3975	18.9231
In 0.78 Ga 0.22 N	78.1818	13.8203
In 0.90 Ga 0.10 N	67.5787	7.87713

Figure 13: Table 9 :

Year
2019

- 0 + 0					
22					
of Re-	Efficienpyration, International Journal of	Photoenergy,	Volume 2015,	Article ID 594858	, 9 pages 2.
searches					
in En-					
gineer-					
ing (
) Vol-					
ume					
XIX					
Issue					
IV					
Ver-					
sion I					
\mathbf{F}					
Global	5. F. Bouzid and S. Ben Machiche, "F	Potentials of In	nxGa1-xN pho	tovoltaic tandems,	" Revue de
Jour-					
nal					
	Energies			Renouvelab	oles,
	56,2011.				
	(b) 6. Z. Li,H.Xiao, X. Wang et al., "T he	eoreticalsimula	ations		
Fig. 7:	of InGaN/Si mechanically stacked two 110-114, 2013.	p-junction sola	r cell," Physic	ea B: Condensed M	latter, vol.

Figure 14:

6 CONCLUSION

⁸⁹.1 Acknowledgement

- The authors are thankful to SERB, DST Government of India for the financial support under the grant sanctioned
 for Project No.ECR/2017/000179.
- [Nawaz and Ahmad ()] 'A TCAD-based modeling of GaN/InGaN/Si solar cells'. M Nawaz , A Ahmad . ID
 035019. Semiconductor Science and Technology, 2012. 27.
- 94 [Brown et al. ()] 'Finite element simulations of compositionally graded InGaN solar cells'. G F Brown, J W Ager
 95 , Iii , W Walukiewicz , J Wu . Solar Energy Materials & Solar Cells 2010. 94 (3) p. .
- $_{96}$ [Garozzo et al. ()] 'GaAs shallow homojunction solar cells fabricated on thin epitaxial films by a simple Zn solid
- state diffusion method'. M Garozzo , A Parretta , G Maletta , V Adoncecchi , M Gentili . Solar Energy
 Materials 1986. 14 (1) p. .
- Bouzid and Hamlaoui ()] 'Investigation of InGaN/Si double junction tandem solar cells'. F Bouzid , L Hamlaoui
 Journal of Fundamental and Applied Sciences 2012. 4 p. .
- [Kurtz et al. ()] 'Modeling of two junction, series-connected tandem solar cells using top-cell thickness as an
 adjustable parameter'. S R Kurtz , P Faine , J M Olson . Journal of Applied Physics 1990. 68 (4) p. .
- [Farahmand et al. ()] 'Monte Carlo sim-ulation of electron transport in the IIInitride Wurtzite phase materials
 system: binaries and ternaries'. M Farahmand , C Garetto , E Bellotti . *IEEE Transactions on Electron Devices* 2001. 48 (3) p. .
- 106 [Vilbois et al. ()] 'Simulation of a solar cell based on InGaN'. L A Vilbois , A Cheknane , A C Boney , T Benouaz
- 107 . Energy Procedia, 2012. 18 p. .