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Abstract- The paper describes the design of band selective excitation and rotation pulses in high-
resolution NMR by the method of double sweep. We first show the design of a pulse sequence 
that produces band selective excitation to the equator of the Bloch sphere with phase linearly 
dispersed as frequency. We show how this linear dispersion can then be refocused by nesting 
free evolution between two adiabatic inversions (sweeps). We then show how this construction 
can be generalized to give a band selective x rotation over a desired frequency band. 
Experimental excitation profiles for the residual HDO signal in a sample of 99.5% D2O are 
obtained as a function of resonance offset.  
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Frequency-selective pulses have widespread use in magnetic resonance and significant

effort has been devoted to their design [1]-[46]. Several experiments in high-resolution
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The  paper describes the design of band selective excitation and rotation pulses in high-resolution NMR by the
method of double sweep. We first show the design of a pulse sequence that produces band selective excitation to the equator of 
the Bloch sphere with phase linearly dispersed as frequency. We show how this linear dispersion can then be refocused by nesting 
free evolution between two adiabatic inversions (sweeps). We then show how this construction can be generalized to give a band 
selective xrotation over a desired frequency band. Experimental excitation profiles for the residual HDO signal in a sample of 99.5%
D2O are obtained as a function of resonance offset.

NMR and magnetic resonance imaging require radiofrequency pulses which excite

NMR response over a prescribed frequency range with negligible effects elsewhere.

Such band-selective pulses are particularly valuable when the excitation is uniform

over desired bandwidth and of constant phase.

In this paper, we propose a new approach for the design of a uniform phase,

band selective excitation and rotation pulses. In this approach, using Fourier series,

a pulse sequence that produces band selective excitation to the equator of the Bloch

sphere with phase linearly dispersed as the frequency is designed. This linear dis-

persion is then refocused by nesting free evolution between two adiabatic inversions

(sweeps). This construction is generalized to give a band selective x-rotation over

desired bandwidth. We assume uncoupled spin 1

2
and neglect relaxation.

Since we use adiabatic sweeps, it should be mentioned that adiabatic sweeps have

been previously employed in NMR for producing band selective excitation as in AB-

STRUSE pulse sequence [47] and for broadband excitation as in CHORUS [50] and

chirp spectroscopy [48, 49].

The paper is organized as follows. In section 2, we present the theory behind

double swept bandselective excitation, we call BASE. In section 3, we present simu-

lation results and experimental data for band selective excitation and rotation pulses

designed using double sweep technique. Finally, we conclude in section 4, with dis-

cussion and outlook.

Author: Department of Electrical Engineering, IIT Bombay, India. e-mail: navinkhaneja@gmail.com
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Abstract-

I. Introduction



We consider the problem of band selective excitation. Consider the evolution of the

Bloch vector X (We use Ωα to denote the rotation matrix, such that α ∈ {x, y, z} )

of a spin 1

2
, in a rotating frame, rotating around z-axis at Larmor frequency.

dX

dt
= (ωΩz + A(t) cos θ(t)Ωx + A(t) sin θ(t)Ωy)X, (1)

II. Theory

where A(t) and θ(t) are amplitude and phase of rf-pulse, and we normalize the chem-

ical shift, ω ∈ [−1, 1]. In what follows, we choose phase sin θ(t) = 0 and let

dX

dt
= (ωΩz + u(t)Ωx)X, (2)

where u(t) is the amplitude modulated pulse for t ∈ [0, T ].

Going into the interaction frame of chemical shift, using

Y (t) = exp(−ω(t−
T

2
)Ωz)X(t),

we obtain,

dY

dt
= u(t)(cosω(t−

T

2
) Ωx − sinω(t−

T

2
) Ωy)Y ; Y (0) = exp(ωΩz

T

2
)X(0). (3)

We design u(t), such that for all ω ∈ [−B,B], we have

∫ T

0

u(t) cosω(t−
T

2
) dt ∼ θ,

∫ T

0

u(t) sinω(t−
T

2
) dt = 0. (4)

Divide [0, T ] in intervals of step ∆t, over which u(t) is constant. Call these am-

plitudes, {u
−M , . . . , u

−k, . . . , u0} over [0, T
2
] and {u0, . . . , uk, . . . , uM} over [T

2
, T ].

∫ T

0

u(t) cosω(t−
T

2
)dt ∼ (u0 +

M
∑

k=−M

uk cos(ωk∆t))∆t, (5)

where write ∆t = π
N

and choose uk = u
−k. This insures that sine equation in Eq.

(4) above is automatically satisfied. Then we get,

∫ T

0

u(t) cosω(t−
T

2
)dt ∼ 2

M
∑

k=0

uk cos(ωk∆t)∆t = 2
M
∑

k=0

uk cos(kx)∆t, (6)
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where for x ∈ [−Bπ
N
, Bπ

N
], we have 2

∑M

k=0
uk cos(kx)∆t ∼ θ and 0 for x outside this

range. This is a Fourier series, and we get the Fourier coefficients as,

u0 =
Bθ

2π
; uk =

2θ

π

sin(kπB
N

)
2kπ
N

. (7)

For θ = π
2
, we get,

u0 =
B

4
; uk =

sin(Bkπ
N

)
2kπ
N

. (8)

In Eq. (3), using small flip angle θ, we approximate,

Y (T ) ∼ exp(

∫ T

0

u(t) cosω(t−
T

2
)dtΩx)Y (0). (9)

Starting from the initial state X(0) =





0
0
1



, we have from Eq. 3,

X(T ) ∼ exp(
ωT

2
Ωz) exp(

∫ T

0

u(t) cosω(t−
T

2
)dtΩx) exp(

ωT

2
Ωz)X(0) ∼ exp(

ωT

2
Ωz) exp(

π

2
Ωx)X(0),

(10)

for ω ∈ [−B,B]. There is no excitation outside the desired band.

This state is dephased on the Bloch sphere equator. We show, how using a double

adiabatic sweep, we can refocus this phase. Let Θ(ω) be the rotation for a adiabatic

inversion of a spin. We can use Euler angle decomposition to write,

Θ(ω) = exp(α(ω)Ωz) exp(πΩx) exp(β(ω)Ωz). (11)

The center rotation should be π, for Θ(ω) to do inversion of





0
0
1



 →





0
0
−1



.

We can use this to refocus the forward free evolution. Observe

∆(ω,
T

2
) = exp(−

ωT

2
Ωz) = Θ(ω) exp(

ωT

2
Ωz)Θ(ω). (12)
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Then

Θ(ω) exp(
ωT

2
Ωz) Θ(ω)X(T ) ∼ exp(

π

2
Ωx)X(0), (13)

which is a bandselective excitation.

In summary, the pulse sequence consists of a sequence of x-phase pulses, which

produce for ω ∈ [−B,B], the evolution

U(ω, θ) = exp(
ωT

2
Ωz) exp(θΩx) exp(

ωT

2
Ωz), (14)

where θ = π
2
, as described above, followed by a double sweep rotation ∆(ω, T

2
). This

required a peak amplitude of u(t) ∼ B
2
. Fig. 1A shows the pulse sequence for B = 1

5
.

The sweep(chirp) is done with a peak amplitude of 1

2
, T = 40π.

We talked about band selective excitations. Now we discuss band selective π
2

rotations. This is simply obtained from above by an initial double sweep. Thus

U1 = ∆(ω,
T

2
) U(ω,

π

2
) ∆(ω,

T

2
), (15)

is a π
2
rotation around the x-axis. Fig. 1B shows the band selective rotation pulse

sequence for B = .2. The chirp is done with a peak amplitude of 1

2
, T = 40π.

If there is rf-inhomogeneity, then Eq. (2) takes the form dX
dt

= (ωΩz + ǫu(t)Ωx)X,

where ǫ is inhomogeneity parameter which takes value 1 in the ideal case. The

evolution in Eq. (10) then takes the form X(T ) ∼ exp(ωT
2
Ωz) exp(ǫ

π
2
Ωx)X(0). The

excitation angle is therefore linearly effected by rf-inhomogeneity.

chirp chirp

180 180

T T/2

A
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TT/2 T/2

chirp chirp chirp chirp

180 180 180 180

       Fig. A, shows the BASE pulse sequence (amplitude) with a double sweep
that performs band selective excitation as in Eq. (13) for B = 1

5
. Fig. B, shows the

BASE pulse sequence with two double sweeps that performs band selective rotation
as in Eq. (15) for B = 1

5
.

We normalize ω in Eq. (1), to take values in the range [−1, 1]. We choose time

T
2
= Mπ, where we choose M = 20 and N = 10 in ∆t = π

N
in Eq. (5). Choosing

θ = π
2
and coefficients uk as in Eq. (8), we get the value of the Eq. (6) as a

function of bandwidth as shown in left panel of Fig. 2 for B = .2. This is a decent

approximation to π
2
over the desired bandwidth. The right panel of Fig. 2, shows

SIII. imulations
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Freq

    Left panel shows the value of the Eq. (6) as a function of bandwidth when
we choose T = 40π and ∆t = π

10
, B = 1

5
. The right panel shows the excitation profile

i.e., the −y coordinate of the Bloch vector, after application of the pulse in Eq. (13),
with uk
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Figure 1:

Figure  2:



the excitation profile i.e., the −y coordinate of the Bloch vector after application of

the pulse in Eq. (13), where we assume that adiabatic inversion is ideal. The peak

rf-amplitude A ∼ B
2
for B = .2.

Next, we implement the nonideal adiabatic sweep with a chirp pulse, by sweeping

from [−1.5, 1.5] in 300 units of time. This gives a sweep rate 1

100
≪ A2, where A = 1

2
.

The chirp pulse is a depicted in Fig. 1. The chirp operates at its peak amplitude over

sweep from [−1, 1]. The resulting excitation profile of Eq. (13) is shown in Fig. 3 A,

where we show the −y coordinate of the Bloch vector. After scaling, ω ∈ [−20, 20]

kHz, B = 2 kHz and A = 10 kHz, this pulse takes 6.27 ms. In Fig. 3 B, and 3 C, we

have B = 4 kHz and B = 8 kHz respectively. The pulse time is same 6.27 ms. T = 1

ms in Fig. 1A.

Next, we simulate the band selective x rotation as in Eq. (15). This requires to

perform double sweep twice as in Eq. (15). Adiabatic sweep is performed as before.

The resulting excitation profile of Eq. (15) is shown in Fig. 4 A,B and C, where we

show the z coordinate of the Bloch vector starting from initial y = 1 for B = [−2, 2]

kHz, B = [−4, 4] kHz and B = [−8, 8] kHz respectively. This pulse takes 11.54 ms in

each case.
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Fig. A, B, C shows the excitation profile (the −y coordinate of Bloch
vector) for the BASE pulse in Eq. (13) with B = [−2, 2] kHz, B = [−4, 4] kHz and
B = [−8, 8] kHz, respectively. The peak amplitude is A = 10 kHz. Time of the pulse
is 6.27 ms. T = 1 ms in Fig. 1A.

All experiments were performed on a 750 MHz (proton frequency) NMR spectrometer

at 298 K. Fig. 5 shows the experimental excitation profiles for the residual HDO signal8

a) Experimental
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   Fig. A, B, C shows the y to z rotation profile (the z coordinate of Bloch
vector) for the band selective x rotation pulse in Eq. (15) with B = [−2, 2] kHz,
B = [−4, 4] kHz and B = [−8, 8] kHz, respectively. The peak amplitude is A = 10
kHz. Time of the pulse is 11.54 ms. T = 1 ms in Fig. 1B.

in a sample of 99.5% D2O displayed as a function of resonance offset. Fig. 5A, B, C

shows the excitation profile of BASE sequence in Fig. 3 A, B, C respectively. The

frequency band of interest is [−2, 2] kHz, [−4, 4] kHz and [−8, 8] kHz respectively. In

each case, the peak amplitude of the rf-field is 10 kHz and duration of the pulse is

6.27 ms. The pulse sequence uses one double sweep. T = 1 ms in Fig. 1A. To show

the performance of the BASE sequence as a function of frequency, the offset is varied

over a range of [-20, 20] kHz with on-resonance at 3.53 kHz (4.71 ppm).
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20 kHz

A

C

B

-20 kHz

Fig. A, B, C show the experimental excitation profile of BASE sequences in
Fig. 3A,B and C, respectively, with B = [−2, 2] kHz, B = [−4, 4] kHz and B = [−8, 8]
kHz, respectively, in a sample of 99.5% D2O. The offset is varied over the range as
shown and the peak rf power of all pulses is 10 kHz. The duration of the pulses is
6.27 ms.

In this paper we showed design of band selective excitation and rotation pulses

(BASE). We first showed how by use of Fourier series, we can design a pulse that

IV.
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Figure  5:

Conclusion
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Fig. A, B, C show the simulations of excitation profile of BURP, SNOB

and BASE sequences respectively. The excitation bandwidth of BURP sequence is
[−4, 4] kHz and is .5 ms sequence. The excitation bandwidth of SNOB sequence is
[−2.8, 2.8] kHz and is .5 ms sequence. The excitation bandwidth of BASE sequence
is [−4, 4] kHz and is 6.27 ms sequence.

does band selective excitation to the equator of Bloch sphere. The phase of excitation

is linearly dispersed as function of offset, which is refocused by nesting free evolution

between adiabatic inversion pulses. We then extended the method to produce band

selective rotations. The pulse duration of the pulse sequences is largely limited by

time of adiabatic sweeps. This increases, if we have larger working bandwidth. How-

ever, for very large bandwidths, we may invert only the band of interest. Thereby,

we may be able to reduce the time of the proposed pulse sequences.

It is worthwhile, to compare the BASE sequence, with state of the art pulse se-

Double Swept Band Selective Excitation

quences like BURP [22] and SNOB [32]. In BURP and SNOB, the pulse sequence

is amplitude modulated, with amplitude u(t), parameterized through a Fourier series

as,

u(t) =
2π

T
(a0 +

n
∑

k=1

ak cos
2πkt

T
+ bk sin

2πkt

T
),
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Figure  6:



where T is pulse duration and the Fourier coefficients ak, bk are determined by

a simulated annealing optimization procedure [22]. Fig. 6 shows the simulations

of excitation profile of BURP, SNOB and BASE sequences. The transition from

passband to stopband is much sharper for the BASE sequence. Although Fourier

series appears in all these sequences, its manifestation in BASE is very different from

BURP and SNOB, making it possible to analytically design rather than numerically

optimize.

The principle merit of the proposedBASE pulse sequence is the analytical tractabil-

ity and conceptual simplicity of the design.

The author would like to thank the HFNMR lab facility at IIT Bombay, funded by

RIFC, IRCC, where the data was collected.
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