New Types of Transitive Maps and Minimal Mappings

By Mohammed Nokhas Murad Kaki

University of Sulaimani

Abstract - In this paper, we have introduced the relationship between two different concepts of maps, namely topological α-transitive and δ-transitive maps and investigate some of their properties in two topological spaces (X, τ^α) and (X, τ^δ). τ^α denotes the α-topology and τ^δ denotes the δ-topology of a given topological space (X, τ). The two concepts are defined by using the concepts of α- irresolute and δ- irresolute maps respectively. Also, we studied the relationship between two types of minimal systems, namely, α- minimal and δ- minimal systems, The main results are the following propositions.

Keywords: topologically δ-transitive, α- irresolute, δ- transitive, δ- dense.

GJRE-J Classification: FOR Code: 091599
New Types of Transitive Maps and Minimal Mappings

Mohammed Nokhas Murad Kaki

Abstract- In this paper, we have introduced the relationship between two different concepts of maps, namely topological α-transitive and δ-transitive maps and investigate some of their properties in two topological spaces (X, τ^α) and (X, τ^δ). τ^α denotes the α-topology and τ^δ denotes the δ-topology of a given topological space (X, τ). The two concepts are defined by using the concepts of α-irresolute and δ-irresolute maps respectively. Also, we studied the relationship between two types of minimal systems, namely, α-minimal and δ-minimal systems. The main results are the following propositions:

1. Every topologically α-transitive map implies topologically δ-transitive map, but the converse not necessarily true.
2. Every α-minimal system implies δ-minimal system, but the converse not necessarily true.

Keywords: topologically δ-transitive, α-irresolute, δ-transitive, δ-dense.

I. Introduction

Let (X, τ) be a topological space, $f: X \to X$ be α-irresolute map, then the set $A \subseteq X$ is called topologically α-mixing set[1] if, given any nonempty α-open subsets $U, V \subseteq X$ with $A \cap U \neq \emptyset$ and $A \cap V \neq \emptyset$ then $\exists N > 0$ such that $f^n(U) \cap V \neq \emptyset$ for all $n > N$, weakly α-mixing set[4] of (X, f) if any choice of nonempty α-open subsets V_1, V_2 of A and nonempty α-opensubsets U_1, U_2 of X with $A \cap U_1 \neq \emptyset$ and $A \cap U_2 \neq \emptyset$ there exists $n \in \mathbb{N}$ such that $f^n(V_1) \cap U_1 \neq \emptyset$ and $f^n(V_2) \cap U_2 \neq \emptyset$, strongly α-mixing if for any pair of open sets U and V with $U \cap A \neq \emptyset$ and $V \cap A \neq \emptyset$, there exist some $n \in \mathbb{N}$ such that $f^n(U) \cap V \neq \emptyset$ for any $k \geq n$. A point x which has α-dense orbit $O_{\alpha}(x)$ in X is called α-type hyper-cyclic point. A system is α-mixing[1] if, given α-open sets U and V in X, there exists an integer N, such that, for all $n > N$, one has $f^n(U) \cap V \neq \emptyset$, topologically α-mixing if for any nonempty α-open set U, there exists $N \in \mathbb{N}$ such that $\bigcup_{n \geq N} f^n(U)$ is α-dense in X. With the above concepts, some new theorems have been introduced and studied. Furthermore, we have the following results:

- Every topologically α-transitive map implies topologically δ-transitive map, but the converse not necessarily true.
- Every α-minimal system implies δ-minimal system, but the converse not necessarily true.
- $(E_a) \Rightarrow (ET_a)$;
- $(TM_a) \Rightarrow (WM_a) \Rightarrow (TT_a)$;

II. Preliminaries and Theorems

Definition 3.1 [2] A map $f: X \to Y$ is called α-irresolute if for every α-open set H of Y, $f^{-1}(H)$ is α-open in X.

Proposition 2.2 The product of two topologically α-mixing systems must be topologically α-mixing.

Proof: Suppose that (X, f) and (Y, g) are two α-mixing systems, and consider any α-open sets W, W' in $X \times Y$. By definition of the product topology, there exist α-open sets $U, U' \subseteq X$ and $V, V' \subseteq Y$ so that $U \times V \subseteq W$ and $U' \times V' \subseteq W'$. By definition of topological α-mixing of (X, f), there exists N such that for any $n > N$, $f^n(U) \cap V \neq \emptyset$. By definition of topological α-mixing of (Y, g), there exists N' such that for any $n > N'$, $g^n(V') \cap U \neq \emptyset$. Then, for any $n > \max(N, N')$, both $f^n(U) \cap V$ and $g^n(V') \cap U$ are nonempty, and therefore $(f \times g)^n(U \times U') \cap (V \times V')$ is nonempty as well. But this implies that $(f \times g)^n(W) \cap W' \neq \emptyset$, since W and W' were arbitrary, this implies that $(X \times Y, f \times g)$ is topologically α-mixing.

© 2019 Global Journals
Theorem 2.3 The product of two α-transitive maps is not necessarily α-transitive map [4].

Corollary 2.4 The product of two topologically α-transitive systems is not necessarily topologically α-transitive.

III. NEW TYPES OF CHAOS OF TOPOLOGICAL SPACES

In this section, I introduced and defined α-type transitive maps [3] and α-type minimal maps [3], and study some of their properties and prove some results associated with these new definitions. I investigate some of their properties and prove some results.

Definition 3.1 Let X be a separable and second category space with no isolated point, if for $x \in X$ the set $\{ f^n(x) : n \in \mathbb{N} \}$ is dense in X then x is called hyper-cyclic point. If there exists such an $x \in X$, then f is called hyper-cyclic function or f is said to have a hyper-cyclic point. Here, we have an important theorem that is: f is a hyper-cyclic function if and only if f is transitive.

Definition 3.2 A function $f: X \rightarrow X$ is called αr-homeomorphism if f is αr-irresolute bijective and $f^{-1}: X \rightarrow X$ is αr-irresolute.

Definition 3.3 Two topological systems $f: X \rightarrow X$, $g: Y \rightarrow Y$, $y_{n+1} = g(y_n)$ are topologically αr-conjugate if there is αr-homeomorphism $h: X \rightarrow Y$ such that $h \circ f = g \circ h$ (i.e. $h(f(x)) = g(h(x))$). We call h a topological αr-Conjugacy. Then I have proved some of the following statements:

1. The maps f and g have the same kind of dynamics.
2. If x is a periodic point of the map f with stable set $W_f(x)$, then the stable set of $h(x) = h(W_f(x))$.
3. The map f is αr-exact if and only if g is αr-exact.
4. The map f is αr-mixing if and only if g is αr-mixing.
5. The map f is α-type chaotic if and only if g is α-type chaotic.
6. The map f is weakly α-mixing if and only if g is weakly αr-mixing.

Remark 3.4
If $\{x_0, x_1, x_2, \ldots \}$ denotes an orbit of $x_{n+1} = f(x_n)$ then $\{ y_0 = h(x_0), y_1 = h(x_1), y_2 = h(x_2), \ldots \}$ yields an. In particular, h maps periodic orbits of f onto periodic orbits of g. orbit of g since $y_{n+1} = h(x_{n+1}) = h(f(x_n)) = g(h(x_n)) = g(y_n)$, i.e. f and g have the same kind of dynamics.

I introduced and defined the new type of transitive in such a way that it is preserved under topologically αr-conjugation.

Proposition 3.5 Let X and Y are αr-separable and αr-second category spaces. If $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are αr-conjugated by the αr-homeomorphism $h: Y \rightarrow Y$ then, for each αr-hyper-cyclic point x in X it holds that if $h(y)$ is αr-hyper-cyclic point in X.

Proof: Suppose that $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are maps αr-conjugate via $h: Y \rightarrow Y$ such that $h \circ g = f \circ h$, then if $y \in Y$ is αr-hyper-cyclic point then $O_f(y) = \{ y, g(y), g^2(y), \ldots \}$ is αr-dense in Y, let $V \subset X$ be nonempty αr-open set. Then since h is a αr-homeomorphism, $h^{-1}(V)$ is αr-open in Y, so there exists $n \in \mathbb{N}$ with $g^n(y) \in h^{-1}(V)$. From $h \circ g^n = f^n \circ h$ it follows that $h(g^n(y)) = f^n(h(y)) \in V$.

So that $O_f(h(y)) = \{ h(y), f(h(y)), f^2(h(y)), \ldots \}$ is αr-dense in X so $h(y)$ is αr-hyper-cyclic in X. Similarly, if $y \in Y$ is αr-hyper-cyclic in Y. Then

Proposition 3.6 If $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are αr-conjugate via $h: X \rightarrow Y$. Then

1. T is αr-type transitive subset of $X \Leftrightarrow h(T)$ is αr-type transitive subset of Y;
2. $T \subset X$ is αr-mixing set $\Leftrightarrow h(T)$ is αr-mixing subset of Y.

Proof (1) Assume that $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are topological systems which are topologically αr-conjugated by $h: X \rightarrow Y$. Thus, h is αr-homeomorphism (that is, h is bijective and thus invertible and both h and h^{-1} are αr-irresolute) and $h \circ f = g \circ h$ Suppose T is αr-type transitive subset of X. Let A, B be αr-open subsets of Y with $B \cap h(T) \neq \emptyset$ and $A \cap h(T) \neq \emptyset$.
(to show $g^n(A) \cap B \neq \emptyset$ for some $n > 0$).

$U = h^{-1}(A)$ and $V = h^{-1}(B)$ are α-open subsets of X since h is an α-irresolute. Then there exists some $n > 0$ such that $f^n(U) \cap V \neq \emptyset$ since the set T is α-type transitive subset of X, with $U \cap T \neq \emptyset$ and $V \cap T \neq \emptyset$. Thus

So $h(T)$ is α-type transitive subset of Y.

Proof (2) We only prove that if T is topologically α-mixing subset of Y then $h^{-1}(T)$ is also topologically α-mixing subset of X. Let U, V be two α-open subsets of X with $U \cap h^{-1}(T) \neq \emptyset$ and $V \cap h^{-1}(T) \neq \emptyset$. We have to show that there is $N > 0$ such that for any $n > N$,

$f^n(U) \cap V \neq \emptyset$ and $h^{-1}(V)$ are two α-open sets since h is α-irresolute with $h^{-1}(V) \cap T \neq \emptyset$ and $h^{-1}(U) \cap T \neq \emptyset$. If the set T is topologically α-mixing then there is $N > 0$ such that for any $n > N$, $g^n(h^{-1}(U)) \cap h^{-1}(V) \neq \emptyset$. Then $\exists x \in g^n(h^{-1}(U)) \cap h^{-1}(V)$. That is $x \in g^n(h^{-1}(U))$ and $x \in h^{-1}(V) \Leftrightarrow x = g^n(y)$ for $y \in h^{-1}(U)$, $h(x) \in V$. Thus, since $h \circ g^n = f^n \circ h$, so that $h(x) = h(g^n(y)) = f^n(h(y)) \in f^n(U)$ and we have $h(x) \in V$ that is $f^n(U) \cap V \neq \emptyset$. So, $h^{-1}(T)$ is α-mixing set.

Proposition 3.7 Let (X, f) be a topological system and A be a nonempty α-closed set of X. Then the following conditions are equivalent.

1. A is a α-transitive set of (X, f).
2. Let V be a nonempty α-open subset of A and U be a nonempty α-open subset of X with $U \cap A \neq \emptyset$. Then there exists $n \in \mathbb{N}$ such that $V \cap f^{-n}(U) \neq \emptyset$.
3. Let U be a nonempty α-open set of X with $U \cap A \neq \emptyset$. Then $\bigcup_{n \in \mathbb{N}} f^{-n}(U)$ is α-dense in A.

Theorem 3.8 Let (X, f) be a topological dynamical system and A be a nonempty α-closed invariant set of X. Then A is α-transitive set of (X, f) if and only if (A, f) is α-type transitive system.

Proof: \Rightarrow) Let V_1 and U_1 be two nonempty α-open subsets of A. For a nonempty α-open subset U_1 of A, there exists a α-open set U of X such that $U_1 = U \cap A$.

$\phi \neq f^n(h^{-1}(A)) \cap h^{-1}(B) = h^{-1}(g^n(A)) \cap h^{-1}(B)$.

Therefore,

$h^{-1}(g^n(A) \cap B) \neq \phi$ implies $g^n(A) \cap B \neq \emptyset$ since h^{-1} is invertible.

IV. NEW TYPES OF CHAOS IN PRODUCT SPACES

We will give a new definition of chaos for δ-irresoluteself map $f : X \to X$ of a compact Hausdorff topological space X, so called δ-type chaos. This new definition induces from John Tylar definition which coincides with Devaney’s definition for chaos when the topological space happens to be a metric space.

Definition 4.1 [4] Let (X, f) be a topological dynamical system; the dynamics is obtained by iterating the map. Then, f is said to be δ-type chaotic on X provided that for any nonempty δ-open sets U and V in X, there is a periodic point $p \in X$ such that $U \cap O_f(p) \neq \emptyset$ and $V \cap O_f(p) \neq \emptyset$.

Proposition 4.2 Let (X, f) be a topological dynamical system. The map f is δ-type chaotic on X if and only if f is δ-type transitive and the periodic points of the map are δ-dense in X.

Proof: \Rightarrow) If f is δ-type chaotic on X, then for every pair of nonempty δ-open sets U and V, there is a
periodic orbit intersects them; in particular, the periodic points are δ-dense in X. Then there is a periodic point p and $x, y \in O_f(p)$ with $x \in U$ and $y \in V$ and some positive integer n such that $f^n(x) = y$, so that $y = f^n(x) \in f^n(U)$ therefore $f^n(U) \cap V \neq \phi$.

\[\implies \] The δ-type transitivity [5] of f on X implies, for any nonempty δ-open subsets $U, V \subset X$, there is n such that for some $x \in U$, $f^n(x) \in V$. Now, define $W = f^{-n}(V) \cap U$. Then W is δ-open and nonempty with the property that $f^n(W) \subset V$.

But since the periodic points of f are δ-dense in X, there is a $p \in W$ such that $f^n(p) \in V$. Therefore, $U \cap O_f(p) \neq \phi$ and $V \cap O_f(p) \neq \phi$. So, the map f is δ-type chaotic.

We will define some concepts as follows:
1. (TT_δ) if for every non-empty δ-open set $D \subset X$,
 \[\bigcup_{n=1}^{\infty} f^n(D) \text{ is } \delta \text{-dense}, \]
2. Weak δ-Mixing (WM_δ) if $f \times f$ is topologically δ-transitive.
3. Exact δ-Transitive (ET_δ) if for every pair of non-empty δ-open set $D, W \subset X$,
 \[\bigcup_{n=1}^{\infty} (f^n(D) \cap f^n(W)) \text{ is } \delta \text{-dense in } X, \]
4. Topologically δ-Mixing (TM_δ) if for every pair of non-empty δ-open set $D, W \subset X$, there exits an $N \in \mathbb{N}$ such that $f^n(D) \cap W \neq \phi$ for all $n \geq N$.
5. δ-Exact (E_δ) if for every non-empty δ-open set $D \subset X$, there exists $N \in \mathbb{N}$ such that $f^N(D) = X$
6. Then the following implications hold:
 - $(E_\alpha) \Rightarrow (ET_\alpha)$;
 - $(TM_\alpha) \Rightarrow (WM_\alpha) \Rightarrow (TT_\alpha)$;

REFERENCES RÉFÉRENCES REFERENCIAS
1. Mohammed Nokhas Murad Kaki, INTRODUCTION TO TOPOLOGICAL DYNAMICAL SYSTEMS II, Book with ISBN: 978-3-659-80680-3, Publisher: Lambert academic publisher / Germany

© 2019 Global Journals