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5

Abstract6

This article is devoted to time-frequency signals analysis algorithm.This algorithm introduce7

the approach based on behavior functions and arithmetic series. The basis of p-adic numbers8

will be used to describe the discrete signal values. It will allow to build system behavior9

functions as a distribution of possibility measure. The function data analysis allows to10

perform the meta systems identification and build impulse functions. These functions will be11

used for estimation of frequency spectrum of initial signal. The study results of the algorithm12

performance on non-stationary signals model are given.13

14

Index terms— ime series, time-frequency analysis, p-adic numbers, system behavior functions, measure of15
possibility, fuzzy set,16

Any space-time signal can be described by a set of basic functions [1]. This allows us to obtain a signal spectrum17
that reflects the basis functions proportion of the content in the original signal. Such a decomposition is often18
useful for signal analysis. For example, the spectral representation is effective for analyzing the compressibility19
of signals, the synthesis of compression algorithms with minimal losses, the signals filtering problems solving, the20
synthesis of optimal regulators, etc.21

The transition to the spectrum can be carried out using orthogonal and unitary transformations. Most often,22
to obtain a spectrum, the decomposition in orthogonal functions is used [2]. For example, the spectra obtained on23
the basis of decomposition into a Fourier series [3] (with harmonic basis), Walsh series [4] (using a non-harmonic24
orthogonal system of rectangular functions with values of ± 1), wavelet transform [5,6], etc. In [7], a new approach25
to the timefrequency analysis of non-stationary signals was proposed. In this paper, we consider an algorithm26
implementing the approach developed in [7] and present the results of its application to the timefrequency analysis27
of non-stationary signals.28

A detailed analysis of existing approaches to the spectral-temporal analysis of signals is given in [7]. From the29
analysis it follows that the following elements are common to all the main approaches:30

1. Arbitrary of the function ( ) tend to be decomposed into a set of basis functions {?( , )}. Such functions31
form, as a rule, an orthogonal basis. Each function from this system conditionally plays the role of a coordinates32
axis.33

2. To determine the projection on such an coordinates axis, the integral convolution is used = ? [ ( ) ? ?( , )]34
, where are decomposition coefficients determining the degree of coincidence of the original function ( ) and ?( ,35
). The values of are perceived as coordinates on the respective axes of the basis orthogonal functions. Thus, the36
convolution integral or its discrete analogue is perceived as a measure of the similarity of the original function (37
) and the function ?( , ). 3. To study non-stationary signals and obtain the time-frequency decomposition of a38
signal a ”window” is used, which is ”cutting out” a portion of the function ( ) over a certain time interval. For39
each time interval, a measure of similarity with the basis functions ?( , ) is found.40

4. Window accounting when analyzing the original function can be carried out explicitly or implicitly. In41
the first case, the window function ( ) is explicitly introduced into the expression for integral convolution. This42
function may have various forms, for example, in the form of a Gaussian function. In the second case, the window43
is accounted for by direct selection of the basis orthogonal functions, which are called bursts or wavelets. The44
use of wavelets allows to further determine the frequency localization.45

5. Depending on the selected basic orthogonal functions and window functions, different time-frequency46
localization is obtained (Fig. 1). In any case, such localization is determined in advance before the beginning of47
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the analysis and affects its result. 1. The ”grid” of the time-frequency localization superimposed on the original48
signal may not ”coincide” with the characteristics of the original function ( ), which leads to distortions of the49
time-frequency signal evaluation. That is why in the existing approaches special attention is paid to the selection50
of basic functions and window modeling functions.51

2. In some cases, such as when using wavelet transforms, the time window has fuzzy boundaries, which leads52
to distortions of the time-frequency estimate due to the windows overlapping.53

3. The choice of functions integral convolution instrument as a measure of their similarity affects the assessment54
of initial and basic functions coincidence degree. The measure of similarity can be constructed in other ways and55
be more effective. In addition, in practice, the use of integral convolution introduces its own errors, which are56
associated with numerical integration methods.57

4. The rigid ”grid” of time-frequency localization used in existing approaches is not adaptive. It does not take58
into account the behavior of the non-stationary function of the signal. At present, localization is more effective,59
which is used in wavelet transforms (Fig. 1d). However, it is also rigid, which leads to the need for a more careful60
selection of wavelet basis functions. Selection of basic functions adapted to a signal is used in the method of61
signal analysis proposed by N. Huang ??Huang-Hilbert Transform) [10]. However, studies have shown that this62
approach also has several disadvantages [11].63

5. It can be assumed that if the function ( ) behaves not stationary, then the time-frequency localization64
should be adaptive and adapt to the behavior of the signal under study (Fig. ??). Adaptive time-frequency65
localization Thus, to ensure the adaptation of the time-frequency signal localization, it is necessary to determine66
the local areas of stationary behavior for the system that generates the signal. These areas are defined as a67
locally-invariant constraints on system behavior.68

Earlier, theoretical studies were presented in [7], which allow us to obtain estimates of the frequency spectrum69
of a signal in an adaptive version. The approach is based on the fact that the behavior of the system has locally70
invariant sections, in which the signal spectrum is relatively stable. To identify these sections, it was proposed71
to use a behavior functions change in the system [12]. This behavior function is proposed to build using the72
mathematical basis of the -adic calculus in the form of possibility measure distribution. The moments of the73
behavior function change allow us to determine the coordinates of the impulse function that models the original74
signal. It is noteworthy that periodic functions (for example, harmonic) are described by impulse functions, in75
which the coordinates of the pulses correspond to the members of arithmetic progressions In the above presented76
work, an approach is proposed to determine the current signal spectrum estimates based on the coincidence degree77
of the impulse functions of this signal and the harmonic signals of the basis functions. To ensure the effectiveness78
of the approach, it is necessary to develop an algorithm for solving the problem and test its workability for79
non-stationary signals.80

The purpose of the study, the results of which are presented in the article, was to develop an algorithm for81
solving the problem of frequency-time analysis of signals, which implements the approach proposed in [7], as well82
as testing the efficiency of the algorithm based on a model example of a non-stationary signal. To achieve the83
goal, three tasks were solved: To solve these problems the following methods were used: the theory of fuzzy sets84
and fuzzy measures; system analysis based on changes in system behavior; -adic analysis; linear programming;85
discrete signal modeling; spectral analysis Based on the approach proposed in [7], an algorithm for time-frequency86
analysis of nonstationary signals was developed. The algorithm allows to obtain the spectrum of the signal at87
each point in time when observing the signal. The delay in estimating the spectrum is determined by the time88
for the formation of the observation window. Below is the synthesized algorithm for solving the problem:89

Step. 1. Initial data set:90
1. The observation time W and the sampling interval of the signal (for example, in seconds). 2. The set of91

basis functions of impulse sines [7] ? = { ( )}, = 1, , ? . Pulse sines are called impulse functions, in which the92
coordinates of the pulses are determined by the formula of an arithmetic progression:= + ( ? 1) ? ,93

where ? , -index -th sinusoid, = -is a step of arithmetic progression. In fact, the functions ( ) are given by two94
parameters and , which determine the phase and frequency of the harmonic signal, respectively.95

3. The basis of the -adic number ( ? 2), as well as the number of observation channel blocks [13] to represent96
the data that describe the signal. The number of blocks is usually from 3 to 9. 4. The set of shift parameters97
? , = 1, | | is determined for the whole set of sample variables [14] describing the signal. 5. The set of cut-off98
thresholds {? }, ? ? [0; 1] to determine the impulse function.99

Thresholds are chosen at regular intervals in the range 0.12 -0.25 in the amount of 10 -15. 6. The algorithm100
parameter for determining the pulses coordinates for the impulse function of the studied series: an integer ? 1.101
7. Select the type of window. There are four options:102

a. Asymmetrical window. The boundaries of the window lie in the middle between the coordinates of nearby103
pulses of the signal that is being studied. Calculation of the window using the formula:= [ ? ( ); + ( )] ? .104

where ( ) = 0. 8. A method is chosen for determining the influence degrees of the -th impulse sine function from105
a set of basis functions ? for building the signal spectrum: method 1based on optimization (linear programming);106
method 2 -on the basis of an approximate approach.107

Step 2. The maximum normalizing integer for the time series is determined on the basis of the -adic number108
formula of the form [15]:= ? ,109

where ? ? {0, ? , } = ? 1.110
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Step 3. All values of the time series of the signal under study are normalized so that the minimum value of111
the series is 0, and the maximum value of the series . The resulting values are rounded to integers.112

Step 4. Each value of the series is decomposed into -adic number and is represented in canonical form [16]: (113
) = { , , ? , , ? , }. In fact, this is a representation of a number in the -adic number system. If = 2, then these114
are binary numbers. The value of determines the value of theth variable.115

Step 5. For each point in time, the confidence distribution is calculated for each system variable describing116
the signal. Let the value of the system variable ? , be determined on the set of states = , ? , , , where = , = +117
1, = 0, . Then the state of the system for this variable for ? is determined by the distribution function of the118
possibility , : × ? [0,1], which is given on the basis of -adic number ( ) in the form:= ( ) ? max , ( ) ,119

where ( ) -value of -th element of canonical form -adic number with ? .120
Step 6. A set of sample variables that determine the current state of the signal is defined. Sample variables121

are given by the relation , = , ( ) ? ? „ where , is the state of the -th sample variable with the parameter ? ,122
, ( ) ? -the state of the variable ? when the value of the parameter ( ) = + , ? . The full set of signal states123
will be defined as Step 7. The pulses coordinate of the time series of the signal under study are determined.124
The algorithm is calculated for all thresholds {? }. It is carried out iteratively on the basis of the metasystem125
identification subalgorithm described below:= × × ? × | | ,126

Step. 7.1. At the first step, the initial conditions for the parameter = 1 and the coefficient of the algorithm =127
1 are accepted. Step 7.2. For the data subset [ , + ], the behavior function ( ) is defined as the distribution of128
the possibility by the formula:( ) = ( ) ?? ? max ? ( ) ?? .129

where( ) = min ,| | { ( [ ])},130
where ? is the system state. The specific sample variable in the state ? takes the value [ ] ? ? . ( [ ]) -the131

possibility to observe the state ? with the sample variable at the time ? .132
Step 7.3. The index value of generating fuzziness of the system [17] ( ) is calculated by the formula:( ) = ? ?133

log ( ) | |134
, where ( ) is ordered by descending of ? , ? behavior function with a fictitious element |?| = 0, |?| -power set135

of states.136
Step 7.4. = + 1. is given. + ? ? , then go to step 7.7.137
Step 7.5. The behavior function ( ) is determined for the data subset [ , + ? ] ? and the generating fuzziness138

( ) is determined.139
Step 7.6. If ( ) ? ( ) max ( ) , ( ) < ? , then go to Step 7.4. If the condition is not satisfied, then the point140

+ ( ? 1) ? ? is taken as an approximation of the replacement point of the metasystem elements. For this point,141
the value = 1 is assumed and the transition to Step 7.2 is performed.142

Step 7.7. Stop. At the moments of change in the behavior of the system, single impulses form. For a fixed143
threshold ? ? [0,1], = 1, ? for discrete moments ? , we obtain a twodimensional impulse function:( , ) = 1, = ;144
0, ? .145

Step 8. There is a generalized impulse function of the signal under study by the formula:( ) = ? ? ( , ) ? ?{?}146
,147

where ( , ) is the impulse function for the threshold ? of the metasystem identification algorithm. Year 2019F148
© 2019 Global Journals149

The time coordinates ? of the approximating impulse function ( ) for the signal under study are defined as150
the local maxima of the function ( ). The coordinates will specify a numeric sequence with variable step ( ). The151
total number of pulses of the function under study . Thus, there will be local intervals, where the original signal152
has relatively stable frequency characteristics.153

Step.9. For each pulse , a window ? is determined based on the selected window type in accordance with Step154
1.155

Step 10. For each pulse of the signal under investigation with the coordinate , for each basis function of the156
pulse sines, the coefficients of the balance equation [7] are determined by the formula:? ( ) = { ( ) ? ? ( )},157

where the coefficient ( ) = ? (?1) ? ? {?1,0,1}. ( ) -is the partial sum of the sign-variable number series158
obtained from the arithmetic progression for the pulse sine ( ):(?1) ? ? = ( ),159

where ? is the time window near the pulse coordinate of the function under study. The partial sum ( ) takes160
into account the influence of all the pulses of the function ( ) falling into the window .161

Step 9. For each -th impulse sine function, the degree of its influence on the formation of the resulting impulse162
( ) is determined. For each pulse ( ) the determination of the coefficients of the influence degrees ( ) ? [0,1] is163
found either by the optimization method (method 1) or by the approximate method (method 2).164

According to method 1, the coefficients ( ) ? [0,1] are found from the solution of an optimization linear165
programming problem based on the simplex method [18]:? ? ? ? ? ( ) ? ? ( ) ? min { ( )} ( ) = 1, ? , ( ) ? 0,166

According to method 2, the coefficients ( ) ? [0,1] are found by the formula:( ) = | ( )| ? 1 ? 2 ? |? ( )| ( ) +167
( ) , ( ) ? 0, ( ) = ? ( ), ( ) = 0, ? [0,1].168

where ( ) and ( ) are the right and left deviations from the coordinate of the pulse . Coefficient ? [0,1] is169
determined from the correct consideration condition of the low-frequency components of the signal spectrum: For170
all pulses of the signal under study, in the vicinity of the coordinates , a function of the conditional instantaneous171
spectral density ( ): ? ? [0,1] is formed, where ( ) = ( ).172
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4 COMPARISON OF THE TRUE AND ESTIMATED SPECTRUM

Step 10. Spectrum estimates are determined based on fuzzy filtering. The estimated spectrum is determined173
by the fuzzy filter formula [19,20]. In the simplest case, a filter is used in the form( ) = ( ) + ? { ( ) ? ( )},174

where ? [0,1] is the gain of a fuzzy filter [21].175
Step 11. Stop.176
The function ( ) is taken as the basis for the time-frequency analysis of the signal under study. It is also used177

to restore the original signal. In this case, the reconstructed signal is found as the sum of sinusoidal functions,178
which determine the set of basis functions ? with amplitudes multiplied by the value ( ). The accuracy of the179
algorithm is checked by the error criterion, which is calculated, for example, by the degree of correlation [22]180
between two functions. To test the performance of the algorithm, studies were performed on a model example of181
a non-stationary signal.182

To substantiate the performance of the proposed algorithm for time-frequency analysis of non-stationary183
signals, it is necessary to solve two classical interrelated tasks: 1. To determine the spectrum of the investigated184
signal. Compare the results obtained with the actual signal spectrum. Estimate the errors of the proposed185
algorithm. 2. Based on the obtained spectra, restore the signal and compare it with the original signal.186

Rate the error.187
For the study of the algorithm, a non-stationary signal with a sampling interval of 0.188

1 2.189

We will assume that quantization by level of the signal under study provides the power of the set of signal values190
( ) = 128. To represent the signal value, we will use -adic numbers with = 2. In this case, to represent one data191
in the data system, the number of blocks of the observation channel will be = 7.192

2 3.193

To determine the set of sample variables and build the function of the system behavior, we will use the simplest194
mask with the shift parameter = 0 for all variables of the system , ( ) ? . In the metasystem identification195
algorithm, the set of cut-off threshold values {? } is presented in Table ??.196

The set of cut-off thresholds taken in the study In the balance equations, we will use a symmetric window LR197
with the averaged deviation ( ) = 0.5 ? ( ) + ( ) . 5.198

To test the algorithm performance in determining the influence degrees of the -th impulse sine function ( )199
from the set of basis functions ?, we will use an approximate approach.200

Based on the initial data, as a result of applying the algorithm proposed above, the data system was obtained201
for the signal under study. Data system is a matrix × with a dimension of 7 × 100. In Table 2 shows a fragment202
of this matrix for a time subset up to? [0; 1] .203

Fragment of the data matrix for the time series under study 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11 1 1 1 1 1 1 1204
1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1205

As a result of using the metasystem identification algorithm, the full two-dimensional impulse function ( , )206
was obtained (Fig. ??). Based on this function, a generalized impulse function ( ) was obtained (Fig. ??).207

Full t wo-dimensional pulse function ( , ) for the signal The time series of the signal under study and the208
corresponding generalized impulse function ( ) (normalized to the maximum value of the series under study)209

The function ( ) allows to obtain the impulse function of the signal under study ( ). The coordinates of the210
pulses were determined as the local extrema coordinates of the function ( ) (Fig. ??).211

3 Pulse function of the signal under study ( )212

Based on the obtained impulse function ( ) for a given set of impulse functions ? = { ( )}, = 1,4 , we obtained213
the coefficients of the balance equation for all coordinates of the impulses , = 1, . For example, for the coordinate214
= 19 and for the average deviation, the window will be defined as: Then the coefficient ? ( ) for the balance215
equation will take the value:? ( ) = { ( ) ? ? ( )} = ?1 ? 19 ? (?21) = 2.216

Similarly, the coefficients of the balance equation are calculated for all basis functions and coordinates , =217
1, . (Table ??). In Table ?? estimates of the coefficients ( ) (normalized to unity) obtained using the direct218
approximate approach to their definition are presented. Table ??a presents the directly obtained estimates of219
the coefficients ( ), and in Table ??b are estimates of the coefficients ( ) after filtering with the gain = 0.53.220

Estimates of the coefficients ( ) of the signal spectrum, obtained by the approximate method Table ??a Table221
4b The change in the ( ) coefficients of the signal spectrum over time is shown below (Fig. ??).222

Change dynamics of the ( ) coefficients of the signal spectrum From Fig. ??, it follows that the algorithm223
provides the correct spectrum estimate for a nonstationary signal. In Fig. ?? a comparison of the true and224
estimated signal spectrum at the initial and final measurement interval is shown.225

4 Comparison of the true and estimated spectrum226

At the same time, over the entire observation interval, the degree of correlation between the spectra at each227
frequency remains high (more than 0.7, Fig. 10).228

The correlation coefficient between the spectra for each frequency over the entire time interval229

4



The change in the value of the correlation coefficient between the true and estimated spectra over the entire230
time interval is shown in Fig. 11. The correlation degree of the spectra at the stationary parts of the signal231
refers to a high one (the correlation coefficient is more than 0.7). At the moment of changing the spectra of a232
true signal, the algorithm provides fast adaptation to a new signal spectrum (within 1 -2 pulses of an impulse233
function simulating a true signal). Thus, with a large number of measurements, the algorithm will provide an234
increase in the accuracy of estimation of the current signal spectrum.235

Based on the estimated spectra in each windows, the estimated signal is easily restored. In this case, the236
coefficients ( ) as amplitudes of the sinusoidal signals normalized to one are used. These sinusoidal signals237
correspond to the impulse sines , from the set of basis functions ?. Fig. 12 shows the true and reconstructed238
signals from the estimated spectrum.239

True and reconstructed signals from the estimated spectrum.240
The correlation coefficient of the signals is 0.933, which corresponds to a high level of correlation between241

the true and reconstructed signals. The average error for the Hamming distance is about 0.1 for the entire242
observation interval of the signal, taking into account the sharp change in its spectrum. From the graph it is seen243
that after a sharp change of the signal spectrum, there is an error in its recovery. However, by the 9th second244
the signals almost coincide. Thus, a relatively high degree of adaptation of the spectrum estimation algorithm245
for a non-stationary signal can be made.246

The developed algorithm based on the results given in article [7] allows to reduce the problem of estimating247
the signal spectrum to the solution of a system of linear equations. These equations are based on the use of248
arithmetic progressions. In this case, the task of calculating the integral convolutions of functions that introduce249
additional errors in the definition of the signal spectrum is excluded. Additionally algorithm provides adaptive250
time-frequency localization which is linked to the measured signal. This reduces errors at the borders of the251
windows when determining the current spectra. These results were made possible due to the properties of the252
system behavior functions. These functions are the distribution of the possibility measure on a set of system253
states.254

Studies of the algorithm have shown that the accuracy of determining the current signal spectrum will depend255
on the set of its parameters. In particular, the accuracy will depend on the signal discretization conditions, on256
parameters of the construction algorithm of behavioral functions, on algorithm for identifying the metasystem, on257
the choice of window, on the gain of the fuzzy filter, and other parameters. These parameters are the algorithm258
settings. The study of the algorithm on the example of a non-stationary signal with a sharp change in the259
spectrum showed the efficiency of using the algorithm and a high degree of correlation between the estimated and260
true signal spectra. Estimates of the signal spectra, which are obtained using the algorithm, make it possible to261
recover the true signal with a high degree of correlation (with a correlation coefficient higher than 0.9). 1 2 3
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Figure 4: Table 2 :

19 0.167 0.667 0.667 0.000 19 0.111 0.444 0.444 0.000
30 0.167 0.667 0.667 0.333 30 0.100 0.402 0.402 0.096
43 0.000 0.200 0.667 0.400 43 0.047 0.272 0.468 0.213
49 0.333 0.667 0.333 0.400 49 0.124 0.332 0.322 0.222
56 1.000 0.333 0.167 0.200 56 0.370 0.260 0.203 0.167
67 0.000 0.000 0.800 0.800 67 0.174 0.122 0.360 0.343
76 1.000 0.000 0.400 0.400 76 0.376 0.057 0.287 0.279
85 0.750 0.500 0.000 0.750 85 0.376 0.159 0.135 0.330
92 0.667 0.333 0.000 0.750 92 0.378 0.176 0.063 0.382

Figure 5:
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