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Any space-time signal can be described by a set of basic functions [1]. This allows us to 
obtain a signal spectrum that reflects the basis functions proportion of the content in the original 
signal. Such a decomposition is often useful for signal analysis. For example, the spectral 
representation is effective for analyzing the compressibility of signals, the synthesis of compression 
algorithms with minimal losses, the signals filtering problems solving, the synthesis of optimal 
regulators, etc. 

The transition to the spectrum can be carried out using orthogonal and unitary 
transformations. Most often, to obtain a spectrum, the decomposition in orthogonal functions is 
used [2]. For example, the spectra obtained on the basis of decomposition into a Fourier series [3] 
(with harmonic basis), Walsh series [4] (using a non-harmonic orthogonal system of rectangular 
functions with values of ± 1), wavelet transform [5, 6], etc. In [7], a new approach to the time-
frequency analysis of non-stationary signals was proposed. In this paper, we consider an algorithm 
implementing the approach developed in [7] and present the results of its application to the time-
frequency analysis of non-stationary signals. 

A detailed analysis of existing approaches to the spectral-temporal analysis of signals is given 
in [7]. From the analysis it follows that the following elements are common to all the main 
approaches: 

1. Arbitrary of the function 휑(푡) tend to be decomposed into a set of basis functions 
{Φ(푘, 푡)}. Such functions form, as a rule, an orthogonal basis. Each function from this system 
conditionally plays the role of a coordinates axis. 

2. To determine the projection on such an coordinates axis, the integral convolution is used 
푐 = ∫ [휑(푡) ∙ Φ(푘, 푡)]푑푡, where 푐  are decomposition coefficients determining the degree of 
coincidence of the original function 휑(푡) and Φ(푘, 푡). The values of 푐  are perceived as coordinates 
on the respective axes of the basis orthogonal functions. Thus, the convolution integral or its 
discrete analogue is perceived as a measure of the similarity of the original function 휑(푡) and the 
function Φ(푘, 푡). 

II. Research and Publications Analysis and the Problem Statement

I. Introduction
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3. To study non-stationary signals and obtain the time-frequency decomposition of a signal a 
“window” is used, which is “cutting out” a portion of the function 휑(푡) over a certain time interval. 
For each time interval, a measure of similarity with the basis functions Φ(푘, 푡) is found. 

4. Window accounting when analyzing the original function can be carried out explicitly or 
implicitly. In the first case, the window function 휛(푡) is explicitly introduced into the expression 
for integral convolution. This function may have various forms, for example, in the form of a 
Gaussian function. In the second case, the window is accounted for by direct selection of the basis 
orthogonal functions, which are called bursts or wavelets. The use of wavelets allows to further 
determine the frequency localization. 

5. Depending on the selected basic orthogonal functions and window functions, different 
time-frequency localization is obtained (Fig. 1). In any case, such localization is determined in 
advance before the beginning of the analysis and affects its result. 

휔       휔       휔       휔     
                      
                        
                      
                       
                      
  푡   푡   푡   푡 
 a)  b)  c)  d) 

           Time-frequency localization for various approaches: 
a) Time Localization at Shannon signal discretization; 
b) Frequency localization during Fourier transform; 
c) Window transformations of the instantaneous spectrum methods [8] (D. Gabor, J. Ville etc.) 
d) Wavelet transform [9] (I. Daubechies, Y. Meyer, R. Coifman, etc.) 

Analysis of existing approaches to the frequency-time analysis of signals revealed a number 
of important points: 

1. The “grid” of the time-frequency localization superimposed on the original signal may not 
“coincide” with the characteristics of the original function 휑(푡), which leads to distortions of the 
time-frequency signal evaluation. That is why in the existing approaches special attention is paid to 
the selection of basic functions and window modeling functions.  

2. In some cases, such as when using wavelet transforms, the time window has fuzzy 
boundaries, which leads to distortions of the time-frequency estimate due to the windows 
overlapping. 

3. The choice of functions integral convolution instrument as a measure of their similarity 
affects the assessment of initial and basic functions coincidence degree. The measure of similarity 
can be constructed in other ways and be more effective. In addition, in practice, the use of integral 
convolution introduces its own errors, which are associated with numerical integration methods. 

4. The rigid “grid” of time-frequency localization used in existing approaches is not adaptive. 
It does not take into account the behavior of the non-stationary function of the signal. At present, 
localization is more effective, which is used in wavelet transforms (Fig. 1d). However, it is also 
rigid, which leads to the need for a more careful selection of wavelet basis functions. Selection of 
basic functions adapted to a signal is used in the method of signal analysis proposed by N. Huang 
(Huang-Hilbert Transform) [10]. However, studies have shown that this approach also has several 
disadvantages [11]. 

5. It can be assumed that if the function 휑(푡) behaves not stationary, then the time-frequency 
localization should be adaptive and adapt to the behavior of the signal under study (Fig. 2). 
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Fig. 1:
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휔       
       
       
       
       
       
       
       
       
  푡 

Adaptive time-frequency localization 
Thus, to ensure the adaptation of the time-frequency signal localization, it is necessary to 

determine the local areas of stationary behavior for the system that generates the signal. These areas 
are defined as a locally-invariant constraints on system behavior. 

Earlier, theoretical studies were presented in [7], which allow us to obtain estimates of the 
frequency spectrum of a signal in an adaptive version. The approach is based on the fact that the 
behavior of the system has locally invariant sections, in which the signal spectrum is relatively 
stable. To identify these sections, it was proposed to use a behavior functions change in the system 
[12]. This behavior function is proposed to build using the mathematical basis of the 푝 - adic 
calculus in the form of possibility measure distribution. The moments of the behavior function 
change allow us to determine the coordinates of the impulse function that models the original 
signal. It is noteworthy that periodic functions (for example, harmonic) are described by impulse 
functions, in which the coordinates of the pulses correspond to the members of arithmetic 
progressions In the above presented work, an approach is proposed to determine the current signal 
spectrum estimates based on the coincidence degree of the impulse functions of this signal and the 
harmonic signals of the basis functions. To ensure the effectiveness of the approach, it is necessary 
to develop an algorithm for solving the problem and test its workability for non-stationary signals. 

The purpose of the study, the results of which are presented in the article, was to develop an 
algorithm for solving the problem of frequency-time analysis of signals, which implements the 
approach proposed in [7], as well as testing the efficiency of the algorithm based on a model 
example of a non-stationary signal. To achieve the goal, three tasks were solved: 

1. Development of a time-frequency analysis algorithm for signals based on behavior 
functions and arithmetic series. 

2. Determination of the signal spectrum under study based on the algorithm, comparison 
of the results obtained with the ideal spectrum of the model signal and errors 
estimation. 

3. Estimation of the error in the restoration of the original signal based on the obtained 
spectra.

To solve these problems the following methods were used: the theory of fuzzy sets and fuzzy 
measures; system analysis based on changes in system behavior; 푝-adic analysis; linear 
programming; discrete signal modeling; spectral analysis 

Fig. 2:

III. The Purpose and Tasks of the Study

IV. Research Methods
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Based on the approach proposed in [7], an algorithm for time-frequency analysis of non-
stationary signals was developed. The algorithm allows to obtain the spectrum of the signal at each 
point in time when observing the signal. The delay in estimating the spectrum is determined by the 
time for the formation of the observation window. Below is the synthesized algorithm for solving 
the problem: 
Step. 1. Initial data set: 

1. The observation time W and the sampling interval of the signal (for example, in seconds). 
2. The set of basis functions of impulse sines [7] Φ = {	푠푖 (푡)}, 푘 = 1,푁, 푡 ∈ 푊. Pulse sines 

are called impulse functions, in which the coordinates of the pulses are determined by the 
formula of an arithmetic progression: 

푎 = 푎 + (푚 − 1) ∙ 푑 , 

where 푎 ∈ 푊, 푘 – index 푘–th sinusoid, 푑 = 푐표푛푠푡 – is a step of arithmetic progression. 
In fact, the functions 	푠푖 (푡) are given by two parameters 푎  and 푑 , which determine the 
phase and frequency of the harmonic signal, respectively. 

3. The basis of the 푝 - adic number (푝 ≥ 2), as well as the number of 퐿 observation channel 
blocks [13] to represent the data that describe the signal. The number of blocks is usually 
from 3 to 9. 

4. The set of shift parameters 	휌 ∈ 푍, 푘 = 1, |푀| is determined for the whole set of sample 
variables 푀 [14] describing the signal. 

5. The set of cut-off thresholds {∆ }, ∆ ∈ [0; 1] to determine the impulse function. 
Thresholds are chosen at regular intervals in the range 0.12 – 0.25 in the amount of 10 – 
15. 

6. The algorithm parameter for determining the pulses coordinates for the impulse function 
of the studied series: an integer 푚 ≥ 1. 

7. Select the type of window. There are four options: 
a. Asymmetrical window. The boundaries of the window lie in the middle between 

the coordinates of nearby pulses of the signal that is being studied. Calculation of 
the window using the formula: 

퐿푅 = [휏 − 휀 (푛); 휏 + 휀 (푛)] ⊆ 푊. 

where 휀 (푛) = 0.5 ∙ (휏 − 휏 ), 휀 (푛) = 0.5 ∙ (휏 − 휏 ), 휏  – pulse coordinate of 
the signal under study; 

b. Minimum window. Calculation of the window 퐿푅  from the condition: 

휀 (푛) = 휀 (푛) = 휀(푛) = 푚푖푛{휀 (푛); 휀 (푛)} ; 

c. Maximum window. Calculation of the window 퐿푅  from the condition: 

휀 (푛) = 휀 (푛) = 휀(푛) = 푚푎푥{휀 (푛); 휀 (푛)} ; 

d. Window with averaged deviation values. Calculation of the window using the 
formula: 

V. Research Results
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퐿푅 = [휏 − 0.25 ∙ (휏 − 휏 ); 휏 + 0.25 ∙ (휏 − 휏 )] ⊆ 푊. 

8. A method is chosen for determining the influence degrees of the 푘-th impulse sine 
function from a set of basis functions Φ for building the signal spectrum: method 1 - 
based on optimization (linear programming); method 2 - on the basis of an approximate 
approach. 

Step 2. The maximum normalizing integer for the time series is determined on the basis of the 
푝 - adic number formula of the form [15]: 

푏 = 훼 ∙ 푝 , 

where ∀푙 ∈ {0,… , 퐿}		훼 = 푝 − 1. 

Step 3. All values of the time series of the signal under study 휑  are normalized so that the 
minimum value of the series is 0, and the maximum value of the series 푏 . The resulting values 
are rounded to integers. 

Step 4. Each value of the series is decomposed into 푝 - adic number and is represented in 
canonical form [16]: 푏(푡) = {훼 , 훼 , … , 훼 ,… , 훼 }. In fact, this is a representation of a number in 
the 푝 - adic number system. If 푝 = 2, then these are binary numbers. The value of 훼  determines the 
value of the 푙-th variable. 

Step 5. For each point in time, the confidence distribution is calculated for each system 
variable describing the signal. Let the value of the system variable 푣 ∈ 푉 ,	 be determined on the set 
of states 푉 = 푣 , … , 푣 , , where 푣 = 훼 ,	 푗 = 푙 + 1, 푙 = 0, 퐿. Then the state of the system 
for this variable for 푡 ∈ 푊 is determined by the distribution function of the possibility 
휇 푣 , :푊 × 푉 → [0,1], which is given on the basis of 푝 - adic number 푏(푡) in the form: 

휇 푣 = 훼 (푡) ∙ max
,
훼 (푡) , 

where 훼 (푡) – value of 푙-th element of canonical form 	푝 - adic number with 푡 ∈ 푊. 

Step 6. A set of sample variables that determine the current state of the signal is defined. 
Sample variables are given by the relation 푠 , = 푣 , ( ) ∈ 푉 ≡ 푆 ,, where 푠 ,  is the state of the  
푘-th sample variable with the parameter 푡 ∈ 푊, 푣 , ( ) ∈ 푉  - the state of the variable 푣 ∈ 푉  when 
the value of the parameter 휁 (푡) = 푡 + 휌 , 	휌 ∈ 푍. The full set of signal states will be defined as 
퐶 = 푆 × 푆 ×⋯× 푆| |, where |푀| - the power of the set of sample variables. The distribution of 
the possibility on the set of values of the sample variable is defined as  
휇 푠 , = 휇 ( ) 푣 , ∈ [0,1]. 

Step 7. The pulses coordinate of the time series of the signal under study 휑  are determined. 
The algorithm is calculated for all thresholds {∆ }. It is carried out iteratively on the basis of the 
metasystem identification subalgorithm described below: 

Step. 7.1. At the first step, the initial conditions for the parameter 푡 = 1 and the coefficient of 
the algorithm 푘 = 1 are accepted. 

The Problem Solving Algorithm time-Frequency Signals Analysis based on Behavior Functions and 
Arithmetic Series



 
 

 
 

 
 

  

 
 

 
 

  
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
  

 
 

 
 

   

 
  

 
 

 
 

  
  

 
 
 

 
  

  
 

 

  

G
lo
ba

l 
J o

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

IX
  

Is
su

e 
 I
  

V
er

si
on

 I
  

  
  
 

  

1

Y
e
a
r

20
19

F
  
  
 

  

22

© 2019    Global Journals 

Step 7.2. For the data subset [푡, 푡 + 푚], the behavior function 푓 (푐) is defined as the 
distribution of the possibility by the formula: 

푓(푐) = 푓 (푐)
∈∆

∙ max
∈

푓 (푒)
∈∆

. 

where 	
푓 (푐) = min

,| |
{휇 (푠 [푐])}, 

where 푐 ∈ 퐶 is the system state. The specific sample variable 푠  in the state 푐 ∈ 퐶 takes the 
value 푠 [푐] ∈ 푆 ≡ 푉 . 휇 (푠 [푐]) - the possibility to observe the state 푐 ∈ 퐶 with the sample 
variable 푠  at the time 푡 ∈ 푊. 

Step 7.3. The index value of generating fuzziness of the system [17] 푈 푓 (푐)  is calculated 
by the formula: 

푈 푓(푐) = 푓 푐 − 푓 푐 ∙ log (푗)
| |

, 

where 푓(푐) is ordered by descending of ∀푗, 푓 푐 ≥ 푓 푐  behavior function with a 
fictitious element 푓 푐|С| = 0, |С| - power set of states. 

Step 7.4. 푘 = 푘 + 1. is given. 푡 + 푘 ∙ 푚 ∉ 푊, then go to step 7.7. 

Step 7.5. The behavior function 푓 (푐) is determined for the data subset [푡, 푡 + 푘 ⋅ 푚] ⊆ 푊 
and the generating fuzziness 푈 푓 (푐)  is determined. 

Step 7.6. If 푈 푓 (푐) − 푈 푓 (푐) max 푈 푓 (푐) , 푈 푓 (푐) < ∆ , then go to Step 
7.4. If the condition is not satisfied, then the point 푡 + (푘 − 1) ∙ 푚 ∈ 푊 is taken as an 
approximation of the replacement point of the metasystem elements. For this point, the value 푘 = 1 
is assumed and the transition to Step 7.2 is performed. 

Step 7.7. Stop. At the moments of change in the behavior of the system, single impulses form. 
For a fixed threshold ∆ ∈ [0,1], 푢 = 1, 푁∆ for discrete moments 푡 ∈ 푊, we obtain a two-
dimensional impulse function: 

푟(푢, 푡) = 1, 푡 = 휏 ;
0, 푡 ≠ 휏 . 

Step 8. There is a generalized impulse function of the signal under study by the formula: 

푔(푡) = ∆ ∙ 푟(푢, 푡)
∆ ∈{∆}

, 

where 푟(푢, 푡) is the impulse function for the threshold ∆  of the metasystem identification 
algorithm. 
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The time coordinates 휏 ∈ 푊 of the approximating impulse function 푟(푡) for the signal under 
study are defined as the local maxima of the function 푔(푡). The coordinates 휏  will specify a 
numeric sequence with variable step 푑(푗). The total number of pulses of the function under study 
푁. Thus, there will be 푁 local intervals, where the original signal has relatively stable frequency 
characteristics. 

Step.9. For each pulse 휏 , a window 퐿푅 ⊆ 푊 is determined based on the selected window 
type in accordance with Step 1. 

Step 10. For each pulse of the signal under investigation with the coordinate 휏 , for each 
basis function of the pulse sines, the coefficients of the balance equation [7] are determined by the 
formula: 

Λ (휏 ) = {훽 (휏 ) ∙ 휏 − 푆 (퐿푅 )}, 

where the coefficient 훽 (휏 ) = ∑ (−1)∈ ∈ {−1,0,1}. 푆 (퐿푅 ) – is the partial sum of 
the sign-variable number series obtained from the arithmetic progression for the pulse sine 	푠푖 (푡): 

(−1) ∙ 푎
∈

= 푆 (퐿푅 ), 

where 퐿푅 ⊆ 푊 is the time window near the pulse coordinate 휏  of the function under study. 
The partial sum 푆 (퐿푅 ) takes into account the influence of all the pulses of the function 	푠푖 (푡) 
falling into the window 퐿푅 . 

Step 9. For each 푘-th impulse sine function, the degree of its influence on the formation of the 
resulting impulse 푟(휏 ) is determined. For each pulse 푟(휏 ) the determination of the coefficients of 
the influence degrees 푥 (휏 ) ∈ [0,1] is found either by the optimization method (method 1) or by 
the approximate method (method 2). 

According to method 1, the coefficients 푥 (휏 ) ∈ [0,1] are found from the solution of an 
optimization linear programming problem based on the simplex method [18]: 

⎩
⎪
⎨

⎪
⎧ 푥 (휏 ) ∙ Λ (휏 ) → min

{ ( )}

푥 (휏 ) = 1, ∀푘, 푥 (휏 ) ≥ 0,

 

According to method 2, the coefficients 푥 (휏 ) ∈ [0,1] are found by the formula: 

푥 (휏 ) =
|훽 (휏 )| ∙ 1 −

2 ∙ |Λ (휏 )|
휀 (푛) + 휀 (푛)

, 푆 (퐿푅 ) ≠ 0,

푥 (휏 ) = 휆 ∙ 푥(휏 ), 푆 (퐿푅 ) = 0, 휆 ∈ [0,1].
 

where 휀 (푛) and 휀 (푛) are the right and left deviations from the coordinate of the pulse 휏 . 
Coefficient 휆 ∈ [0,1] is determined from the correct consideration condition of the low-frequency 
components of the signal spectrum: 
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휆 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0, 휏 > max

⋃ ∈{ , }
(푎 ) + 푑

1, 휏 ≤ max
⋃ ∈{ , }

(푎 ) + 푑

[0,45;0.55]
휏 ≤ 푚푎푥

⋃ ∈{ , }
(푎 ) + 푑 ,

∄푘 , {푆 (퐿푅 ) ≠ 0} ∧ {Λ (휏 ) = 0}.

 

For all pulses of the signal under study, in the vicinity of the coordinates 휏 , a function of the 
conditional instantaneous spectral density 휔 (푘):Φ → [0,1] is formed, where 휔 (푘) = 푥 (휏 ). 

Step 10. Spectrum estimates are determined based on fuzzy filtering. The estimated spectrum 
is determined by the fuzzy filter formula [19, 20]. In the simplest case, a filter is used in the form 

휔 (푘) = 휔 (푘) + 훼 ∙ {휔 (푘) − 휔 (푘)}, 

where 훼 ∈ [0,1] is the gain of a fuzzy filter [21]. 

Step 11. Stop. 

The function 휔 (푘) is taken as the basis for the time-frequency analysis of the signal under 
study. It is also used to restore the original signal. In this case, the reconstructed signal is found as 
the sum of sinusoidal functions, which determine the set of basis functions Φ with amplitudes 
multiplied by the value 휔 (푘). The accuracy of the algorithm is checked by the error criterion, 
which is calculated, for example, by the degree of correlation [22] between two functions. To test 
the performance of the algorithm, studies were performed on a model example of a non-stationary 
signal. 

To substantiate the performance of the proposed algorithm for time-frequency analysis of 
non-stationary signals, it is necessary to solve two classical interrelated tasks: 

1. To determine the spectrum of the investigated signal. Compare the results obtained with 
the actual signal spectrum. Estimate the errors of the proposed algorithm. 

2. Based on the obtained spectra, restore the signal and compare it with the original signal. 
Rate the error. 

For the study of the algorithm, a non-stationary signal 휑  with a sampling interval of 0.1 s 
was chosen. The observation time of the signal 푊 = 10	푠. The source signal is considered as a 
discrete representation of the addition of sinusoidal signals 푓 , 푖 = 1,4 at frequencies of 0.159 Hz, 
0.334 Hz, 0.446 Hz, 0.637 Hz with different amplitudes at subintervals 	푊 = [0; 5]	푠 and  
	푊 = [5;10]	푠. The values of amplitude-frequency characteristics for signals 푓  in the intervals 푊  
and 푊  are shown in Fig. 3 

VI. The Discussion of the Results
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           Graphs of amplitude-frequency characteristics for signals 푓  

Time series graphs of the of the signal under study and its components 푓 , 푖 = 1,4. are shown 
in Fig 4 

 

           Time series of the investigated signal and its components 

The following parameters were chosen as initial data for the algorithm investigation: 

1. 1. In the set of basic functions, sinusoidal functions are considered, represented by 
impulse sines of the form: 

	Φ = 	푠푖 푡 푎 , 푑 = {	푠푖 (푡|0; 15);	 	푠푖 (푡|0; 11);	 	푠푖 (푡|0; 20);	 	푠푖 (푡|0; 5); }, 푘 = 1,4. 

2. We will assume that quantization by level of the signal under study provides the power 
of the set of signal values 퐶푎푟푑(푍 ) = 128. To represent the signal value, we will use 푝 -adic 
numbers with 푝 = 2. In this case, to represent one data in the data system, the number of blocks of 
the observation channel will be 퐿 = 7. 

3. To determine the set of sample variables and build the function of the system behavior, 
we will use the simplest mask with the shift parameter 휌 = 0 for all variables of the system 
푣 , ( ) ∈ 푉 . In the metasystem identification algorithm, the set of cut-off threshold values {∆ } is 
presented in Table 1.

The set of cut-off thresholds taken in the study 

푢 1 2 3 4 5 6 7 8 9 10 11 
∆  0.205 0.202 0.199 0.196 0.193 0.19 0.187 0.184 0.181 0.178 0.175 
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4. In the balance equations, we will use a symmetric window LR  with the averaged 
deviation 휀(푛) = 0.5 ∙ 휀 (푛) + 휀 (푛) . 

5. To test the algorithm performance in determining the influence degrees of the 푘-th 
impulse sine function 푥 (휏 ) from the set of basis functions Φ, we will use an approximate 
approach. 

Based on the initial data, as a result of applying the algorithm proposed above, the data 
system 퐷 was obtained for the signal under study. Data system 퐷 is a matrix 푉 ×푊 with a 
dimension of 7 × 100. In Table 2 shows a fragment of this matrix for a time subset up to  
푡 ∈ [0; 1]	푠. 

    Fragment of the data matrix for the time series under study 

푡 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
푣  1 1 1 1 1 1 1 1 1 1 
푣  0 1 1 1 1 1 1 1 1 1 
푣  1 0 0 1 1 1 1 1 1 0 
푣  0 0 1 0 1 1 1 1 0 0 
푣  0 0 1 1 1 1 1 0 0 1 
푣  0 0 0 1 0 1 0 0 0 0 
푣  1 0 1 0 1 1 1 0 0 1 

As a result of using the metasystem identification algorithm, the full two-dimensional impulse 
function 푟(푢, 푡) was obtained (Fig. 5). Based on this function, a generalized impulse function 푔(푡) 
was obtained (Fig. 6). 

 

           Full two-dimensional pulse function 푟(푢, 푡) for the signal 
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            The time series of the signal under study and the corresponding generalized impulse function 
푔(푡) (normalized to the maximum value of the series under study) 

The function 푔(푡) allows to obtain the impulse function of the signal under study 푟(휏 ). The 
coordinates of the pulses 휏  were determined as the local extrema coordinates of the function 푔(푡) 
(Fig. 7). 

 
           Pulse function of the signal under study 푟(휏 ) 

Based on the obtained impulse function 푟(휏 ) for a given set of impulse functions Φ =
{	푠푖 (푡)}, 푘 = 1,4, we obtained the coefficients of the balance equation for all coordinates of the 
impulses 휏 , 푛 = 1,푁. For example, for the coordinate 휏 = 19 and for the average deviation, the 
window will be defined as: 

퐿푅 = [휏 − 0.25 ∙ (휏 − 휏 ); 휏 + 0.25 ∙ (휏 − 휏 )] =
= [19 − 0.25 ∙ (30 − 6); 19 + 0.25 ∙ (30 − 6)] = [13; 25] ⊆ 푊. 

In this case, the value of the partial sum for the pulse sine function 	푠푖 (푡|0; 15) will be: 
푆 (퐿푅 ) = −21, and the coefficient 훽 (휏 ) = (−1) = −1. Then the coefficient Λ (휏 ) for the 
balance equation will take the value: 

Λ (휏 ) = {훽 (휏 ) ∙ 휏 − 푆 (퐿푅 )} = 	−1 ∙ 19 − (−21) = 2. 

Similarly, the coefficients of the balance equation are calculated for all basis functions and 
coordinates 휏 , 푛 = 1,푁. (Table 3). 
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    The coefficients of balance equations 

휏  Λ  Λ  Λ  Λ  
19 2 -2 - 5 
30 - 2 -4 5 
43 - 4 3 5 
49 2 -1 - 2 
56 - - - 0 
67 1 - -1 5 
76 - - - 0 
85 - 2 -1 -1 
92 - 2 - -1 

In Table 4 estimates of the coefficients 푥 (휏 ) (normalized to unity) obtained using the direct 
approximate approach to their definition are presented. Table 4a presents the directly obtained 
estimates of the coefficients 푥 (휏 ), and in Table 4b are estimates of the coefficients 푥 (휏 ) after 
filtering with the gain 훼 = 0.53. 

    Estimates of the coefficients 푥 (휏 ) of the signal spectrum, obtained by the 
approximate method 

Table 4a Table 4b 
휏  푥 (휏 ) 푥 (휏 ) 푥 (휏 ) 푥 (휏 ) 휏  푥 (휏 ) 푥 (휏 ) 푥 (휏 ) 푥 (휏 ) 
19 0.167 0.667 0.667 0.000 19 0.111 0.444 0.444 0.000 
30 0.167 0.667 0.667 0.333 30 0.100 0.402 0.402 0.096 
43 0.000 0.200 0.667 0.400 43 0.047 0.272 0.468 0.213 
49 0.333 0.667 0.333 0.400 49 0.124 0.332 0.322 0.222 
56 1.000 0.333 0.167 0.200 56 0.370 0.260 0.203 0.167 
67 0.000 0.000 0.800 0.800 67 0.174 0.122 0.360 0.343 
76 1.000 0.000 0.400 0.400 76 0.376 0.057 0.287 0.279 
85 0.750 0.500 0.000 0.750 85 0.376 0.159 0.135 0.330 
92 0.667 0.333 0.000 0.750 92 0.378 0.176 0.063 0.382 

The change in the 푥 (휏 ) coefficients of the signal spectrum over time is shown below 
(Fig.8). 

 
Change dynamics of the 푥 (휏 ) coefficients of the signal spectrum 
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From Fig. 8, it follows that the algorithm provides the correct spectrum estimate for a non-
stationary signal. In Fig. 9 a comparison of the true and estimated signal spectrum at the initial and 
final measurement interval is shown. 

 

           Comparison of the true and estimated spectrum 
At the same time, over the entire observation interval, the degree of correlation between the 

spectra at each frequency remains high (more than 0.7, Fig. 10). 

 

             The correlation coefficient between the spectra for each frequency over the entire 
time interval 

The change in the value of the correlation coefficient between the true and estimated spectra 
over the entire time interval is shown in Fig. 11. 

 

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.000 0.200 0.400 0.600 0.800N
or

m
al

iz
ed

 A
m

pl
itu

de
, u

ni
t

Frequency, Hz

Estimation, t=1.9 s

True, t=1.9 s

Estimation, t=9.2 s

True, t=9.2 s

-1.00

-0.50

0.00

0.50

1.00

0.00 0.20 0.40 0.60 0.80

Co
rr

el
at

io
n 

co
ef

fic
ie

nt

Frequency, Hz

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Co
rr

el
at

io
n 

co
ef

fic
ie

nt

Time, x 0.1 s

Change in the correlation coefficient between the true and estimated spectra  

Fig. 9:

Fig. 10: 

Fig. 11:

The Problem Solving Algorithm time-Frequency Signals Analysis based on Behavior Functions and 
Arithmetic Series

 

G
lo
ba

l 
J o

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

IX
  

Is
su

e 
 I
  

V
er

si
on

 I
  

  
  
 

  

29

Y
e
a
r

20
19

F

© 2019    Global Journals



The correlation degree of the spectra at the stationary parts of the signal refers to a high one 
(the correlation coefficient is more than 0.7). At the moment of changing the spectra of a true 
signal, the algorithm provides fast adaptation to a new signal spectrum (within 1 - 2 pulses of an 
impulse function simulating a true signal). Thus, with a large number of measurements, the 
algorithm will provide an increase in the accuracy of estimation of the current signal spectrum. 

Based on the estimated spectra in each 퐿푅  windows, the estimated signal is easily restored. 
In this case, the coefficients 푥 (휏 ) as amplitudes of the sinusoidal signals normalized to one are 
used. These sinusoidal signals correspond to the impulse sines 	푠푖 푡 푎 , 푑  from the set of basis 
functions Φ. Fig. 12 shows the true and reconstructed signals from the estimated spectrum. 

 
True and reconstructed signals from the estimated spectrum. 

The correlation coefficient of the signals is 0.933, which corresponds to a high level of 
correlation between the true and reconstructed signals. The average error for the Hamming distance 
is about 0.1 for the entire observation interval of the signal, taking into account the sharp change in 
its spectrum. From the graph it is seen that after a sharp change of the signal spectrum, there is an 
error in its recovery. However, by the 9th second the signals almost coincide. Thus, a relatively high 
degree of adaptation of the spectrum estimation algorithm for a non-stationary signal can be made. 

The developed algorithm based on the results given in article [7] allows to reduce the problem 
of estimating the signal spectrum to the solution of a system of linear equations. These equations 
are based on the use of arithmetic progressions. In this case, the task of calculating the integral 
convolutions of functions that introduce additional errors in the definition of the signal spectrum is 
excluded. Additionally algorithm provides adaptive time-frequency localization which is linked to 
the measured signal. This reduces errors at the borders of the windows when determining the 
current spectra. These results were made possible due to the properties of the system behavior 
functions. These functions are the distribution of the possibility measure on a set of system states. 

Studies of the algorithm have shown that the accuracy of determining the current signal 
spectrum will depend on the set of its parameters. In particular, the accuracy will depend on the 
signal discretization conditions, on parameters of the construction algorithm of behavioral 
functions, on algorithm for identifying the metasystem, on the choice of window, on the gain of the 
fuzzy filter, and other parameters. These parameters are the algorithm settings. The study of the 
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algorithm on the example of a non-stationary signal with a sharp change in the spectrum showed the 
efficiency of using the algorithm and a high degree of correlation between the estimated and true 
signal spectra. Estimates of the signal spectra, which are obtained using the algorithm, make it 
possible to recover the true signal with a high degree of correlation (with a correlation coefficient 
higher than 0.9). 
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