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Abstract- This article is devoted to time-frequency signals analysis algorithm. This algorithm introduce the approach based on
behavior functions and arithmetic series. The basis of p-adic numbers will be used to describe the discrete signal values. It will
allow to build system behavior functions as a distribution of possibility measure. The function data analysis allows to perform the
metasystems identification and build impulse functions. These functions will be used for estimation of frequency spectrum of
initial signal. The study results of the algorithm performance on non-stationary signals model are given.
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[. INTRODUCTION

Any space-time signal can be described by a set of basic functions [1]. This allows us to
obtain a signal spectrum that reflects the basis functions proportion of the content in the original
signal. Such a decomposition is often useful for signal analysis. For example, the spectral
representation is effective for analyzing the compressibility of signals, the synthesis of compression
algorithms with minimal losses, the signals filtering problems solving, the synthesis of optimal
regulators, etc.

The transition to the spectrum can be carried out using orthogonal and unitary
transformations. Most often, to obtain a spectrum, the decomposition in orthogonal functions is
used [2]. For example, the spectra obtained on the basis of decomposition into a Fourier series [3]
(with harmonic basis), Walsh series [4] (using a non-harmonic orthogonal system of rectangular
functions with values of £ 1), wavelet transform [5, 6], etc. In [7], a new approach to the time-
frequency analysis of non-stationary signals was proposed. In this paper, we consider an algorithm
implementing the approach developed in [7] and present the results of its application to the time-
frequency analysis of non-stationary signals.

[I. RESEARCH AND PUBLICATIONS ANALYSIS AND THE PROBLEM STATEMENT

A detailed analysis of existing approaches to the spectral-temporal analysis of signals is given
in [7]. From the analysis it follows that the following elements are common to all the main
approaches:

1. Arbitrary of the function ¢(t) tend to be decomposed into a set of basis functions
{®d(k,t)}. Such functions form, as a rule, an orthogonal basis. Each function from this system
conditionally plays the role of a coordinates axis.

2. To determine the projection on such an coordinates axis, the integral convolution is used
Cp = fOT[ga(t) - ®(k,t)]dt, where ¢, are decomposition coefficients determining the degree of
coincidence of the original function ¢ (t) and ®(k, t). The values of ¢, are perceived as coordinates
on the respective axes of the basis orthogonal functions. Thus, the convolution integral or its

discrete analogue is perceived as a measure of the similarity of the original function ¢(t) and the
function ®(k, t).
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3. To study non-stationary signals and obtain the time-frequency decomposition of a signal a
“window” is used, which is “cutting out” a portion of the function ¢(t) over a certain time interval.
For each time interval, a measure of similarity with the basis functions ®(k, t) is found.

4. Window accounting when analyzing the original function can be carried out explicitly or
implicitly. In the first case, the window function @(t) is explicitly introduced into the expression
for integral convolution. This function may have various forms, for example, in the form of a
Gaussian function. In the second case, the window is accounted for by direct selection of the basis
orthogonal functions, which are called bursts or wavelets. The use of wavelets allows to further
determine the frequency localization.

5. Depending on the selected basic orthogonal functions and window functions, different
time-frequency localization is obtained (Fig. 1). In any case, such localization is determined in
advance before the beginning of the analysis and affects its result.

w w w w

a) b) c) d)
Flg. 7. Time-frequency localization for various approaches:
a) Time Localization at Shannon signal discretization;
b) Frequency localization during Fourier transform;

¢) Window transformations of the instantaneous spectrum methods [8] (D. Gabor, J. Ville etc.)
d) Wavelet transform [9] (I. Daubechies, Y. Meyer, R. Coifman, etc.)

Analysis of existing approaches to the frequency-time analysis of signals revealed a number
of important points:

1. The “grid” of the time-frequency localization superimposed on the original signal may not
“coincide” with the characteristics of the original function ¢(t), which leads to distortions of the
time-frequency signal evaluation. That is why in the existing approaches special attention is paid to
the selection of basic functions and window modeling functions.

2. In some cases, such as when using wavelet transforms, the time window has fuzzy
boundaries, which leads to distortions of the time-frequency estimate due to the windows
overlapping.

3. The choice of functions integral convolution instrument as a measure of their similarity
affects the assessment of initial and basic functions coincidence degree. The measure of similarity
can be constructed in other ways and be more effective. In addition, in practice, the use of integral
convolution introduces its own errors, which are associated with numerical integration methods.

4. The rigid “grid” of time-frequency localization used in existing approaches is not adaptive.
It does not take into account the behavior of the non-stationary function of the signal. At present,
localization is more effective, which is used in wavelet transforms (Fig. 1d). However, it is also
rigid, which leads to the need for a more careful selection of wavelet basis functions. Selection of
basic functions adapted to a signal is used in the method of signal analysis proposed by N. Huang
(Huang-Hilbert Transform) [10]. However, studies have shown that this approach also has several
disadvantages [11].

5. It can be assumed that if the function ¢(t) behaves not stationary, then the time-frequency
localization should be adaptive and adapt to the behavior of the signal under study (Fig. 2).

© 2019 Global Journals



V. RESEARCH RESULTS

Based on the approach proposed in [7], an algorithm for time-frequency analysis of non-
stationary signals was developed. The algorithm allows to obtain the spectrum of the signal at each
point in time when observing the signal. The delay in estimating the spectrum is determined by the
time for the formation of the observation window. Below is the synthesized algorithm for solving
the problem:

Step. 1. Initial data set:

1. The observation time W and the sampling interval of the signal (for example, in seconds).

2. The set of basis functions of impulse sines [7] ® = { si, (t)},k = 1,N, t € W. Pulse sines
are called impulse functions, in which the coordinates of the pulses are determined by the
formula of an arithmetic progression:

ak, =af +(m—1)-d,

where ak, € W, k — index k—th sinusoid, d, = const — is a step of arithmetic progression.
In fact, the functions sij(t) are given by two parameters a¥ and d,,, which determine the
phase and frequency of the harmonic signal, respectively.

3. The basis of the p - adic number (p = 2), as well as the number of L observation channel
blocks [13] to represent the data that describe the signal. The number of blocks is usually
from 3 to 9.

4. The set of shift parameters p, € Z,k = 1,|M| is determined for the whole set of sample
variables M [14] describing the signal.

5. The set of cut-off thresholds {A,},A,€ [0;1] to determine the impulse function.
Thresholds are chosen at regular intervals in the range 0.12 — 0.25 in the amount of 10 —
15.

6. The algorithm parameter for determining the pulses coordinates for the impulse function
of the studied series: an integer m > 1.

7. Select the type of window. There are four options:

a. Asymmetrical window. The boundaries of the window lie in the middle between
the coordinates of nearby pulses of the signal that is being studied. Calculation of
the window using the formula:

LR, = [Tn — g, (n); Ty + eg(M)] € W.

where £,(n) = 0.5 (t, — T,_1), €g(n) = 0.5 - (1,41 — T,,), T, — pulse coordinate of
the signal under study;

b. Minimum window. Calculation of the window LR,, from the condition:

e,(n) = gg(n) = e(n) = min{e, (n); eg(n)};
¢. Maximum window. Calculation of the window LR,, from the condition:
g,(n) = eg(n) = e(n) = max{e,(n); eg(n)};

d. Window with averaged deviation values. Calculation of the window using the
formula:
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LR, = [t — 0.25 - (Tp41 — Tpo1); Ty + 0.25 - (Tp41 — Toq)] EW.

8. A method is chosen for determining the influence degrees of the k-th impulse sine
function from a set of basis functions @ for building the signal spectrum: method 1 -
based on optimization (linear programming); method 2 - on the basis of an approximate
approach.

Step 2. The maximum normalizing integer for the time series is determined on the basis of the
p - adic number formula of the form [15]:

L

bmax = Z ap - Pl,

1=0
where VI € {0, ...,L} a; =p — 1.

Step 3. All values of the time series of the signal under study ¢, are normalized so that the
minimum value of the series is 0, and the maximum value of the series b,,,,. The resulting values
are rounded to integers.

Step 4. Each value of the series is decomposed into p - adic number and is represented in
canonical form [16]: b(t) = {ag, @4, ..., a;, ..., @, }. In fact, this is a representation of a number in
the p - adic number system. If p = 2, then these are binary numbers. The value of a; determines the
value of the [-th variable.

Step 5. For each point in time, the confidence distribution is calculated for each system
variable describing the signal. Let the value of the system variable v; € V;, be determined on the set
of states V; = {vil, ...,vi,L+1}, where v; = @i, j=1+1,1= 0, L. Then the state of the system
for this variable for t € W is determined by the distribution function of the possibility
,ut(vi,j): W x V; - [0,1], which is given on the basis of p - adic number b(t) in the form:

.ut(vij) = a;(t)- (maf al(t))_ ,

1=0.L

)

where a;(t) — value of [-th element of canonical form p - adic number with t € W.

Step 6. A set of sample variables that determine the current state of the signal is defined.
Sample variables are given by the relation sy, = v; ¢, ) € V; = S,, where s is the state of the
k-th sample variable with the parameter t € W, v; ¢, () € V; - the state of the variable v; € V; when
the value of the parameter {}, (t) =t + py, px € Z. The full set of signal states will be defined as
C =S; X Sy X =+ X Sy, where |[M| - the power of the set of sample variables. The distribution of
the possibility on the set of values of the sample variable is defined as

pe(sj) =t (viy) € 10,11,

Step 7. The pulses coordinate of the time series of the signal under study ¢,, are determined.
The algorithm is calculated for all thresholds {A,}. It is carried out iteratively on the basis of the
metasystem identification subalgorithm described below:

Step. 7.1. At the first step, the initial conditions for the parameter t = 1 and the coefficient of
the algorithm k = 1 are accepted.
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Step 7.2. For the data subset [t,t+ m], the behavior function f;(c) is defined as the
distribution of the possibility by the formula:

-1

f(c) ={Z ﬁ(C)}-{rggg Z ft(e)} .
teAW teAW

where

file) = min_Gu (s, [eD)}

where ¢ € C is the system state. The specific sample variable s, in the state ¢ € C takes the
value si[c] € S, = V;. u.(sklc]) - the possibility to observe the state ¢ € C with the sample
variable s at the time t € W.

Step 7.3. The index value of generating fuzziness of the system [17] U (f1 (c)) is calculated
by the formula:

IC|

U(F©) = ) (F(e) = F(gm)) loma 1,

where f(c) is ordered by descending of Vj,f (Cj) >f (Cj+1) behavior function with a
fictitious element f(c|cj+1) = 0, |C| - power set of states.

Step 7.4. k = k + 1. is given. t + k- m & W, then go to step 7.7.

Step 7.5. The behavior function f; (c) is determined for the data subset [t,t + k-m] € W
and the generating fuzziness U(f; (c)) is determined.

Step 7.6. If |U(f.(c)) — U(fi—1(c))|/max (U(fk(c)), U(fk_l(c))) < A,, then go to Step
7.4. If the condition is not satisfied, then the point t+ (k—1)-m € W is taken as an
approximation of the replacement point of the metasystem elements. For this point, the value k = 1
is assumed and the transition to Step 7.2 is performed.

Step 7.7. Stop. At the moments of change in the behavior of the system, single impulses form.
For a fixed threshold A, € [0,1],u = 1,N, for discrete moments t € W, we obtain a two-
dimensional impulse function:

1,t =1,;
r(ut) = {0 tqt‘rn
) n-

Step 8. There is a generalized impulse function of the signal under study by the formula:

g© = > b1,
Ay €{A}

where r(u, t) is the impulse function for the threshold A, of the metasystem identification
algorithm.
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The time coordinates 7, € W of the approximating impulse function r(t) for the signal under
study are defined as the local maxima of the function g(t). The coordinates 7,, will specify a
numeric sequence with variable step d(j). The total number of pulses of the function under study
N. Thus, there will be N local intervals, where the original signal has relatively stable frequency
characteristics.

Step.9. For each pulse 7,,, a window LR,, € W is determined based on the selected window
type in accordance with Step 1.

Step 10. For each pulse of the signal under investigation with the coordinate 7,,, for each
basis function of the pulse sines, the coefficients of the balance equation [7] are determined by the
formula:

Ak(Tn) = {ﬁk(‘[n) "Tn — Sk(LRn)};

where the coefficient B (t,,) = ZafneLRn(_l)m_l € {—1,0,1}. S, (LR,,) — is the partial sum of
the sign-variable number series obtained from the arithmetic progression for the pulse sine sij (t):

D DM al = SRy,

where LR,, € W is the time window near the pulse coordinate t,, of the function under study.
The partial sum S, (LR,,) takes into account the influence of all the pulses of the function si;(t)
falling into the window LR,,.

Step 9. For each k-th impulse sine function, the degree of its influence on the formation of the
resulting impulse r(t,,) is determined. For each pulse r(t,) the determination of the coefficients of
the influence degrees x;(7,,) € [0,1] is found either by the optimization method (method 1) or by
the approximate method (method 2).

According to method 1, the coefficients x,(t,) € [0,1] are found from the solution of an
optimization linear programming problem based on the simplex method [18]:

(<
I

i

=
lkz xe(t) = 1,Vk, x4 (1) = 0,

k=1

X, (7,) - A (T,,) > min
Z k() - A (Tn) {xx(Tn)}

According to method 2, the coefficients x; (7,,) € [0,1] are found by the formula:

T 2 1Al
Iﬁk(‘[n)l ll (ER (n) + £ (n))
X (ty) = A - x(T5-1), S(LRy) = 0,4, € [0,1].

2o (1) = l Sy (LR,) # 0,

where ez(n) and g, (n) are the right and left deviations from the coordinate of the pulse T,,.
Coefficient A, € [0,1] is determined from the correct consideration condition of the low-frequency
components of the signal spectrum:
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0,|t,> max (ak)+d,

Ujefrn-13LRj

1,lt, < max (ak)+d

" Uje{l,n—l}LRj( m) k

7, < max (ak) +d,,
[0,45; 0.55] " UeunentRy

\ Ak’ {S,(LR,) # 0} A{A,(z,) = 0}.

For all pulses of the signal under study, in the vicinity of the coordinates 7, a function of the
conditional instantaneous spectral density w, (k): ® — [0,1] is formed, where w,, (k) = x,(t,,).

Step 10. Spectrum estimates are determined based on fuzzy filtering. The estimated spectrum
is determined by the fuzzy filter formula [19, 20]. In the simplest case, a filter is used in the form

@n(k) = @p_1 (k) + a - {wp (k) — @, (K)},
where a € [0,1] is the gain of a fuzzy filter [21].
Step 11. Stop.

The function @, (k) is taken as the basis for the time-frequency analysis of the signal under
study. It is also used to restore the original signal. In this case, the reconstructed signal is found as
the sum of sinusoidal functions, which determine the set of basis functions @ with amplitudes
multiplied by the value @, (k). The accuracy of the algorithm is checked by the error criterion,
which is calculated, for example, by the degree of correlation [22] between two functions. To test
the performance of the algorithm, studies were performed on a model example of a non-stationary
signal.

VI. THE DISCUSSION OF THE RESULTS

To substantiate the performance of the proposed algorithm for time-frequency analysis of
non-stationary signals, it is necessary to solve two classical interrelated tasks:

1. To determine the spectrum of the investigated signal. Compare the results obtained with
the actual signal spectrum. Estimate the errors of the proposed algorithm.

2. Based on the obtained spectra, restore the signal and compare it with the original signal.
Rate the error.

For the study of the algorithm, a non-stationary signal ¢,, with a sampling interval of 0.1 s
was chosen. The observation time of the signal W = 10 s. The source signal is considered as a
discrete representation of the addition of sinusoidal signals f,i = 1,4 at frequencies of 0.159 Hz,
0.334 Hz, 0.446 Hz, 0.637 Hz with different amplitudes at subintervals W; = [0;5] s and
W, = [5;10] s. The values of amplitude-frequency characteristics for signals f;! in the intervals W,
and W, are shown in Fig. 3
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Fig. 3: Graphs of amplitude-frequency characteristics for signals f;}

Time series graphs of the of the signal under study and its components f,i = 1,4. are shown
in Fig 4
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Fig. 4: Time series of the investigated signal and its components
The following parameters were chosen as initial data for the algorithm investigation:
1. 1. In the set of basic functions, sinusoidal functions are considered, represented by

impulse sines of the form:

@ = { sip(t|ak, dy)} = {si1(t10;15); sip(t10;11); siz(t]0;20); siy(t10;5);}, k = 14.

2. We will assume that quantization by level of the signal under study provides the power
of the set of signal values Card(Z.;) = 128. To represent the signal value, we will use p -adic
numbers with p = 2. In this case, to represent one data in the data system, the number of blocks of
the observation channel will be L = 7.

3. To determine the set of sample variables and build the function of the system behavior,
we will use the simplest mask with the shift parameter p = 0 for all variables of the system
Vic.t) € Vi In the metasystem identification algorithm, the set of cut-off threshold values {A,} is
presented in Table 1.

/able 1. The set of cut-off thresholds taken in the study

u

1

3

4

5

6

7

8

10

11

Ay

0.205

0.202

0.199

0.196

0.193

0.19

0.187

0.184

0.181

0.178

0.175
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4.  In the balance equations, we will use a symmetric window LR, with the averaged
deviation e(n) = 0.5 - (eL(n) + &x (n)).

5. To test the algorithm performance in determining the influence degrees of the k-th
impulse sine function xj(z,) from the set of basis functions ®, we will use an approximate
approach.

Based on the initial data, as a result of applying the algorithm proposed above, the data
system D was obtained for the signal under study. Data system D is a matrix V X W with a
dimension of 7 x 100. In Table 2 shows a fragment of this matrix for a time subset up to
t €[0;1] s.

Table 2: Fragment of the data matrix for the time series under study

%1

U,

U3

Uy

Us

—|lolo|lo|—|o|~]:
olojlololo|—|—]:
— o= |=lo|=|~];
S|=|=lo|=|=|=]:
— o= === |~
e = = = = = ]S
— o= |||
olo|lo|=|=|—|—]:
ololo|lo|=|—|—]:
—lol—=lolo|=]|~]|~

Uy

As a result of using the metasystem identification algorithm, the full two-dimensional impulse
function r(u, t) was obtained (Fig. 5). Based on this function, a generalized impulse function g(t)
was obtained (Fig. 6).

o

=

(o]

~
Theshold

Time, x0.1 s

Fig. 5. Full two-dimensional pulse function r(u, t) for the signal
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