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New Types of Transitive Maps and Minimal
Mappings

Mohammed Nokhas Murad Kaki

Abstract-  In this paper, we have introduced the relationship
between two different concepts of maps, namely topological

o — ftransitive and & — transitive maps and investigate some
of their properties in two topological spaces (X,7“) and
(X,7°), 7% denotes the ¢ —topology and 7° denotes
the & — topology of a given topological space (X,7).The
two concepts are defined by using the concepts of o —

iresolute and O — irresolute maps respectively Also, we
studied the relationship between two types of minimal

systems, namely, ¢ - minimal and & — minimal systems, The
main results are the following propositions:
1. Every topologically o —transitve map implies

topologically ¢ — transitive map, but the converse not
necessarily true.

2. Every o — minimal system implies & — minimal system,
but the converse not necessarily true.
Keywords.  topologically o— trarsitive, & -jrres olute, 6.

transitive, o-— dense.

L. [NTRODUCTION

et (X,7) be a
f: X — Xbe a-iresolute map, then the set

Ac Xis called topologically ¢ -mixing
set[1] if, given any nonempty « -open subsets

UV cXwih ANU #@ and ANV = ¢

then 3 N > Osuch that "(U) NV # gior all
N> N, weakly o - mixing set[4] of (X, f)if for any
choice of nonempty o -open subsets v,,v,of A and
nonempty «  -opensubsets u,u,of X wity
AnU; =g and AnU, = gthere exists n €N such
that f"(V,)nU, =g and f"(V))nU, = ¢, strongly o -
mixing if for any pair of open sets Uand V with
UnA=zgand VN A # ¢, there exist some neN

such that f*(U)NV #gfor anyk >N . A point X
which — hasa -dense orbit O, (X)in X, is  called
a —typenyper-cyclic  pointA  system s« -
mixing[1] if, given « -open setsUandV in X, there

topological  space,
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exists an integer N, such that, for all n> N, one has
f"U) NV = ¢ topologically a -mixing if for any non-
emply o -open set U, there exists N € N such that
Uf”(U) is «a -dense in X, With the above concepts,

n>N
some new theorems have been introduced and

studied. Furthermore, we have the following
results:
o FEvery topologically e« —transitive map implies

topologically ¢ — transitive map, but the converse
not necessarily true.

e Every «—minimal system implies & — minimal
system, but the converse not necessarily true.

(E.)= (ET,);
(M) =(WM,) = (TT,);

[1. PRELIMINARIES AND THEOREMS

Definition 3.1 /2] Amap f : X =Y is called

a-irresolute if for every a-open set H of Y, f (H)is a-
open in X.

Proposition 2.2 The product of two topologically ¢ -
mixing systems must be topologically ¢« -mixing.

Proof Suppose that (X, f) and (Y,g) are two «-
mixing systems, and consider any o -open sets W, W'
in X xY . By definition of the product topology, there
exist o -open sets U,U'c X' and V,V'CY so that
UxVcW and U%W'cW'By definition of
topological ¢ -mixing of (X, f), there exists N such
that for any n> N, f"(U)nV #¢. By definition of
topological o -mixing[3] of (Y, ), there exists N’ such
that for any n> N', g"(U")nV'#¢. Then, for any
n>max(N,N'), both f"U)nV and g"U')nV"
are nonempty, and therefore
(fxg)"(UxU")YN(VxV") isnonempty as well. But
this implies that (f x g)"(W) "W'# ¢, since W and
W’ were arbitrary, this implies that (X XY, fxQ) is
topologically « -mixing.
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Theorem 2.3 The product of two « -transitive maps is
not necessarily ¢ -transitive map [4].

Corollary 24 The product of two topologically « -

transitive systems is not necessarily topologically « -
transitive.

[1I. NEw TYPES OF CHAOS OF
ToPOLOGICAL SPACES

In this section, | introduced and defined « -type
transitive maps[3] and a -type minimal maps[3], and
study some of their properties and prove some results
associated with these new definitions. | investigate some
properties and characterizations of such maps.

Definition 3.7 Let X is a separable and second
category space with no isolated point, if for Xe X the
set{ f"(x): neN}is dense in X thenx is called
hyper-cyclic point. If there exists such anxe X,
then f is called hyper-cyclic function or f is said
to have a hyper-cyclic point. Here, we have an

important theorem that is: fis a hyper-cyclic
function if and only if f is transitive.

Definition 3.2 A function f:X — X is called ar-
homeomorphism if f is o -irresolute bijective and

f1:X > X is ¢ -irresolute.

Definition 3.3 Two topological systemsf : X — X,

X1 = f(Xn) and Y _)Y: Yo = g(yn)
are topologically af -conjugate if there is ar-
homeomorphism h: X =Y such that
ho f =goh (i.e. h(f( X)) = g(h( X)).we call h a
topological a I -Conjugacy. Then | have proved some
of the following statements:

1. The maps fand Qhave the same kind of
dynamics.
2. Ifxis a periodic point of the map f with stable set

W, (X), then the stable set of h(x) is h(W; (X)).

3. Themap f is o -exactif andonly if § is « -exact

4. The map f is o -mixing if and only if § is « -
mixing

5. The map f is « -type chaotic if and only if @ is
o -type chaotic

6 The map fis weakly o -mixing if and only if Q
isweakl yor _ mixing.

Remark 3.4

If {x, X;,X,,...}denotes an orbit of X ., = f(X,)
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then  {y, =h(x,), Y:=h(x,), Yy,=h(x,),..}
yields an. In particular, h maps periodic orbits of f
onto periodic orbits of (. orbit of g since
Yo = h(X.1) = W(f(x,)) = g(h(x,)) = a(y,). ie f
and g have the same kind of dynamics.

| introduced and defined the new type of
transitive in such a way that it is preserved under
topologically « r- conjugation.

Proposition 3.5 Let X and Y are « -separable and « -
second category spaces. If f:X — X and g:Y —>Yare
ar -conjugated by the o r-homeomorphismh:Y — X
then, for each o -hyper-cyclic point y inY if and only if
h(y) /s a -hyper-cyclic point in X

Proof Suppose that T :X = X and g:Y >Y

are maps ar — conjugate via hiY -» X such that
hog=foh thenifyeYis a-hypercyclicinYie.

the orbit Og (Y) ={Y, 9(y), 9°(Y)n} is @ -dense
inY, let VC X bea nonempty « -open set. Then

since Ais aa r-homeomorphism, h_l(v) is a -open
in ¥ so there exiss N€ N withg"(y) € h_l(\/).
From hog"=1f"ch it that
h(g"(y))=f"(h(y) eV,

So that O (h(y)) ={ h(y), f (h(y)), f2(N(Y)),-...} is

a dense in X so h(y) is hyper-cyclic in X . Similarly, if
h(y)is a -hyper-cyclic in X, then y is & -hyper-cyclic in
Y.

follows

Proposition 3.6if T : X — Xand g:Y > Yare ar
_conjugate via N:X =Y Then

(1) T is a -type transitive subset of X < h(T)is « -
type transitive subset of Y;

@ Tc Xisa-mixing set < h(T) is «a-mixing
subset of Y.

Proof (1) Assume that f:X — Xand g:Y —>Yare
topological  systemswhich are topologically « r-
conjugated byh:X =Y Thus, his «ar-
homeomorphism (that is, his bijective and thus
invertible and both hand h™ are « -irresolute) and
ho f =goh Suppose T is « -type transitive subset
of X. Let A, B be a-open subsets of Y with
BAh(T)#gand Anh(T) = ¢



(toshow g"(A) N B = ¢ for some n>0).
U=h"(A) and V =h™(B) area -open subsets

of X since h is an « -irresolute. Then there exists some

n>0 such that | n(U ) NV # @ since the set T is
a —type transitive subset of X, with U T # ¢ and

V NT #¢.Thus
So h(T) is a -type transitive subset of Y.

(as foh?=h"ogimplies f"oh?=h"og").
¢ = £ (™" (A)nh™(B)=h"(g"(A) nh™(B).

Therefore,

h™(g"(A) N B) # ¢ implies g"(A) "B = ¢ since h™ isinvertible.

Proof (2) We only prove that if T is topologically « -
mixing subset of Y then h™*(T) is also topologically &
-mixing subset of X. Let U,V be two « -open subsets of
X with U "h™(T)=¢ and VAh™'(T)#¢. We have
to show that there is N>0 such that for any n>N,
f"U)NV =4 h™(U)and h™(V)are two « -open
sets since h is « -irresolute with h™*(V) N T # ¢ and
h™(U) NT # @. If the set Tis topologically ¢ -mixing
then there is N >0 such that for any n>M,
g"(h*U)Nh* (V) =453 xe g"(h(U) nh™(V).

That s xeg"(h*(U)) and Xeh™(V) &
x=g"(y) for yeh™U) .hx} & V. Thus, since
hog"=f"oh, so that h(x) = h(g"(y)

=f"(h(y))e f"(U)and we have h(X)eV that is
f"(U)NV # ¢@.So, h'(T) is o -mixing set.

Proposition 3.7 Let (X, f)be a topological system and

A be a nonempty « -closed set of X. Then the following
conditions are equivalent.

1. Alisa « -transitive set of (X, f).

2. LetV be anonempty o -open subset of Aand U be
a nonempty « -open subset of X withU m A= ¢@.
Then ther exists ne N such thatv n f "(U) = ¢ .

3. Let U be a nonempty «-open set of X with
U As#g. Then | Ji™U)is a-denseinA.

neN

Theorem 3.8 Let (X, f)be topological dynamical

system and A be a nonempty « -closed invariant set of

X. Then Ais a « - transitive set of (X, f)if and only if

(A f)is o -type transitive system.

Proof: =) Let VjandU,be two nonempty « -open
subsets of A. For a nonempty « -open subset U, of A,
there exists a « - open set U of X such that U;=U n A

Since A is a « -type transitive set of (X, f) , there
exists n €N such that f(V;)nU =¢. Moreover, A is
invariant, i.e., f(A)c A, which implies that f(A)c A
Therefore, (V)N ANU =¢,ie. f(V;)nU,; =¢.These
shows that (A, f)is « - type transitive.

<) Let V; be anonempty « -open set of Aand U be a
nonempty o -open set of X with AnU = ¢, Since U is
an o -open set of X and AnU #¢,, it follows that U N
A is a nonempty « -open set of A Since (A f) is
topologically « -type transitive, there existsn €N such
that fV)) N (ANU) = ¢, which  implies  that
f(V;) nU = ¢.. This shows that Ais a « -type transitive
setof (X, f).

[V. NEW TYPES OF CHAOS IN PRODUCT
SPACES

We will give a new definition of chaos for & -
irresolute self map f : X — X of a compact Hausdorff
topological space X, so called o -type chaos. This new

definition induces from John Tylar definition which
coincides with Devaney's definition for chaos when the
topological space happens to be a metric space.

Definition 4.7 [4] Let (X,f) be a topological
dynamical system; the dynamics is obtained by iterating

the map. Then, fis said to be ¢ -type chaotic on X
provided that for any nonempty ¢ -open sets U and V in
X, there is a periodic point pe X such that

UnNO,(p)#=¢ andVNO,(p)=¢.

Proposition 4.2 Let (X, f) be a topological dynamical
system. The map fis O -type chaotic on X if and only if f
is O -type transitive and the periodic points of the map
are ¢ -dense in X.

Proof: =) If fis & -type chaotic on X, then for every
pair of nonempty o -open sets U and V, there is a
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periodic orbit intersects them; in particular, the periodic 4.

points are o -dense in X. Then there is a periodic point
p and X,y e O,(p) with x €U and y €V and some

positive integer n such that f"(X)=y, so that
y=f"(x) e f"(U)therefore f"(U) NV = ¢.

<) The 6 -type transitivity [5]of f on X implies,
for any nonempty o -open subsets U, V cX, there is n
such that for some x €U, f"(X) eV . Now,define
W= f"(V)nU . Then Wis & -open and nonempty
with the property that f"(W) <V .

But since the periodic points of fare & -dense
in X, there is a p €W such that f"(p) eV . Therefore,
UNO,(p)#gandV MO, (p) # ¢. So, themap f is
o -type chaotic.

We will define some concepts as follows:

1. (TTy)if for every non-empty & -open set Dc X,
0 f"(D)is O -dense,
n=1

2. Weak & -Mixing WM,) if fx f is topologically
o -transitive .

3. Exact & -Transitive (ETy) if for every pair of non-
empty o -open set D,Wc X,

U(f”(D)m f"(W)is 6 —dense in X |
n=1

4. Topologically & - Mixing (TM ) if for every pair of
non-empty & -open set D, W < X, there exits an
N e N suchthat f"(D) "W # ¢ forall n> N.

5. & - Exact (Ey) if for every non-empty & -open set
Dc X, there N € Nsuch  that
fN(D)=X

6. Then the following implications hold:

. (E)= (ET).

. (MM,)=(WM,) = (TT,):
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