

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J GENERAL ENGINEERING Volume 19 Issue 2 Version 1.0 Year 2019 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4596 & Print ISSN: 0975-5861

New Types of Transitive Maps and Minimal Mappings By Mohammed Nokhas Murad Kaki

University of Sulaimani

Abstract- In this paper, we have introduced the relationship between two different concepts of maps, namely topological α^- transitive and δ^- transitive maps and investigate some of their properties in two topological spaces (X, τ^{α}) and (X, τ^{δ}) , τ^{α} denotes the α^- topology and τ^{δ} denotes the δ^- topology of a given topological space (X, τ) . The two concepts are defined by using the concepts of α^- irresolute and δ^- irresolute maps respectively Also, we studied the relationship between two types of minimal systems, namely, α - minimal and δ^- minimal systems, The main results are the following propositions.

Keywords: topologically δ – transitive, α - irresolute, δ - transitive, δ – dense. GJRE-J Classification: FOR Code: 091599

Strictly as per the compliance and regulations of:

© 2019. Mohammed Nokhas Murad Kaki. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

New Types of Transitive Maps and Minimal Mappings

Mohammed Nokhas Murad Kaki

Abstract- In this paper, we have introduced the relationship between two different concepts of maps, namely topological lpha- transitive and $\,\delta-$ transitive maps and investigate some of their properties in two topological spaces (X, τ^{α}) and $(X, \tau^{\delta}), \tau^{\alpha}$ denotes the α -topology and τ^{δ} denotes the δ -topology of a given topological space (X, τ) . The two concepts are defined by using the concepts of α irresolute and δ - irresolute maps respectively Also, we studied the relationship between two types of minimal systems, namely, α - minimal and δ - minimal systems. The main results are the following propositions:

- 1. Every topologically α – transitive map implies topologically δ -transitive map, but the converse not necessarily true.
- 2. Every α minimal system implies δ minimal system, but the converse not necessarily true.

Keywords: topologically δ - transitive, α - irres olute, δ transitive, δ – dense.

I. INTRODUCTION

 (X,τ) be a topological et space, $f: X \to X$ be α -irresolute map, then the set $-A \subset X$ is called topologically lpha -mixing set[1] if, given any nonempty α -open subsets $U, V \subseteq X$ with $A \cap U \neq \phi$ and $A \cap V \neq \phi$ then $\exists N > 0$ such that $f^n(U) \cap V \neq \phi$ for all n > N, weakly α - mixing set[4] of (X, f) if for any choice of nonempty α -open subsets V_1, V_2 of A and nonempty α -opensubsets $U_{1}U_{2}$ of X with $A \cap U_1 \neq \phi$ and $A \cap U_2 \neq \phi$ there exists $n \in \mathbb{N}$ such that $f^{n}(V_{1}) \cap U_{1} \neq \phi$ and $f^{n}(V_{1}) \cap U_{2} \neq \phi$, strongly α mixing if for any pair of open sets U and V with $U \cap A \neq \phi$ and $V \cap A \neq \phi$, there exist some $n \in N$ such that $f^k(U) \cap V \neq \phi$ for any $k \ge n$. A point ^X which has α -dense orbit $O_d(x)$ in X. is called $\alpha - type$ hyper-cyclic point.A system is α mixing [1] if, given α -open sets U and V in X, there

exists an integer N, such that, for all n > N, one has $f^{n}(U) \cap V \neq \phi$, topologically α -mixing if for any non*empty* α -open set U, there exists $N \in \mathbb{N}$ such that $\int f^{n}(U)$ is α -dense in X. With the above concepts, n > N

some new theorems have been introduced and studied. Furthermore, we have the following results:

- Every topologically α transitive map implies topologically δ -transitive map, but the converse not necessarily true.
- Every α – minimal system implies δ – minimal system, but the converse not necessarily true.
- $(E_{\alpha}) \Rightarrow (ET_{\alpha});$
- $(TM_{\alpha}) \Rightarrow (WM_{\alpha}) \Rightarrow (TT_{\alpha});$

Н. Preliminaries and Theorems

Definition 3.1 [2] A map $f: X \to Y$ is called α -irresolute if for every α -open set H of Y, $f^{-1}(H)$ is α open in X.

Proposition 2.2 The product of two topologically α mixing systems must be topologically α -mixing.

Proof: Suppose that (X, f) and (Y, g) are two α mixing systems, and consider any α -open sets W, W'in $X \times Y$. By definition of the product topology, there exist α -open sets $U, U' \subset X'$ and $V, V' \subset Y$ so that $U \times V \subset W$ and $U' \times V' \subset W'$.By definition of topological α -mixing of (X, f), there exists N such that for any n > N, $f^{n}(U) \cap V \neq \phi$. By definition of topological α -mixing[3] of (Y, g), there exists N' such that for any n > N', $g^n(U') \cap V' \neq \phi$. Then, for any $n > \max(N, N')$, both $f^n(U) \cap V$ and $g^n(U') \cap V''$ therefore are nonempty, and $(f \times g)^n (U \times U') \cap (V \times V')$ is nonempty as well. But this implies that $(f \times g)^n(W) \cap W' \neq \phi$, since W and W' were arbitrary, this implies that $(X \times Y, f \times g)$ is topologically α -mixing.

Author: College of Science University of Sulaimani. e-mail: Mohammed.murad@univsul.edu.iq

Theorem 2.3 The product of two α -transitive maps is not necessarily α -transitive map [4].

Corollary 2.4 The product of two topologically α - transitive systems is not necessarily topologically α - transitive.

III. New Types of Chaos of Topological Spaces

In this section, I introduced and defined α -type transitive maps[3] and α –type minimal maps[3], and study some of their properties and prove some results associated with these new definitions. I investigate some properties and characterizations of such maps.

Definition 3.1 Let X is a separable and second category space with no isolated point, if for $x \in X$ the set $\{f^n(x): n \in \mathbb{N}\}$ is dense in X thenx is called hyper-cyclic point. If there exists such an $x \in X$, then f is called hyper-cyclic function or f is said to have a hyper-cyclic point. Here, we have an important theorem that is: f is a hyper-cyclic function if and only if f is transitive.

Definition 3.2 A function $f: X \to X$ is called α r-homeomorphism if f is α -irresolute bijective and $f^{-1}: X \to X$ is α -irresolute.

- 1. The maps f and g have the same kind of dynamics.
- 2. If x is a periodic point of the map f with stable set $W_f(x)$, then the stable set of h(x) is $h(W_f(x))$.
- 3. The map f is α -exact if and only if g is α -exact
- 4. The map f is α -mixing if and only if g is α mixing
- 5. The map f is α -type chaotic if and only if g is α -type chaotic
- 6. The map f is weakly α -mixing if and only if g isweakly α_{-} mixing.

Remark 3.4

If $\{x_{0}, x_{1}, x_{2}, ...\}$ denotes an orbit of $x_{n+1} = f(x_{n})$

then { $y_0 = h(x_0)$, $y_1 = h(x_1)$, $y_2 = h(x_2)$,... } yields an. In particular, h maps periodic orbits of fonto periodic orbits of g. orbit of g since $y_{n+1} = h(x_{n+1}) = h(f(x_n)) = g(h(x_n)) = g(y_n)$, i.e. fand g have the same kind of dynamics.

I introduced and defined the new type of transitive in such a way that it is preserved under topologically α r-conjugation.

Proposition 3.5 Let X and Y are α -separable and α - second category spaces. If $f: X \to X$ and $g: Y \to Y$ are αr -conjugated by the α r-homeomorphism $h: Y \to X$ then, for each α -hyper-cyclic point y in Y if and only if h(y) is α -hyper-cyclic point in X

Proof: Suppose that $f: X \to X$ and $g: Y \to Y$ are maps αr - conjugate via $h: Y \to X$ such that $h \circ g = f \circ h$, then if $y \in Y$ is α -hyper-cyclic in Y i.e. the orbit $O_g(y) = \{y, g(y), g^2(y), \dots\}$ is α -dense in Y, let $V \subset X$ be a nonempty α -open set. Then since h is a α r-homeomorphism, $h^{-1}(V)$ is α -open in Y, so there exists $n \in \mathbb{N}$ with $g^n(y) \in h^{-1}(V)$. From $h \circ g^n = f^n \circ h$ it follows that $h(g^n(y)) = f^n(h(y)) \in V$,

So that $O_f(h(y)) = \{ h(y), f(h(y)), f^2(h(y)), \dots \}$ is α -dense in *X* so h(y) is hyper-cyclic in *X*. Similarly, if h(y) is α -hyper-cyclic in *X*, then y is α -hyper-cyclic in Y.

Proposition 3.6 if $f: X \to X$ and $g: Y \to Y$ are αr -conjugate via $h: X \to Y$. Then

(1) T is α -type transitive subset of X \Leftrightarrow h(T) is α -type transitive subset of Y;

(2) $T \subset X$ is α -mixing set $\Leftrightarrow h(T)$ is α -mixing subset of Y.

Proof (1) Assume that $f: X \to X$ and $g: Y \to Y$ are topological systems which are topologically α r-conjugated by $h: X \to Y$. Thus, h is α r-homeomorphism (that is, h is bijective and thus invertible and both h and h^{-1} are α -irresolute) and $h \circ f = g \circ h$ Suppose T is α -type transitive subset of X. Let A, B be α -open subsets of Y with $B \cap h(T) \neq \phi$ and $A \cap h(T) \neq \phi$

(to show $g^n(A) \cap B \neq \varphi$ for some n > 0). $U = h^{-1}(A)$ and $V = h^{-1}(B) \operatorname{are} \alpha$ -open subsets of X since h is an α -irresolute. Then there exists some n>0 such that $f^{n}(U) \cap V \neq \varphi$ since the set T is α -type transitive subset of X, with $U \cap T \neq \phi$ and $V \cap T \neq \phi$. Thus

So h(T) is α -type transitive subset of Y.

(as
$$f \circ h^{-1} = h^{-1} \circ g$$
 implies $f^{n} \circ h^{-1} = h^{-1} \circ g^{n}$).
 $\phi \neq f^{n}(h^{-1}(A)) \cap h^{-1}(B) = h^{-1}(g^{n}(A)) \cap h^{-1}(B)$.
Therefore,

$$h^{-1}(g^n(A) \cap B) \neq \phi$$
 implies $g^n(A) \cap B \neq \phi$ since h^{-1} is invertible.

Proof (2) We only prove that if T is topologically α mixing subset of Y then $h^{-1}(T)$ is also topologically α -mixing subset of X. Let U,V be two α -open subsets of X with $U \cap h^{-1}(T) \neq \phi$ and $V \cap h^{-1}(T) \neq \phi$. We have to show that there is N>0 such that for any n>N, $f^{n}(U) \cap V \neq \phi, h^{-1}(U)$ and $h^{-1}(V)$ are two α -open sets since h is α -irresolute with $h^{-1}(V) \cap T \neq \phi$ and $h^{-1}(U) \cap T \neq \phi$. If the set Tis topologically α -mixing then there is N > 0 such that for any n > M, $g^{n}(h^{-1}(U)) \cap h^{-1}(V) \neq \phi$. $S \exists x \in g^{n}(h^{-1}(U)) \cap h^{-1}(V)$. $x \in g^n(h^{-1}(U))$ and $x \in h^{-1}(V) \Leftrightarrow$ That is $x = g^{n}(y)$ for $y \in h^{-1}(U)$.h(x) ε V. Thus, since $h \circ g^n = f^n \circ h$ $h(x) = h(g^n(y))$ SO that $= f^{n}(h(y)) \in f^{n}(U)$ and we have $h(x) \in V$ that is $f^{n}(U) \cap V \neq \phi$. So, h⁻¹(T) is α -mixing set.

Proposition 3.7 Let (X, f) be a topological system and A be a nonempty α -closed set of X. Then the following conditions are equivalent.

- 1. A is a α -transitive set of (X, f).
- 2. Let V be a nonempty α -open subset of A and U be a nonempty α -open subset of X with $U \cap A \neq \phi$. Then ther exists $n \in \mathbb{N}$ such that $V \cap f^{-n}(U) \neq \phi$.
- 3. Let U be a nonempty α -open set of X with $U \cap A \neq \phi$. Then $\bigcup_{u \in \mathbb{N}} f^{-n}(U)$ is α -dense in A.

Theorem 3.8 Let (X, f) be topological dynamical system and A be a nonempty α -closed invariant set of X. Then A is a α - transitive set of (X, f) if and only if (A, f) is α -type transitive system.

Proof: \Rightarrow) Let V_1 and U_1 be two nonempty α -open subsets of A. For a nonempty α -open subset U_1 of A, there exists a α - open set U of X such that $U_1 = U \cap A$

Since A is a α -type transitive set of (X, f), there exists n \in N such that $f(V_1) \cap U \neq \phi$. Moreover, A is invariant, i.e., $f(A) \subset A$, which implies that $f(A) \subset A$. Therefore, $f(V_1) \cap A \cap U \neq \phi$, i.e. $f(V_1) \cap U_1 \neq \phi$. These shows that (A, f) is α - type transitive.

 \Leftarrow) Let V_1 be a nonempty α -open set of A and U be a nonempty α -open set of X with $A \cap U \neq \phi$, Since U is an α -open set of X and $A \cap U \neq \phi$, it follows that U \cap A is a nonempty α -open set of A. Since (A, f) is topologically α -type transitive, there existsn \in N such that $f(V_1) \cap (A \cap U) \neq \phi$, which implies that $f(V_1) \cap U \neq \phi$. This shows that A is a α -type transitive set of (X, f).

IV. New Types of Chaos in Product Spaces

We will give a new definition of chaos for δ -irresolute self map $f: X \to X$ of a compact Hausdorff topological space X, so called δ -type chaos. This new definition induces from John Tylar definition which coincides with Devaney's definition for chaos when the topological space happens to be a metric space.

Definition 4.1 [4] Let (X, f) be a topological dynamical system; the dynamics is obtained by iterating the map. Then, f is said to be δ -type chaotic on X provided that for any nonempty δ -open sets U and V in X, there is a periodic point $p \in X$ such that $U \cap O_f(p) \neq \phi$ and $V \cap O_f(p) \neq \phi$.

Proposition 4.2 Let (X, f) be a topological dynamical system. The map *f* is δ -type chaotic on X if and only if *f* is δ -type transitive and the periodic points of the map are δ -dense in X.

Proof: \Rightarrow) If *f* is δ -type chaotic on X, then for every pair of nonempty δ -open sets U and V, there is a

periodic orbit intersects them; in particular, the periodic points are δ -dense in X. Then there is a periodic point p and $x, y \in O_f(p)$ with $x \in U$ and $y \in V$ and some positive integer n such that $f^n(x) = y$, so that $y = f^n(x) \in f^n(U)$ therefore $f^n(U) \cap V \neq \phi$.

 \Leftarrow :) The δ -type transitivity [5]of f on X implies, for any nonempty δ -open subsets U, V \subset X, there is n such that for some x \in U, $f^n(x) \in V$. Now,define $W = f^{-n}(V) \cap U$. Then W is δ -open and nonempty with the property that $f^n(W) \subset V$.

But since the periodic points of *f* are δ -dense in X, there is a p \in W such that $f^n(p) \in V$. Therefore, $U \cap O_f(p) \neq \phi$ and $V \cap O_f(p) \neq \phi$. So, the map *f* is δ -type chaotic.

We will define some concepts as follows:

- 1. (TT_{δ}) if for every non-empty δ -open set $D \subset X$, $\bigcup_{n=1}^{\infty} f^n(D)$ is δ -dense,
- 2. Weak δ -Mixing (WM_{δ}) if $f \times f$ is topologically δ -transitive .
- 3. Exact δ -Transitive (ET_{δ}) if for every pair of nonempty δ -open set $D, W \subset X$, $\bigcup_{i=1}^{\infty} (f^{n}(D) \cap f^{n}(W) \text{ is } \delta - \text{dense in } X$,

4. Topologically
$$\delta$$
 - Mixing (TM_{δ}) if for every pair of non-empty δ -open set $D, W \subset X$, there exits an $N \in \mathbb{N}$ such that $f^{n}(D) \cap W \neq \phi$ for all $n \geq N$.

5. δ - Exact (E_{δ}) if for every non-empty δ -open set $D \subset X$, there exists $N \in \mathbb{N}$ such that $f^{N}(D) = X$

- 6. Then the following implications hold:
- $(E_{\alpha}) \Longrightarrow (ET_{\alpha});$

•
$$(TM_{\alpha}) \Rightarrow (WM_{\alpha}) \Rightarrow (TT_{\alpha});$$

References Références Referencias

- Mohammed Nokhas Murad Kaki, INTRODUCTION TO TOPOLOGICAL DYNAMICAL SYSTEMS I, Book with ISBN 978-1-840366-52-4, (2015), Publisher SciencePG, New York, USA.
- Maheshwari N. S., and Thakur S. S., On α-irresolute mappings, Tamkang J. Math. Vol. 11,(1980), pp. 209- 214.
- Mohammed Nokhas Murad Kaki ,Topologically α -Transitive Maps and Minimal Systems Gen. Math. Notes, Vol. 10, No. 2, (2012), pp. 43-53

- 4. Mohammed Nokhas Murad Kaki, *INTRODUCTION* TO TOPOLOGICAL DYNAMICAL SYSTEMS II; Book with ISBN: 978-3-659-80680-3. Publisher: Lambert academic publisher / Germany
- 5. Mohammed Nokhas Murad Kaki, Chaos, Mixing, Weakly Mixing and Exactness, Oalib Journal, China (2018), Vol. 5, No. 6, pp.1-6.
- Mohammed Nokhas Murad Kaki, New Types of δ-Transitive Maps, International Journal of Engineering & Technology IJET-IJENS No.06 (2013), pp. 134-136