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New Types of Transitive Maps and Minimal 
Mappings 

Mohammed Nokhas Murad Kaki 

Abstract-  In this paper, we have introduced the relationship 
between two different concepts of maps, namely topological 
−α  transitive and −δ transitive maps and investigate some 

of their properties in two topological  spaces ),( ατX  and 

),( δτX , ατ  denotes the −α topology and δτ  denotes 

the −δ topology of a given topological space ).,( τX The 
two concepts are defined by using the concepts of −α
irresolute and  −δ irresolute maps respectively  Also, we 
studied  the relationship between  two types of minimal 
systems, namely, α - minimal and −δ minimal systems, The 
main results are the following propositions: 
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exists an integer N, such that, for all Nn > , one has 

φ≠∩VUf n )( ,topologically α -mixing if  for any non-
empty α -open set U, there exists  such that 


Nn

n Uf
≥

)( is α -dense in X. With the above concepts, 

some new theorems have been introduced and 
studied. Furthermore, we have the fol lowing 
results: 
• Every topologically −α transitive map implies 

topologically −δ transitive map, but the converse 
not necessarily true. 

• Every −α minimal system implies −δ minimal 
system, but the converse not necessarily true. 

• )()( αα ETE ⇒ ;   

• )()()( ααα TTWMTM ⇒⇒ ;  

 
II. Preliminaries

 
and Theorems

 

Definition 3.1 [2]  A map YXf →:  is called 
α-irresolute if for every α-open set H of Y, )(1 Hf − is α-
open in X. 

Proposition 2.2 The product of two topologically α -
mixing systems must be topologically α -mixing. 

Proof: Suppose that ),(),( gYandfX   are two α -
mixing systems, and consider any α -open sets ',WW
in YX ×  . By definition of the product topology, there 

exist α -open sets XUU ⊂', ′  and YVV ⊂',  so that 

WVU ⊂×  and '.'' WVU ⊂× By definition of 
topological α -mixing of ),,( fX  there exists N such 

that for any ,Nn > .)( φ≠∩VUf n
 By definition of 

topological α -mixing[3]
 
of ),,( gY there exists N′

 
such 

that for any ,'Nn > .')'( φ≠∩VUg n

 
Then, for any 

),',max( NNn >
 
both

 
VUf n ∩)(

 
and ')'( VUg n ∩ ′

 
are nonempty, and therefore

)'()'()( VVUUgf n ×∩××   is nonempty as well. But 
this implies that φ≠∩× ')()( WWgf n , since W and 

W’ were arbitrary, this implies that ),( gfYX ××   is 
topologically α -mixing.

 

Ν∈N       
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et ),( τX be a topological space, 

XXf →: be α -irresolute map, then the set 

XA ⊆ is called topologically α -mixing
 

set[1] if, given any nonempty α -open subsets 

XVU ⊆, with
 φ≠∩UA and

 

φ≠∩VA
then 0>∃ N such that φ≠∩VUf n )( for all 

Nn > , weakly α - mixing set[4] of ),( fX if for any 
choice of nonempty α -open subsets 21 ,VV of

 

A and 
nonempty α –opensubsets 21, UU of

 

X with 
φ≠∩ 1UA and φ≠∩ 2UA there exists n ∈N such 

that φ≠∩ 11)( UVf n and φ≠∩ 21)( UVf n , strongly α -
mixing

 
if for any pair of open sets VandU with 

,AVandAU φφ ≠∩≠∩ there exist some N∈n
such that φ≠∩VUf k )( for any nk ≥ . A point x 

which hasα -dense orbit )(xOd in X. is called 
type−α hyper-cyclic point.A system isα -

mixing[1] if, given α -open sets U and V in X, there 

L

1. Every topologically −α transitive map implies 

topologically −δ transitive map, but the converse not 
necessarily true.

2. Every −α minimal system implies −δ minimal system, 
but the converse not necessarily true.

topologically −δ transitive, α - irres olute, δ -

transitive, −δ dense.

Keywords:



Theorem 2.3 The product of two α -transitive maps is 
not necessarily α -transitive map [4]. 

Corollary 2.4 The product of two topologically α -
transitive systems is not necessarily topologically α -
transitive. 

III.  New Types of Chaos of 
Topological Spaces 

In this section, I introduced and defined α -type 
transitive maps[3] and α  –type minimal maps[3], and 
study some of their properties and prove some results 
associated with these new definitions. I investigate some 
properties and characterizations of such maps.  

Definition 3.1 Let X is a separable and second 
category space with no isolated point, i f for Xx∈  the 

set }:)({ N∈nxf n is dense in X  thenx is called 

hyper-cyclic point. If there exists such an Xx∈ ,  
then f  is called hyper-cyclic function or f is said 
to have a hyper-cyclic point. Here, we have an 
important theorem that is: f is a hyper-cyclic 
function if and only if f is transitive. 

Definition 3.2 A function XXf →: is called α r-
homeomorphism if f

 
is α -irresolute bijective and 

XXf →− :1

 
is α -irresolute.

 
Definition

 
3.3

 
Two topological systems XXf →: , 

)(1 nn xfx =+
 
and YYg →: , )(1 nn ygy =+

are topologically rα -conjugate if there is α r-

homeomorphism YXh →: such that 

hgfh  = x)).x)) = g(h((i.e. h(f( We call h a 
topological rα -Conjugacy.  Then I have proved some 
of the following statements: 

 
1.

 
The maps f and g have the same kind of 
dynamics.

 2.
 

If x is a periodic point of  the map f
 
with stable set 

)(xWf , then the stable set of h(x) is )).(( xWh f
 3.

 
The map f

 
is α -exact if and only if g

 
is α -exact

 4.

 
The map f

 

is

 

α -mixing if and only if g
 

is

 

α -
mixing

 5.

 

The map f
 

is

 

α -type chaotic if and only if g
 

is 
α -type chaotic

 6.

 

The map f is weakly α -mixing if and only if g
isweakl yα -

 

mixing.

 

 

 

Remark 3.4

 

If .}

 

. . , x, x{x 210, denotes an orbit of  )(1 nn xfx =+

 
then 

 

),h(x =y{ 0 0  ),h(x = y 11  }. . ),h(x= y 22

yields an. In particular, h maps periodic orbits of f

 

onto periodic orbits of g . orbit of g since 

 

 

and g have the same kind of dynamics.

 

I introduced and defined the new type of 
transitive in such a way that it is preserved under 
topologically α r-

 

conjugation. 

 

Proposition 3.5

 

Let X and Y are α -separable and α -
second category spaces. If XXf →: YYgand →: are

rα -conjugated by the α r-homeomorphism XYh →:

 

then, for each α -hyper-cyclic point y in Y if and only if 
h(y)

 
is

 

α -hyper-cyclic point in X

 
Proof:

 

Suppose that XXf →: YYgand →:
are maps −rα conjugate via XYh →:

 

such that

hfgh  = , then if y∈Y is α -hyper-cyclic in

 

Y i.e. 

the orbit ),.......}(),(,{)( 2 ygygyyOg = is

 

α -dense 

in Y, let XV ⊂

 

be a nonempty
 
α -open set. Then 

since h is aα r-homeomorphism, )(1 Vh−

 

is α -open 

in Y, so there exists N∈n with )()( 1 Vhyg n −∈ . 
From

 

hfgh nn  =

 

it follows that 

Vyhfygh nn ∈= ))(())(( , 

 

So

 

that })),.......(()),((),({))(( 2 yhfyhfyhyhO f =   is

 

α -dense in X so h(y) is hyper-cyclic in X . Similarly, if 

)(yh is

 

α -hyper-cyclic in X,

 

then y

 

isα -hyper-cyclic in 
Y.

 

Proposition

 

3.6

 

if YYgandXXf →→ :: are rα
-conjugate via YXh →: . Then 

 

(1)

  

T

 

is

 

α -type transitive subset of X ⇔ )(Th is

 

α -
type transitive subset of Y;

 

(2) XT ⊂ isα -mixing set ⇔ )(Th

 

is

 

α -mixing 
subset of Y.

 

Proof (1)

 

Assume that YYgandXXf →→ :: are 
topological systemswhich are topologically α r-
conjugated

 

by YXh →: .

 

Thus,
 

h is

 

α r-
homeomorphism (that is, h is bijective and thus 

invertible and both h and 1−h

 

are

 

α -irresolute) and 
hgfh  =

 

Suppose T

 

is

 

α -type transitive subset 
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of X. Let A, B be α -open subsets of Y with 

φ≠∩ )(ThB and φ≠∩ )(ThA

))) = g(y)) = g(h(x) = h(f(x= h(xy nnnn+n+ 11 , i.e. f



).0)(( >≠∩ nsomeforBAgshowto n ϕ
)()( 11 BhVandAhU −− == areα –open subsets 

of X since h is an α -irresolute. Then

 

there exists some 

n>0 such that ϕ≠∩VUf n )( since the set T is 
α –type transitive subset of X, with φ≠∩TU  and

φ≠∩TV .Thus 

).( 1111 nn ghhfimpliesghhfas  −−−− ==

).())(()())(( 1111 BhAghBhAhf nn −−−− ∩=∩≠φ
Therefore, 

.hsince)())(( -11 invertibleisBAgimpliesBAgh nn φφ ≠∩≠∩−

 

So h(T) is α -type transitive subset of Y.

 
Proof (2)

 

We only prove that if T is topologically α -
mixing subset of Y then )(1 Th−

 

is also topologically α
-mixing subset of X. Let U,V be two α -open subsets of  
X with φ≠∩ − )(1 ThU

 

and φ≠∩ − )(1 ThV . We have 
to show that there is N>0 such that for any n>N, 

.)( φ≠∩VUf n )(1 Uh− and )(1 Vh−
are two α -open 

sets since h is α -irresolute with φ≠∩− TVh )(1 and 

φ≠∩− TUh )(1
. If the set Tis topologically α -mixing

 then there is N >0 such that for any n>M, 

.)())(( 11 φ≠∩ −− VhUhg n S∃ )())(( 11 VhUhgx n −− ∩∈ . 

That is andUhgx n ))(( 1−∈ )(1 Vhx −∈ ⇔
)()( 1 Uhyforygx n −∈= .h(x)

 
ε

 

V. Thus, since

hfgh nn  = , so that )(()( yghxh n=
)())(( Ufyhf nn ∈= and we have  Vxh ∈)(

 

that is 

.)( φ≠∩VUf n So, h-1(T) is

 

α -mixing set.

 

Proposition 3.7

 

Let ),( fX be a topological system and 
A be a nonempty α -closed set of X. Then the following 
conditions are equivalent. 

1.

 

A is a α -transitive set of ),( fX .
 2.

 

Let V be a nonempty α -open subset of A and U be 
a nonempty α -open subset of X with φ≠∩ AU . 
Then ther exists N∈n such that φ≠∩ − )(UfV n .

 

3.

 

Let U be a nonempty α -open set of X with
φ≠∩ AU . Then 

N∈

−

n

n Uf )( is

 

α -dense in A. 

Theorem 3.8

 

Let ),( fX be topological dynamical 
system and A be a nonempty α -closed invariant set of 
X. Then A is a α -

 

transitive set of ),( fX if and only if 
),( fA is  α -type transitive system. 

Proof:

 

)⇒

 

Let 11 UandV be two nonempty α -open 
subsets of A. For a nonempty α -open subset  1U of

 

A, 
there exists a  α -

 

open set U of X such that AUU ∩=1

Since

 

A is a

 

α -type

 

transitive set of ),( fX

 

, there 
exists n ∈N such that .)( 1 φ≠∩UVf

 

Moreover, A is 

invariant, i.e., AAf ⊂)( , which implies that AAf ⊂)(
Therefore, φ≠∩∩ UAVf )( 1 , i.e. φ≠∩ 11)( UVf . These 
shows that ),( fA is

 

α -

 

type transitive.

 

)⇐

 

Let 1V be a nonempty α -open set of A and U be a 
nonempty α -open set of X with ,φ≠∩UA

 

Since U is 
an α -open set of X and ,φ≠∩UA , it follows that U ∩

 

A is a nonempty α -open set of A. Since ),( fA

 

is 
topologically α -type

 

transitive, there existsn ∈N such 
that ,)()( 1 φ≠∩∩ UAVf

 

which implies that

.)( 1 φ≠∩UVf . This shows that A is a

 

α -type transitive 

set of ).,( fX

 

IV.

 

New Types of Chaos in

 

Product

 

Spaces

 

 

We will give a new definition of chaos for δ -
irresolute self map XXf →:

 

of a
 
compact Hausdorff 

topological space X, so called δ -type chaos. This new 

definition induces from John Tylar definition which 
coincides with Devaney's definition for chaos when the 
topological space happens to be a metric space.

 

Definition 4.1 [4]

 

Let ),( fX

 

be a topological 
dynamical system; the dynamics is obtained by iterating 
the map. Then, f

 

is said to be δ -type chaotic on X 
provided that for any nonempty δ -open sets U and V in 
X, there is a periodic point Xp∈

 

such that 

φ≠∩ )( pOU f

 

and φ≠∩ )( pOV f .

 

Proposition 4.2

  

Let

 

),( fX

 

be a topological dynamical 
system. The map f

 

is

 

δ -type chaotic on X if and only if f
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is δ -type transitive and the periodic points of the map 
areδ -dense in X .

Proof: )⇒ If f is δ -type chaotic on X, then for every 
pair of nonempty δ -open sets U and V, there is a 



 
  

  

periodic orbit intersects them; in particular, the periodic 
points are δ -dense in X. Then there is a periodic point 
p and )(, pOyx f∈

 

with x ∈U and y ∈V and some 

positive integer n such that yxf n =)( , so that 
)()( Ufxfy nn ∈= therefore φ≠∩VUf n )( .

 

:)⇐

 

The

 

δ -type transitivity [5]of f on X implies, 

for any nonempty δ -open subsets U, V ⊂X, there is n 

such that for some x ∈U, Vxf n ∈)( . Now,define

UVfW n ∩= − )( . Then W is δ -open and nonempty 

with the property that VWf n ⊂)( .

 

   

 

 

We will define some concepts as follows:
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