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Abstract8

The Boundary Element Method presents difficulties for solving certain problems that include9

sources, body and inertia forces or other cases whose mathematical model includes non10

self-adjoint terms. This avoids the desired representation of the problem solely in terms of11

boundary integrals. In this work, a new strategy is presented to overcome that problem12

through the use of Radial basis functions. Two formulations of this kind are used for solving13

the distribution of the pressure field generated in a hydrodynamic journal bearing. The partial14

differential equation of this problem has variable coefficients and cannot be rewritten directly15

as boundary integrals. Numerical solutions for the 1D and 2D problems are presented and16

their results are compared with the available analytical solutions or then obtained with the17

application of the finite element method.18

19

Index terms— journal bearings, boundary element method, radial basis interpolation.20

1 I.21

Hydrodynamic Model for the Journal Bearing he journal bearings are sliding bearings which use the flow of a22
lubricating fluid around a pair of non concentric circular surfaces given by the shaft and the bearing that generate23
a pressure field. Under high rotations this pressure field supports the shaft, eliminating its contact with the surface24
of the bearing. The pressure field arises due to the variation of the clearance between these surfaces, as shown in25
Fig. 1: The most common mathematical model to approach this type of problem, usually proposed in the design26
of machine elements, is deduced from the Navier-Stokes Equation assuming several simplifying hypotheses. The27
following features are neglected: the curvature of bearing, the inertia of the lubricant, the external field forces,28
the gradient of pressure and the velocity of the fluid in the radial direction and their variation in this direction as29
well. Newtonian lubricant with constant viscosity is also assumed, as well is supposed laminar and incompressible30
flow. Thus, under conditions of one-dimensionality, the following differential equilibrium equation is given by31
(Shigley et. al, 2003):dx dh(x) V 6 dx ) x ( dp ? ) x ( h 3 dx ) x ( p d ? ) x ( ?h ] x d p(x) d ? ?h(x) [ x d d 2 232
2 3 3 ? = ? + = (1)33

In Eq. (1) p(x) is the overpressure with respect to the initial oil injection pressure, V is a mean flow velocity34
and ? is the viscosity. The clearance h(x)35

Author ? ? ?: Federal University of Espírito Santo -Technological Centre, Av. Fernando Ferrari, 540 -36
Bairro Goiabeiras, CEP 29075 -910, Vitória, ES -Brazil. e-mails: carlosloeffler@bol.com.br, depends on both37
the curvature and the eccentricity between the surfaces of the components, but it is known, see figure 1.38
Essential conditions are imposed in terms of the pressure p(x) and natural conditions in terms of the flow39
q(x), as follows:?h(x)v(x) q(x) = (2) T Global Journal of Researches in Engineering ( )40

In the previous equation, ? is the density, assumed to be constant. The lubricant velocity v(x) is given by:dx41
dp(x) dx dh(x) ? h(x) V v(x) 2 ? = (3)42
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5 QUASI-DUAL PROCEDURE

Equation ( ??) is a particular case of the Reynolds Equation in fluid motion. Despite in many journal bearings,43
the fluid flow in the z direction does not exist, the pressure can vary axially as a consequence oil output system.44
In this case, a source term W(z) can be assumed, resulting in a more general governing equation (Panday et. al,45
2012):) z ( W dx d[h(x)] V ] z z) p(x, ? ) x ( h [ z ] x z) p(x, ? ) x ( h [ x 3 3 ? ? = ? ? ? ? + ? ? ? ? (4)46

Thus, in this assumed model the lubricant can have a similar magnitude in both directions x and z. Concerning47
the source terms in the right hand side of Eq. ( ??), both result due to the simplifications imposed in the48
mathematical model, especially related to the integration along y-direction. Another kind of sources or sinks can49
be idealized, as those that concentrate in a specific region. It must be highlighted that the height h(x) does not50
change axially, what allows an easier numerical approach.51

Equation ( ??) it is a partial scalar differential equation in which the physical property continuously varies only52
the position x in the domain ?. It can be verified that this governing equation is similar to that which describe53
the following cases: torsion in bars with uniformly variable sections; potential flow in tanks with variable depth;54
and heat transfer in heterogeneous media.55

2 II.56

3 Integral Governing Equation57

For convenience, henceforth the indicial notation is used for easiness in subsequent mathematical manipulations.58
Therefore, the governing equation (Eq. ( ??)) can be adequately written in indicial notation, as shown below:s(X)59
], [K(X)p(X), i i =(5)60

In this last expression it was considered the following definitions:) z , x ( X X ; W(z) dx d[h(x)] V ) X ( s ; ?61
) x ( h ) x ( K 3 = ? ? = = (6)62

The starting integral form (Brebbia, 1978) is obtained by integrating Eq. ( 5) over the physical domain ?(X),63
using as an auxiliary function the fundamental solution u*(?; X). This function is the solution of a Poisson´s64
problem which is assumed a homogenous infinite medium, submitted to a unitary concentrate source applied to65
an arbitrary point ?, that is (Brebbia et al., 1980):X) ; ( X) ; *( u, ii ? ? ? = ? (7)66

Thus, the integral equation associated with the Eq. ( 5) is given by:? ? = ? ? ? i i ? X)d? ; ( * s(X)u X)d? ;67
( * u ], p(X), [K(X)(8)68

The inverse integral form of the left hand side of Eq. ( 8) can be deduced by performing two integrations by69
parts, as shown below, where the Divergence Theorem has been properly applied:d? ], X), ; ( * p(X)[K(X)u [ d70
]n X), ; ( * p(X)K(X)u [ d X)]n ; ( * u p(X), [K(X) X)d? ; ( * u ], (X)p(X), [K i i ? i i Î?” i i Î?” i i ? ? ? + Î?”71
? ? ? Î?” ? ? = ? ? (9)72

Developing the product of two functions in the last term to the right hand side of the previous equation can73
be rewritten:]d? X), ; ( * p(X)K(X)u [ ]d? X), ; ( * (X)u p(X)K, [ d? ], X), ; ( * p(X)[K(X)u [ ii ? i i ? i i ? ? ?74
+ ? ? = ? ? (10)75

Using the properties of the Dirac Delta function (Raisinghania, 2011), one has:) )p( )K( c( ]d? X), ; ( * (X)u76
p(X)K, [ X)]dÎ?” ; ( * [p(X)K(X)q X)] ; ( * q(X)u {[K(X) X)d? ; ( * u ], p(X), [K(X) i i ? Î?” Î?” i i ? ? ? ? +77
? + ? ? ? = ? ? ? ? ? (11)78

In the previous expression, q*(?; X) is the normal derivative of the fundamental solution and q(X) is the79
normal derivative of the pressure p(X). The coefficient c(?) depends on the positioning of the source points ?80
with respect to the physical domain ? (X) and, in the case of being located on the boundary Î?”(X), also of the81
smoothness of this one (Brebbia and Walker, 1980). It is verified the presence of a domain integral in Eq. ( ??1),82
which is treated in the following item, like the approach of the term source s(X), referring to the right side of83
Eq. ( ??). It should also be noted that in this case K(X) is treated as a nodal quantity, linearly interpolated on84
each boundary element.85

4 III.86

5 Quasi-Dual Procedure87

Focusing the elimination of the domain integrals that still persist in the right hand side of Eq. ( ??1) the direct88
integration procedure (DIBEM) could be used. However, in this case, the Quasi-dual Reciprocity model (Loeffler89
and Mansur, 2003) is the most suitable and accurate procedure. Quasi-dual (QDR) is a technique similar to90
Dual Reciprocity (Partridge et al., 1992), but it was developed to approximate first order derivatives in diffusive-91
advective problems. The QDR approximation uses linear combinations of primitive radial basis functions ? j ,92
which are multiplied by coefficients ? j in the following form:X) ; (X ?, ? (X) p(X)K, j j i j i ? (12)93

In Eq. ( ??2) X j is the coordinates of interpolation basis points. Considering two-dimensional cases the QDR94
approach is just suitable for potential fields. However, since the height h does not vary in the z direction of95
journal bearings (see eq. ( ??)), the differential given by the left hand side of Eq. ( ??2) is always exact and can96
be treated accurately using the QDR. Thus, replacing Eq. ( ??2) in the domain integral that persists in Eq. (97
??1), one has:) ; X ( ? ? ) ( c X)]dÎ?” ; ( * X)q ; (X ? [ ? ]d? X), ; ( * X)u ; (X ? [ ? d? ], X), ; ( * X)u ; (X ? [98
? ]d? X), ; ( * u X) ; (X ?, [ ? ]d? X), ; ( * (X)u p(X)K, [ j j j j j Î?” j ii j j ? j i i j j ? j i j j i ? j i i ? ? ? ? ? ?99
= ? ? ? ? ? = ? ? ? ? ? (13)100
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As a last remark, it is important to highlight that unlike other models that use radial basis functions, the101
inclusion of poles did not improve the results in QDR approach; in fact, the inclusion of poles only increased the102
round of errors.103

IV.104

6 Dibem Procedure105

When the body force term is given by the simple mathematical function, the Galerkin Tensor is the most106
effective way to deal with its domain integral, transforming it in a boundary integral. Considering more elaborate107
functions, a solution of Poisson’s problems can be more effectively by global functions in the Goldberg’s sense108
(Goldberg,1994) or then, using the Radial Integration Method (RIM) (Gao, 2002), despite the huge computational109
time of this later.110

Here, the DIBEM procedure is applied in association with the QDR for convenience. DIBEM is also a similar111
technique to the Dual Reciprocity but the entire kernel of the domain integral is interpolated, aiming to transform112
it in a boundary integral. The technique already successfully applied to scalar problems governed by the Poisson113
equation and Helmholtz . DIBEM substitute advantageously standard procedures as the domain integration by114
cells and the DRBEM. Comparatively, it shows superior performance and mathematical suitableness, since it is115
more similar to a simple interpolation procedure.116

First DIBEM tests for performance are done solving Poisson’s Equation, where domain integral is just117
comprised by known functions. Thus, different coordinates can be used to distinguish the interpolation points to118
the field points on the boundary, avoiding the singularity in the fundamental solution. Concerning the internal119
interpolation points, these points do not appear in the final matrix system. A different situation occurs in other120
more elaborate problems as Helmholtz and diffusive-Advective, in which the regularization procedure is required121
to avoid singularity since the Provided internal interpolation points are not necessary for the QDR, the application122
of DIBEM is easier. Thus, the complete kernel of the domain integral is interpolated directly, according to the123
following expression:) X ; X ( F ) X ; ( u ) X ( s j j j ? = ? ? * (14)124

Similarly to the DRBEM, the proposed method also uses a primitive function ?, such as: ) X ( z d ) X ( d ))125
X ( n ) X ( ( d )) X ( ( d )) X ( F ( d ) X ; ( z j j j j i j i , j j ii , j j j ? = Î?” ? ? ? = Î?” ? ? ? = ? ? ? ? = ? ?126
? = ? ? ? ? Î?” ? Î?” ? ? ? ? ? ?(127

7 Discretization128

Using radial basis functions, for each source point ?, the interpolation given by Eq. ( ??) corresponds to scanning129
all points X j in relation to domain points X. For the QDR, a similar procedure to the DRBEM is followed,130
in which the matrix H already calculated by the discretization of the integrals related to the Laplacian is used131
(Partridge, 1992). Double points X j located in the corners should be departed to avoid singularity in the inversion132
of the interpolation matrix. Thus, one can write:p ] H [ ]p , [K ] , [ ] ][ H [ ] ][ H [ q ] G [ p ] H [ i -1 i = ? ? = ?133
? + ? (17)134

In the last equation the ? vector was eliminated based on Eq. ( ??2), that is:]p , [K ] , [ ? i -1 i ? = (18)135
The governing equation is a scalar one, but the source term K, i in Eq. ( ??8) taken separately is vectorial.136

So, it is necessary also to put the interpolation function ? in the dyadic form. Among other options, one such a137
class of functions is given by:ip 3 p i j i , p R R RR 3 ? + = ? (19)138

In Eq. (18), R=R(X;X j ) is the Euclidian distance between the interpolation point X j and the field point X,139
? ip is the Kronecker Delta operator, and: R p = [x p (X j )-x p (X)]140

(20) It is easily demonstrated that:p 3 j p R R = ? (21)141
Considering now the source term analyzed in Eq. ( ??3) by the DIBEM approach, the complete governing142

matrix equation take the following form:b z ] A [ p ] H [ q ] G [ p ] H [ = = + ? (22)143
In Eq. ( 8), the lines of matrix A are comprised of vectors ? ?, which may be obtained from following the144

basic interpolation equation:?][s] [ [F] ?][F] [ [F] ] [ ? 1 - ? 1 - ? = ? = ? (23)145
The radial basis function used in the DIBEM approach is the well know thin plate function, given by: ] R [ln146

R F147

8 a) First example: one-dimensional flow148

Aiming to evaluate the robustness of the proposed model, in the following tests the function that characterizes149
the variation of the clearance h(x) between the bearing and shaft surfaces is changed. Actually, this distance150
is defined by the gap between two circular surfaces; here, it will be successively approximated by polynomials151
with crescent order, that is, by linear, quadratic and cubic functions. The clearance h(x), the geometry and the152
boundary conditions are shown in Figure 2.153

In these simulations, the pressure values are prescribed zero at the input and output, since internally the154
fluid flow imposes the overpressure values, while the null values of the flow along the x direction impose the155
mathematical one-dimensionality of the model.156

The average velocity V (see Eq. ( ??)) is assumed to be equal 1/12 and the density ? and viscosity ? are157
unitary.158
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13 CONCLUSIONS

The difference between analytical and numerical values, divided by the highest analytical value, was chosen159
as a measure of errors. For the one dimensional cases, the analytical solution is available for comparison. Three160
meshes with 40, 80, 160 and 320 linear boundary elements with double nodes at the corners were used to simulate161
the pressure field and velocities, while the thin-plate radial function is employed to the DIBEM interpolation.162
Improving the approximation of the source term according required by the DIBEM approach, a different number163
of internal interpolation points also is used. The quantity of these points is indicated in each simulation.164

9 i. Linear variation of the h(x)165

This simplest and hypothetical case appears as an example solved in most of the classic books dealing with the166
hydrodynamics of the bearings, serving to show how the height differential -in this case, a linear variation of167
clearance h(x) -implies a pressure value that throughout the domain examined.168

Figure 3 shows the profile obtained by the MEC for the two meshes, with 44 and 84 nodes, and respectively 49169
and 81 interpolating internal points, in comparison with the corresponding analytical value. The results presented170
an excellent concordance, as can be observed.171

10 Numerical Simulations172

For better detailing of the effect of internal interpolation points and boundary mesh refinement, a convergence173
curve is presented in Fig. 3, in which the average percentage error is expressed as a function of the increasing174
number of nodal points and interpolation points. It is verified that the values of the percentage errors in each175
mesh are very small and are mainly reduced with the boundary refinement. It can also be seen that only the176
introduction of many interpolating points without the proper refinement of the boundary is not very effective. It177
occurs because only the DIBEM procedure requires such points. ii. Quadratic variation of the h(x) Now the effect178
of height variation amplifies exponentially comparatively to the previous example so that a significant reduction179
in the precision of the numerical model employed is expected. Indeed, numerical errors have grown, but the180
results of this simulation continued with very good accuracy, as shown in Fig. 5. As shown in the previous case,181
Fig. 6 shows an error curve as a function of the boundary mesh refinement and insertion of internal interpolation182
points.183

11 iii. Cubic variation of the h(x)184

Considering a cubic variation for h(x), the pressure gradients at the inlet are strongly accentuated and the less185
refined mesh already presents errors above 2%. It must be highlighted that the function that describes the height186
h(x) appears to the third power. However, the results are shown in Fig. 7 are still reasonable and reach a very187
satisfactory precision if more refined meshes are used, accompanied by a regular number of poles to represent the188
term proactive source or term of the governing equation, which is composed of the mean inlet velocity versus the189
derivative of the function h(x).190

12 b) Second example: two-dimensional flow191

Many journal bearings have an oil feedback system, as well as many other functional upgrades that cannot192
be described here. The representation of a squeeze lubricant flow in the axial direction is done hypothetically193
through a source W(z) (see Eq. ( ??)). This source should be located in a restricted region but for simplicity, it194
will be assumed distributed throughout the domain. The purpose here is only to show that the model can solve195
suitably two-dimensional cases pertinent to the hydrodynamic theory of the journal bearings.196

In order to compare the results, a model generated from the Finite Element Method (FEM) (Reddy, 2005)197
using triangular elements with 20000 nodal points was taken as reference solution, since no analytical solution is198
available. The sources adopted have the following form: It must be highlighted that the insertion of the source199
W(z) not only alters the profile of velocities such as also change the values of pressure. For clarity, in Fig. 9 one200
three-dimensional view of the pressures on the domain is shown. ) z z ( 10 ) z ( W ; 1 V 2 ? = = (25)201

13 Conclusions202

The boundary element model developed here was successfully implemented to study the hydrodynamic of the203
journal bearing problem, a case of great industrial interest. The rotating shaft and the slider bearing are given204
by two non-concentric circumferences whose clearance defines the lubricant fluid flow and the pressure field.205
Regarding the numerical model, this variable distance can be computed directly at the nodal level using the206
simplicity of the BEM discretization.207

Mathematically, this problem is expressed in terms of a non-homogeneous scalar field equation, composed208
of three terms with different physical meaning: the variable diffusivity, the advective effect, and the body209
force. The diffusive term has been well represented, although the cube of the function h(x) is approximated210
by linear boundary elements. The advective term was suitably approached by the Quasidual model through211
radial functions, as well as the body force term, related here to the source.212

The Quasi-dual solves accurately onedimensional cases in general or then two-dimensional cases that can213
be expressed by a potential function, which is the case of the hydrodynamic bearing. It does not require the214
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internal inclusion of interpolating points, which are necessary only to the source representation. Regarding this215
term, in this case, the application of the DIBEM procedure did not require numerous poles, due to its relative216
mathematical simplicity.217

Unlike to the DRBEM, using the DIBEM approach the insertion of an excessive number of interpolating points218
does not produce disturbance effects in the numerical solution, commonly reported in the literature as due to ill219
conditioning matrix problems. Despite the necessary matrix inversion, the computational cost of this model is220
comparatively lower than that spent using alternative formulations such as DRBEM and RIM.221

The successful association between the two techniques based on the approach with radial basis functions opens222
new options for the BEM application, due to the similarity of the problem addressed and the modeling of other223
cases in which the properties of the constitutive medium vary gradually along the domain, common in geophysics224
and soil mechanics problems. 1 2

1

Figure 1: Figure 1 :
225
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Figure 2: A

Figure 3:
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Figure 4: Figure 2 :
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Figure 5: Figure 3 :
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Figure 6: A
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Figure 7: Figure 4 :
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Figure 8: Figure 5 :
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