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5

Abstract6

From the structural-parametric model of the electromagnetoelastic actuator we obtain the7

parametric structural schematic diagram and the matrix transfer function, the characteristics8

of the electromagnetoelastic actuator for the nanomechanics. The generalized parametric9

structural schematic diagram, the matrix transfer function of the electromagnetoelastic10

actuator is described with using its physical parameters and external load.11

12

Index terms— electromagnetoelastic actuator; structural-parametric model; nanodisplacement; piezoactua-13
tor; parametric structural schematic diagram14

1 I. Introduction15

he electromagnetoelastic actuator for piezoelectric, piezomagnetic, electrostriction, magnetostriction effects is16
used for the precise adjustment in the nanomechanics, the nanotechnology, the adaptive optics ??1 ?32]. The17
piezoactuator on the inverse piezoeffect is serves for the actuation of mechanisms or the management, converts18
the electrical signals into the displacement and the force ??1 ?8]. The piezoactuator for the nanomechanics is19
provided the displacement from nanometers to tens of micrometers, a force to 1000 N. The piezoactuator is20
used in the nanomechanics and the nanotechnology for the scanning tunneling microscopes, the scanning force21
microscopes and the atomic force microscopes ??14 ?32].22

In the present paper the generalized structuralparametric model and the generalized parametric structural23
schematic diagram of the electromagnetoelastic actuator are constructed by solving the equation of the24
electromagnetolasticity, the wave equation with the Laplace transform, the boundary conditions on loaded25
working surfaces of the actuator, the strains along the coordinate axes. The transfer functions and the26
parametric structural schematic diagrams of the piezoactuator are obtained from the generalized structural-27
parametric model. In [6,7] was determined the solution of the wave equation of the piezoactuator. In the28
??14 ?16, 30] were obtained the structural-parametric models, the schematic diagrams for simple piezoactuator29
and this models were transformed to the structural-parametric model of the electromagnetoelastic actuator.30
The structural-model of the electroelastic actuator was determined in contrast electrical equivalent circuit for31
calculation of piezoelectric transmitter and receiver ??9 ?12]. In [8,27] was used the transfer functions of the32
piezoactuator for the decision problem absolute stability conditions for a system controlling the deformation of33
the electromagnetoelastic actuator. The elastic compliances and the mechanical and adjusting characteristics34
of the piezoactuator were found in ??18, 21 ? 23, 28, 29] for calculation its transfer functions and the35
structuralparametric models. The structural-parametric model of the multilayer and compound piezoactuator was36
determined in ??18?20]. In this paper is solving the problem of building the generalized structural parametric37
model and the generalized parametric structural schematic diagram of the electromagnetoelastic actuator for38
using the equation of electromagnetoelasticity.39

2 II. Structural-Parametric Model40

The general structural-parametric model and the parametric structural schematic diagram of the electromagne-41
toelastic actuator are obtained. In the electroelastic actuator are presented six stress components 142

T , 2 T , 3 T , 4 T , 5 T , 6 T , the components 1 T ? 3 T are related to extension-compression stresses, 4 T ? 643
T to shear stresses. For the electroelastic actuator its deformation corresponds to stressed state. In piezoceramics44
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5 V. CONCLUSIONS

PZT the matrix state equations [12,14] connected the electric and elastic variables have the form two equations,45
then the first equation describes the direct piezoelectric effect, the second -the inverse piezoelectric effectE ? dT46
D T + = (1) E d T s S t E + = (2)47

where D is the column matrix of electric induction; S is the column matrix of relative deformations; T is48
the column matrix of mechanical stresses; E is the column matrix of electric field strength; E s is the elastic49
compliance matrix forconst = E ; T ? is the matrix of dielectric constants for const = T ; t d50

is the transposed matrix of the piezoelectric modules.51
The piezoactuator (piezoplate) has the following properties: ? is the thickness, h is the height, b is theT52

Global Journal of Researches in Engineering width, respectively { b h l , , ? =53
the length of the piezoactuator for the longitudinal, transverse and shift piezoeffects. The direction of the54

polarization axis ?, i.e., the direction along which polarization was performed, is usually taken as the direction55
of axis 3. The equation of the inverse piezoeffect for controlling voltage [6,12] has the form( ) ( ) t , x T s t d S j56
ij m mi i ? + ? = (3) ( ) x t , x S i ? ? ? = , ( ) ( ) ( ) ? = = ? t U t E t m m57

where i S is the relative displacement of the cross section of the piezoactuator along axis i, ( ) for58
the piezoactuator is respectively, the thickness, the height, the width for the longitudinal, transverse, shift59
piezoeffects.t60

For calculation of actuator is used the wave equation [6,7,12,14] for the wave propagation in a long line with61
damping but without distortions. After Laplace transform is obtained the linear ordinary second-order differential62
equation with the parameter p, whereupon the original problem for the partial differential hyperbolic equation63
of type using the Laplace transform is reduced to the simpler problem [6,13] for the linear ordinary differential64
equation , ? is the damping coefficient of the wave, ? is the control parameter: E is the electric field strength for65
the voltage control, D is the electrical induction for the current control, H is the magnet field strength.66

From (3), ( ??), the boundary conditions on loaded surfaces, the strains along the axes the system of equations67
for the generalized structural-parametric model and the generalized parametric structural schematic diagram68
Figure 1 of the actuator are determined ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?69
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? = ? ? p p l l p d p F p M p m mi ij 2 1 170
2 1 1 ch sh 1 1 (6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?71
? ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? = ? ? p p l l p d p F p M p m mi ij 1 272

3 III. Matrix Transfer Function73

The matrix transfer function of the electromagnetoelastic actuator for the nanomedicine and the nanotechnology74
is deduced from its structuralparametric model (6) in the following form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ? ?75
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? p F p F p p W p W p W p W p W p+ ? = ? = ? ?76
? ? ? (8) ( ) ( ) ( ) 2 1 1 0 31 0 21 0 0 2 lim M M M hU d p U p pW p + ? = ? = ? ? ? ? ? (9)77

For the piezoactuator from PZT under the transverse piezoeffect at1 M m « , 2 M m « , 10 31 10 5 2 ? ? = .78
d m/V, 20 = ? h , 30 = U V, 2 1 = M kg, 8 2 = M79

kg the static displacements of the faces are determined( ) 120 ? 1 = ? nm, ( ) 30 ? 2 = ? nm, ( ) ( ) 150 ? ?80
2 1 = ? + ? nm.81

For the approximation of the hyperbolic cotangent by two terms of the power series in transfer function (7)82
the following expressions of the transfer function of the piezoactuator is obtained for the elasticinertial load at?83
? 1 M , 2 M m « under the transverse piezoeffect ( )( ) ( ) ( )) p T p T ( C C h d p U p p W t t t E e 1 2 1 284
2 11 31 2 + ? + + ? = ? =(10)85

(86
) E e t C C M T 11 2 + = , ( ) ? ? ? ? ? ? + ? = ? E e E E t C C M c C h( ) ( ) ? ? ? ? ? ? ? ? ? ? ? ? ?87

? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? = ?88

4 IV. Results and Discussions89

The structural-parametric model and parametric structural schematic diagrams of the voltage-controlled90
piezoactuator for the longitudinal, transverse and shift piezoeffects are determined from the generalized structural-91
parametric model of the electromagnetoelastic actuator with the replacement of the following parameters.{ 1 392
3 E , E , E m = ? , { 15 31 33 d , d , d d mi = , { E E E ij s , s , s s 55 11 33 = ? , { b , h , l ? =93

The generalized structural-parametric model, the generalized parametric structural schematic diagram and the94
matrix transfer function of the electromagnetoelastic actuator are obtained from the solutions of the equation95
of the electromagnetoelasticity, the Laplace transform and the linear ordinary differential equation of the second96
order.97

From the generalized matrix transfer function of the electromagnetoelastic actuator after algebraic transfor-98
mations are constructed the matrix transfer function of the piezoactuator for the longitudinal, transverse and99
shift piezoeffects.100

5 V. Conclusions101

The generalized structural-parametric model, the generalized parametric structural schematic diagram, the matrix102
transfer function of the electromagnetoelastic actuator for the nanomechanics are obtained.103
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The structural-parametric model, the matrix transfer function and the parametric structural schematic104
diagram of the piezoactuator for the transverse, longitudinal, shift piezoeffects are obtained from the generalized105
structural-parametric model of the electromagnetoelastic actuator. From the solution of the equation of the106
electromagnetolasticity, the wave equation with the Laplace transform and the deformations along the axes107
the generalized structuralparametric model and the generalized parametric structural schematic diagram of the108
electromagnetoelastic actuator are constructed for the control systems in the nanomechanics. The deformations109
of the actuator are described by using the matrix transfer function of the electromagnetoelastic actuator. 1

Figure 1:
110
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