
© 2018. Mahmoud Hussein. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons. org/licenses/by-nc/3.0/), permitting all non commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Researches in Engineering: J
General Engineering
 Volume 18 Issue 4 Version 1.0 Year 2018
 Type: Double Blind Peer Reviewed International Research Journal
 Publisher: Global Journals

 Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Function Allocation and Bandwidth Reservation for Mixed-
critical Adaptive Software Systems

Mahmoud Hussein
Menoufia University

Abstract- The new Auto SAR adaptive platform makes mixedcritical automotive systems able to
adapt themselves in response to hardware and software failures at runtime. However, mapping
functions of these automotive systems and reserving bandwidth for them are still major
challenges. In this paper, we propose a model-based approach for mapping functions of an
automotive system to its hardware nodes and reserving their bandwidth. To do so, an
architecture description language for automotive systems (i.e. EAST-ADL) is used to design an
embedded system, and to specify its timing requirements. The design model is then used for
identifying functions allocation and their bandwidth in different system configurations.

Keywords: mixed-criticality; design space exploration, adaptive system; schedulability analysis;
model-based.

GJRE-J Classification: FOR Code: 090299

FunctionAllocationandBandwidthReservationforMixed-criticalAdaptiveSoftwareSystems

 Strictly as per the compliance and regulations of:

Function Allocation and Bandwidth Reservation
for Mixed-critical Adaptive Software Systems

Mahmoud Hussein

Abstract- The new Auto SAR adaptive platform makes mixed-
critical automotive systems able to adapt themselves in
response to hardware and software failures at runtime.
However, mapping functions of these automotive systems and
reserving bandwidth for them are still major challenges. In this
paper, we propose a model-based approach for mapping
functions of an automotive system to its hardware nodes and
reserving their bandwidth. To do so, an architecture
description language for automotive systems (i.e. EAST-ADL)
is used to design an embedded system, and to specify its
timing requirements. The design model is then used for
identifying functions allocation and their bandwidth in different
system configurations. To schedule the critical functions of the
system, the Earliest Deadline First (EDF) is used, while the
Constant Bandwidth Server (CBS) is used for scheduling the
non-critical functions. The quality of service for the non-critical
functions is determined by their reserved bandwidth. In
addition, a Tabu search-based approach is used for mapping
the system functions to hardware nodes. Furthermore, there is
a temporal isolation between the critical and non-critical
functions. Thus, overruns of the non-critical functions do not
affect the timing guarantees of the critical functions, and the
quality of service for the non-critical functions is maximized.
Keywords: mixed-criticality; design space exploration,
adaptive system; schedulability analysis; model-based.

In recent years, a number of approaches has
been proposed for mapping a system’s functions to its
processing units, and for reserving their bandwidth to
ensure that they are going to meet their deadlines at
runtime (e.g. [5] [6] [7] [8] [9]). These approaches are
aiming at functions mapping and bandwidth reservation
for systems that do not have runtime adaptability.
However, the new vehicle systems need to adapt
themselves in response to hardware and software
failures while they are in operation [10] [11]. To cope with
system failures, a number of system configurations need
to be specified as reactions to these failures. In addition,
functions mapping and their bandwidth reservation in
each system configuration need to be defined.
Consequently, adopting the existing approaches for
specifying a system’s different configurations, and
defining its functions mapping and their bandwidth
reservation is difficult and error-prone task, where these
approaches have not been proposed for adaptive
systems.

Processing unit

…

Network

f1, f2

f3

Non-critical unctionfi Critical functionfi

f4

f1

f2
f5

Two replicas of a function

 Fig.1: Multiprocessor architecture for a system with
mixed critical-functions

In this paper, we propose a model-based
approach to ease the specification of the different
configurations of an adaptive system, and to identify
functions mapping and their bandwidth reservation in
each configuration. First, we use EAST-ADL (an
architecture description language for automotive
embedded systems [12]) for creating the system design
model. This model captures the system’s functionality,
timing requirements, and adaptive behavior. To model
the adaptive behavior, we adopted the state machine
approach [13]. In this machine, the states are
corresponding to the system configurations, and the
transitions represent adaptations between these
configurations. To capture the timing requirements, we
have adopted TIMMO (TIMing MOdel) approach [14].

Second, the system design model is used for
identifying the functions allocation and their bandwidth in
the different system configurations automatically. To

© 2018 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

1

Y
e
a
r

20
18

J

I. Introduction

ith the advances in micro-electronics,
embedded system engineers are now able to
integrate more system functions on a powerful

System-on-Chips (see Figure 1)[1]. The automotive
industry also benefits from these advances, where the
engineers become able to integrate advanced vehicle
functions on high performance electronic control units
(ECUs).These functions can be classified as critical and
non-critical functions. Thus, mixed-criticality concept has
been introduced, where vehicle functions have different

new Auto SAR adaptive platform makes automotive
systems able to adapt themselves at runtime to cope
with hardware and software failures [3]. A major
challenge is how to map functions of an adaptive
systems to its hardware nodes, and to reserve
bandwidth for these functions [4].

W

critically levels as shown in Figure 1[2]. In addition, the

Author: Faculty of Computers and Information, Menoufia University,
Egypt. e-mail: mahmoud.hussein@ci.menofia.edu.eg

schedule critical functions, Earliest Deadline First (EDF)
[15]is used, while Constant Bandwidth Server (CBS)
[16]is used to schedule non-critical functions. Quality of
service for the non-critical functions is determined by
their reserved bandwidth. In addition, a Tabu search-
based strategy is used to map functions to the hardware
nodes[17]. Furthermore, there is a temporal isolation
between critical and non-critical functions. Thus,
overruns of the non-critical functions do not affect timing
guarantees for the critical ones, and the quality of service
for the non-critical functions is maximized. To show the
applicability of our approach, a case study using it is
performed in the context of Safe Adapt project.

The remainder of the paper is organized as
follows. A short description of related work is given in
Section II. Our approach for designing an embedded
system, and for functions mapping and their bandwidth
reservation is described in Section III. In Section IV, we
present our approach implementation. Finally, we
conclude the paper in Section V.

II. Related Work

The work introduced in this paper is related to

two research areas: designing adaptive systems, and
functions mapping and their bandwidth reservation. In
the following, we describe the related work from these
two angles.

a) Designing Adaptive Systems

Rainbow framework provides mechanisms for
monitoring the environment, performing the analysis of

selecting the required adaptation strategy, and effecting
the needed changes to a running system[18]. To capture

An approach was introduced by Zhang and
Cheng to create formal models of a system

behaviour[20]. In this approach, the system adaptive
behaviour is separated from its non-adaptive behaviour.
This separation makes the system models easier to
specify and verify. They used Petri-nets to capture the
system’s adaptive behaviour, where they use context
change as guidance for the transition between system
states. The SOCAM (Service-Oriented Context-Aware
Middleware) project introduces an architecture for
building adaptive systems[21]. It uses a central server to
gather context information from distributed context
providers. This information is then processed, so that it
can be used by the system functionality.

MUSIC project is a component-based
framework that is used to optimize a system overall utility
in response to context changes[22]. They have a quality

composition together with the relevant QoS dimensions,
and how they are affected when the system is going to
change from one configuration to another. The quality of
service model is used for selecting a new configuration
that has the best utility and is able to cope with the
context changes. Heaven et al. have developed an
approach to adapt a system in response to environment
changes while preserving its high level goals[23]. They
use Labelled Transition Systems (LTS) to capture the
system states and the environment situations.

Andrade et al. have proposed an approach to
cope with unanticipated changes of an adaptive system
behaviour [24]. They separate the system adaptation
from its functionality, and represent the adaptation logic
as a set of condition-action rules. These rules are
constructed as a component-based system that can be
changed at runtime. Morin et al. proposed a technique to
handle the exponential growth of the number of
configurations that are derived from the system
variability[25]. They combine model driven and aspect
oriented approaches to cope with the complexity of
adaptive software systems.

b) Function Mapping and Bandwidth Reservation
A technique that uses Constant Bandwidth

Server (CBS) for integrating critical and non-critical
functions on the same processor has been introduced
by Abeni and Buttazzo [8]. This technique uses
scheduling algorithms such as Earliest Deadline First
(EDF) or Rate Monotonic (RM) to guarantee meeting the
deadlines of critical functions. The non-critical functions
are scheduled by a number of servers. A server
parameters (i.e., its bandwidth and period) determine the
probability of meeting the deadline of a non-critical
function (i.e. its quality of service). The approach is also
extended to adjust the server parameters by proportional
integral derivative (PID) controllers at runtime. The idea
behind this is to maximize the QoS of the non-critical
functions [26]. Offline and online approaches to derive
CBS parameters have been also proposed [27]. They
are aiming at increasing the probability of meeting
deadlines of the system non-critical functions.

A Tabu search-based algorithm has been
introduced for performing functions mapping and their
bandwidth reservation [28]. This algorithm considers
mixed-critical real-time systems that should tolerate
transient faults. It uses EDF to schedule critical functions
and CBS to schedule non-critical ones. The faults are
tolerated through defining check points with rollback
recovery mechanism [29]. It also uses the probability
density functions for the non-critical functions. Thus,
decisions of the mappings and processor bandwidth
allocations are improved.

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

 2

Y
e
a
r

20
18

J

© 2018 Global Journals

the environment to initiate the adaptation process,

the system reactions to environment changes, they used
a language called Stitch. Sheng et al. have proposed a
model-driven approach to ease the development of
context-aware web services[19]. In their approach, they
consider the system functionality as a single service, and
the environment information is used by a set of rules to
adapt the service output parameters in response to
environment changes.

of service (QoS) model that describes the system

In the context of systems that have mixed time
triggered (TT) and event triggered (ET) functions, an
approach has been introduced [30]. This approach
schedules the TT functions by static-cyclic scheduling
(SCS), while the ET functions are scheduled using fixed-
priority scheduling (FPS). It can be also be extended to
constrain the TT schedules by following a given
partitioning. The problem of mapping and partitioning
have been addressed [31]. However, the partitioning
means deciding which functions are TT and which
are ET.

mixed critical real-time functions on distributed
embedded architectureshas been introduced [32]. It
assumes that the architecture provides spatial and
temporal partitioning. Therefore, enough separation
between functions are enforced. In temporal partitioning,
each function executes in a separate partition. Each
partition is also allocated a set of time slots on a
processor (where the function is mapped). Time slots of
all functions on a processor are also grouped within a
major frame that is repeated periodically. The functions
are scheduled using static-cyclic scheduling.

The approaches discussed above are focusing
on functions mapping and bandwidth reservation for
embedded systems that do not adapt at runtime.
However, new vehicle systems need to adapt
themselves in response to hardware and software
failures with the support of the new Auto SAR adaptive
platform [3][10] [11]. To cope with failures of such
systems, a number of system configurations need to be
specified as system reactions. In addition, functions
mapping and their bandwidth reservation for each
configuration need to be identified. Therefore, using the
existing approaches for specifying the system’s different
configurations, and identifying the functions mapping
and their bandwidth reservation is difficult and error-
prone tasks.

III. The Proposed Approach

To ease the process of mapping functions of an
embedded adaptive system to its hardware nodes, and
for reserving their bandwidth, we have proposeda two-
step process. In the first step, a model for the system is
specified. This model includes the system’s functionality,
timing requirements, and adaptive behavior. In step two,
based on the system model, mappings of the system
functions in each system configuration and their
bandwidth are identified by schedule ability analysis
techniques. In the following, we describe the two steps

in detail.

a) Modelling Adaptive Embedded System

To model a safe adaptive system, three aspects
need to be captured: the system functionality, its timing
requirements, and its adaptive behavior. The adaptive

behavior specifies system reactions to anticipated
changes such as hardware failures.
The System Functionality: The system functionality
consists of functions that interact with each other to meet
user requirements (see Figure 2). To model such
functionality, an architecture description language for
automotive domain (i.e. EAST-ADL [12]) is used. In
EAST-ADL, the architecture is modeled at two levels of
abstraction: an abstract functional model and a refined in
form of a design model. Both levels are modelled as a
composite structure that consists of components that
interact with each other through functional ports. In our
approach, we use cardinality of system components to
specify the system variability. A component with
cardinality {0 or 1} is optional while cardinality {2}
means it has two instances and the system can switch
between them at runtime. A cardinality {1} specifies that
the component is mandatory and should always exist
while the system is in operation (i.e. permanent).

Active function

Inactive function

Processing unit (Ni)

…

fi

Configuration 1

Configuration 2

Adapt

A

fi
I

f1,
F

f3
I

f2
A

f4
A

Hot replica

Cold replica

fi
H

fi
C

Failed function Non-critical unctionfi
A fi

Critical functionfi

f5
A

f1
H

f3
A

f2
C

f6
A

…f1
A

f3
A

f2
C

f6
A

N1
k=2

S[0]

S[1]

fi

Nj Mapping fi to Nj (Mi,j)

Multiprocessor
Embedded System (S)

f1,
I

f3
I

f2
A

f4
A f5

A

Fa
ile

d
to

 In
ac

tiv
e

H
ot

 to
 A

ct
iv

e

N1
k=3

N1
k=3

N1
k=2

 Fig.

2:

A representation of an adaptive embedded

system
 A component may have two instances to

increase the system availability and to ensure that the
functionality of this component is always provided [33].
These two instances need to be allocated to different
processing units, so that a failure does not lead to a total
failure of the functionality (e.g. function f1

in Figure 2). To
specify such allocation, the system hardware need to be
modelled and the functional allocation can be then
defined. Similar to the system functions, the hardware
model is specified using EAST-ADL modelling language.
It is modelled a composite structure that contains the
hardware elements such as processing units, sensors,
actuators, etc.

The System Timing Requirements:

To model the

system’s timing requirements, we have adopted the
technique proposed in TIMMO-2-USE [14]

(TIMing

MOdel -

TOols, algorithms, languages, methodology,
and USE cases) project. To specify a timing requirement,
events that are associated with a software function or

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

© 2018 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

3

Y
e
a
r

20
18

J

Another approach to address the mapping of

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

 4

Y
e
a
r

20
18

J

© 2018 Global Journals

one of its ports are defined. These events are then used
for defining timing constraints such as execution time
constraint, periodic constraint, reaction constraint, etc.
Using TIMMO, the execution time of a function is
specified by the Execution Time Constraint concept
where the start and the stop events of the function are
defined with lower and upper bound for the delay
between them (see Figure 3). Similarly, to specify a
periodic constraint, an event that is associated with a
function is defined. Then, the Periodic Constraint
concept is used, where a periodic constraint is specified
that references this event. This constraint specifies the
inter-arrival time and the period of a function (e.g. 60
milliseconds).

Fig.

3:

Representation of timing constraintsof a function fi

The System Adaptive Behavior:

To adapt the embedded

system in response to context changes, we introduce a
system management component [34]. This component
switches from a system configuration

to another in

response to an adaptation trigger (e.g. a failure of the
function f1

as shown in Figure 2). Therefore, we need to

model adaptation triggers and different runtime
configurations (states) of the system. Both represent a
runtime system state. To model a system state, we
adopted the concept of UML instance specifications
where a system design instance (i.e. the system’s
functionality and hardware platform) is created and
configured to specify a system runtime state or an
adaptation trigger [35].

In order to model an adaptive behavior of a

system, we adopted the state machine approach [13].
This technique makes adaptation policies easy to
understand and it is useful for validation and verification
purposes. In this machine, states are corresponding to
the system configurations, while transitions represent the
adaptations between these configurations. Each
transition is guarded and triggered by an adaptation
event. For example, in response to a function failure
during a specific state, the system moves from its state
or to a configuration that recovers from this failure as
shown in Figure 2.
b) Task Mapping and Bandwidth Reservation

To identify functions mapping and bandwidth
reservation of an embedded system, the design model is
used as a base for doing that (i.e. Step 2). In the
following, we first describe the formulation of functions
mapping and bandwidth reservation problem. Then, we
describe an approach to solve this problem.

The problem can be formulated as follows.
Given a mixed critical system (S), and a distributed

architecture (N) with a maximum number of transient
faults (k) (an example system is shown in Figure 2). We
are interested in determining a solution (L) consisting of
a mapping M (fi) ∈ N for each function fi∈ S, and a set B
containing the bandwidth Bifor each function fi. Thus, the
deadlines for critical functions are satisfied even in the
case of transient faults. In addition, the probability for
meeting the deadlines of non-critical functions is
maximized.

To solve the above problem, we have used a
Tabu search-based strategy. Tabu search is an
optimization metaheuristic [17]. It explores iteratively
solutions in the neighbourhood of current solution to
select a solution that minimizes the cost function. The
cost function we use (described later) captures
schedulability of critical functions and quality of service
(QoS) of non-critical functions. The minimization of the
cost function aims to improve schedulability of the critical
functions and to maximize the QoS for the non-critical
functions.

Our Tabu search-based strategy is described in
Table 1 (an extension for the algorithm described in
[28]). The input is an adaptive system model in a form of
configurations as described above (S), the hardware
nodes (N), and maximum number of iteration for our
strategy (MaxI). The output of the algorithm is a number
of solutions (L) for the system configurations. The
solutions consist of functions mapping M, and the set of
bandwidth B for all critical and non-critical functions in
each system configuration.

Table 1: Tabu search-based strategy for task mapping
and bandwidth reservation

 Input: S: Adaptive system, N: Distributed
architecture, MaxI: Maximum number of iterations.

Strategy:

1: c = 0;
2: foreach configuration C: S[c] do
3: if (c > 0) L0 = GenerateInitialSolution (L[c-1]);
4: else Li= GenerateInitialSolution(S[c], N);
5: end if
6: Lcurrent = Lbest = L0;
7: Costbest= CostFunction(L0);
8: TabuList = new List;
9: While iter < MaxI or Costbest== 0 do

10: NL = GenerateNeighborhood(Lbest);
11: Lcurrent= SelectSolution(NL);
12: if Cost Function(Lcurrent) <Costbestthen
13: Costbest= CostFunction(Lcurrent);
14: Lbest= Lcurrent;
15: end if
16: Add (Lcurrent, TabuList);
17: end while
18: L[c] =Lbest;
19: c = c+1;
20: end for

 Output: L: Solutions for the system configurations

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

© 2018 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

5

Y
e
a
r

20
18

J

solution L0(see Table 1: Line 3-4). In this solution, the
functions are allocated randomly to the hardware nodes,
and critical tasks are assigned a bandwidth equals to
their worst case execution time (WCET) while the non-
critical functions assigned a bandwidth equals to their
average execution time (AET). The initial solution can be

The strategy then starts to search the

neighbourhood of the current solution for finding a better
solution. New solutions are generated either by changing
functions mappings or through increasing/reducing the
bandwidth of the non-critical functions. The
neighbourhood can be very large. Thus, we only
consider a limited number of solution in each iteration.
The generated solutions are evaluated by computing
their costs. The one with the lowest cost is then selected
as current solution (Lines 9-16 in Table 1). This process
is repeated until maximum number of iterations is
reached or the cost becomes zero. After finding a
solution for a system configuration, the strategy is
repeated for finding solutions for other system states
which is the output of our strategy.

One feature of Tabu-search based techniques is
the storage of solutions history that are visited (called
Tabu List in our strategy). The idea behind this list is to
avoid revisiting already explored solutions. The solutions
history is initialized in Line 8 of our strategy, and updated
with the currently visited solution at Line 16.

analysis for critical and non-critical functions needs to be
calculated. In the following, we describe these
calculations in detail.
Schedulability Analysis for Critical Functions: To analyse
schedulability of the critical functions and content
bandwidth servers for the non-critical functions (describe
below), we use a utilization-based test. The utilization of
a hardware node Nj is computed by Equation 1
(below)[36]. In this equation, first, C`i is worst case
execution time (WCET) of a critical function fi allocated to
the hardware node Nj. To compute the WCET while
considering failures possibility, we use a number of
checkpoints (ni) together with checkpoints overhead (oi),
error detection overhead (ei), and the function’s
execution time as shown in Figure 4-A: C`i = Ci + (ni -1)
(oi + ei) + ei [28].

1
)(
)(:

)(
)(:

'

<++ ∑∑
=∧

−=∀
=∧
=∀

j

jij
ii

jij
ii

N
R

jNfM
criticalNontRf i

i

NfM
CriticalfRf i

i U
T
B

T
C

(1)

Second, Ti is the deadline for a critical or a non-
critical function fi. Third, Bi is the bandwidth that is
allocated to a non-critical function. Forth, when a fault
occurs during the execution of a function fi, this function
has to be restored from a previously saved checkpoint.
Also, an execution segment of length (Ci/ni) needs to be
executed. Therefore, the utilization needed for recovering
from a fault is ((Ci/ni) + ei + mi)/Ti, where mi is the time
required to recover from the error. For a processing unit
Nj that can have up to k failures during the system
execution, its utilization can be computed following
Equation 2[28]. In this equation, the utilization is
determined for recovery critical functions. In addition, the
worst-case is the occurrence of the k faults, which is
corresponding to largest recovery utilization.

i

iiii

fF
CriticalfRf

N
R T

menCkU
i

ii

j ++
×=

≠∧
=

)/(max
)(
)(:
φ

(2)

Normal Execution
Start event

Error detection (ei) Establishing checkpoint (oi)
Error recovery (mi)

Execution with a single fault

Execution segment (Ci/ni)

A. Normal and faulty executions of a system function fi

B. Queuing model for a constant bandwidth server of function fi

Bi
Ti

Ci,k …Arrival of a job Ji,k of function fi

Queue Server

End event

Fig.

4:

Execution of a function fi

and a queuing model for

its constant bandwidth server

Schedulability Analysis for Non-critical Functions: The
schedulability analysis of non-critical functions is
probabilities of meeting their deadlines (i.e. their quality
of service (QoS)). These probabilities depend on the
allocated bandwidths B for them. Because of the
temporal isolation property of Constant Bandwidth
Server, each non-critical function can be analysed
individually. Also, the computation of the system
functions’ QoS is expensive, and then they are computed
and stored to be later used by our strategy.

For a non-critical function fi, the QoS (fi) is
defined as the probability of meeting its deadline di
which is P {fti,k≤ rti,k + di}. The fti,k and rti,k are the
finishing and the arrival time of the kth job of the function.
To calculate this probability, a CBS that serves the
function fi is modelled as a queuing system [37]. The
function jobs Ji are seen as tokens that need to be
served by the server having the capacity Bias shown in

Our strategy starts by generating an initial

schedulable or not. A schedulable solution is the one
that all critical functions meet their deadlines. The initial
solution is used as a starting point in finding a better
solution for a system configuration (state). However, in
the case of it is not the first state, an initial solution is
generated that takes into account the previous solution
as shown in Table 1: Line 4.

To compute the cost of a solution, schedulability

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

 6

Y
e
a
r

20
18

J

© 2018 Global Journals

Figure 4-B. A Markov matrix is then built and its steady
state probability is computed to determine the probability
of meeting the deadline of fi when its allocated
bandwidth is Bi (for more detail about these calculations,
see [26] and [38]).

In our approach, we consider values of a
bandwidth in the interval [AET, WCET]. In the case of
Bi≥WCET, the deadline will be met in 100% of the cases,
while if Bi <AET, the probability of meeting the deadline
is very small.
Cost Function: In our strategy, the solutions are
evaluated based on a cost function that needs to be
minimized. The cost function for a solution L is computed
using Equation 3. The weight (wpenalty) is corresponding to
a very large penalty added when a critical function is not
schedulable (i.e. utilization of a hardware node is more
than 1). If critical tasks are schedulable, the first part of
the equation is 0. The second part of the cost function is
corresponding to maximizing the QoS of the non-critical
functions. For each function, a weight (wi) is assigned to
differentiate these functions in terms of their importance.

∑∑
−

=∀∈∀

×−+×−

criticalNon
fRf

ii
NN

penaltyN
iii

i
WfQoSwU

)(:
))(1()1,0max((3)

IV.

Implementation

In this Section, we use the concepts previously

system, and to identify its functions mapping and their
bandwidth reservation. We also describe the tool that
supports our approach. This case study has been done
in the context of the Safe

Adapt project [39].

a)

Modelling an Adaptive Vehicle

System

As discussed previously to model an adaptive
system, there is a need for specifying its functionality,
timing requirements, and adaptive behavior. In the
following, we discuss the design

model of an adaptive

vehicle system.

Modelling System Functionality:

To design an
adaptive vehicle system following our approach, we use
the Papyrus UML modeler [40]. Part of the system’s
functional model is shown in Figure 5. The model
consists of a set of functions

that are linked with each

other through functional ports. In Figure 5, the full
adaptive cruise control has the cardinality {2} that
means it has two instances. The two instances can
replace each other at runtime in case of one’s failure.
The SomnoAlert is an optional function, i.e., it can exist or
not while the system is in operation (the cardinality is

{0 or 1}).

Fig. 5: Part of the design model for an embedded
adaptive vehicle system

Similar to the functional model, a hardware
model of the system is also designed as a composite
structure that consists of two electronic control units (i.e.
Delphi TMDP (Trusted Multi Domain Platform) and RACE
[41]). In addition, the two units are connected with each
other by a hardware connector. The number of failures is
also specified for these control units (e.g. “k = 2”).
Modelling the System Timing Requirements: To model
the system timing requirements, we have used TIMMO
modelling. For the adaptive vehicle system, a number of
constraints have been defined. Some of them are
presented in Figure 6. First, to specify a periodic
constraint, an event associated with the full cruise control
(FullACC) function is defined (i.e. FACCEvent). Then, a
periodic constraint is specified that reference this event
(see Figure 6). The FullACC function has a minimum
inter-arrival time and period of 300 milliseconds.
Second, execution time (i.e. 50 milliseconds) of the
steering controller function is defined based on the event
(SCEvent) as shown in Figure 6.

Fig. 6: Example of timing requirements

Using our tool, the different information needed
to execute our strategy for functions mapping and
bandwidth reservation can be easily defined. For

explained in Section III to model an adaptive vehicle

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

© 2018 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

7

Y
e
a
r

20
18

J

example, number of checkpoints, checkpoints overhead,
and time of error detection and recovery can be
specified as attributes of a UML class that represents a
system function.
Modelling the System Adaptive Behavior: To model the
adaptive behavior of the system, both adaptation triggers
and system configurations need to be specified. We
model both of them using the instance specification
concept. A set of UML in stance specifications that
describe component instances along with values for their
attributes. Such a set is called deployment plan, a term
inspired from the CORBA component model[42]. In our
approach, a deployment plan represents a system
trigger or configuration (state).

An example of an adaptation trigger modeled as
an instance specification is shown in Figure 7 (see the
top part). For each function, a runtime state is defined
{e.g. Active, Inactive, Hot, Cold, and Failed}. In this
example: BBW0, SMA, ACC0, and AEB are in “Active”
state, SBW1 is “Hot”, BBW1 and ACC1 are in “Cold”
state, and SBW0 is “Failed”. A system state to recover
from the failure of SBW0 is shown in Figure 7 (bottom
part). The instance specification for each function is
defined as <Function Name, and State>. Therefore, this
configuration is defined as follows:
{<SBW0, Inactive>, <SBW1, Active>, <BBW0,
Active>, <BBW1, Cold>, <SMA, Active>, <ACC0,
Active>, <ACC1, Cold>, <ACC2, Hot>, <AEB,
Active>}

Fig. 7: Specifying an adaptation trigger and a system
response

To model the switching between the system
configurations in response to the adaptation triggers, a

state machine is created as shown in Figure 8. For
example, in response to a failure of the steer-by-wire (the
adaptation trigger specified on top part of Figure 7), the
system adapts from its initial configuration to another that
recovers this failure (i.e. the system configuration shown
in the bottom part of Figure 7). This system switching is
specified using the fourth transition shown in Figure 7
(i.e. “Failure of SBW1”). In this transition, the state of the
first instance of the SBW is changed from “Failed” to
“Inactive”, while the state of the second instance of the
SBW is changed from “Hot” to “Active”.

Fig.

8:

Adaptive behavior for the vehicle system

b)

Task Mapping and Bandwidth

Reservation

Based on the timing information specified into
the design model (see above), our tool (which
implements the strategy described in previous section)
finds the allocation and required bandwidth for each
system function. An example screenshot of the tool is

function. For example the degraded ACC is allocated on
TMDP control unit. It also finds the required bandwidth
for the degraded ACC which is “53” with QoS of 100%
probability of meeting its deadline. The tool also shows
how many iterations (e.g. 12) and how long (e.g. 64
millisecond) it takes to find the allocations and to
determine the bandwidth reservation.

A main feature of our approach is the
consideration of all configurations in identifying the
function mappings. Thus, our

approach improves

existing techniques (e.g. Saraswat et al.

[28]), where we

find allocations that reduce (limit) the changes of function
allocation from a configuration to another as shown in
Figure 10. Therefore, at runtime, functions re-allocation is
reduced or restricted (if possible), while achieving the
best quality of service for the non-critical functions.

shown in Figure 9. It determines the allocation for each

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

 8

Y
e
a
r

20
18

J

© 2018 Global Journals

Initial bandwidth

Allocated bandwidth

Hardware nodes utilization

Execution time and number
of iterations in the strategy

Function Allocation

Fig.

9:

Output of the strategy for bandwidth reservation

Using our approach

Using Saraswat et al. Approach

Fig.

10:

Output of our strategy for function allocation in

each system configuration

V.
 Conclusion

The new AutoSAR adaptive platform makes
mixed-critical automotive systems able to adapt
themselves at runtime to cope with hardware/software
failures. However, mapping

functions of these

automotive systems and reserving bandwidth for them
are still major challenges. In this paper, we proposed a
model-based approach for specifying different
configurations of an embedded adaptive system, and for
defining functions mapping

and bandwidth reservation in

each system configuration. First, we have used EAST-
ADL to create the system design model. This model
captures the embedded system functionality, timing
requirements, and its adaptive behavior. Second, the
system’s design model is used as a base for finding
functions allocation and for reserving their bandwidth in
the different system states (configurations). To schedule
the

critical functions, the Earliest Deadline First (EDF) is

used, while the Constant Bandwidth Server (CBS)

is
used for scheduling the non-critical functions. Finally, to

show our approach applicability, in the context of the
Safe Adapt project, a case study has been conducted.

As future work, we plan to extend our approach
to enable code generation from the system design
model, and automatic deployment of the generated
system functions to its hardware nodes. Further
evaluations will also be carried out to assess the
approach robustness by applying it to a number of case
studies.

1.

U. Abelein, H.Lochner, D. Hahn, and S. Straube,
"Complexity, quality and robustness -

the challenges

of tomorrow's automotive electronics," in Design,
Automation, Test in Europe (DATE), Dresden,
Germany, 2012, pp. 870-871.

2.

Izosimov, P. Pop, P. Eles, and Z. Peng, "Scheduling
of fault-tolerant embedded systems with soft and
hard timing constraints," in Proceedings of Design,
Automation & Test in Europe DATE ’08, 2008, pp.
915–920.

3.

S. Furst., "AUTOSAR the Next Generation –

The
Adaptive Platform," in CARS@EDCC 2015, Paris,
France, 8th September 2015.

4.

A. Burns and R. Davis, "Mixed criticality systems-a
revie," Department of Computer Science, University
of York, Tech. Rep, pp. 1–69, Januray 2017.
[Online]. http://www-users.cs.york.ac.uk/burns/

review.pdf

5.

P. Sahu, S. Chattopadhyay, "A survey on application
mapping strategies for Network-on-Chip design,"
ournal of Systems Architecture, vol. 59, no. 1, pp.
60-76, January 2013.

6.

S. Manolache, P. Eles, and Z. Peng, "Task mapping
and priority assignment for soft real-time
applications under deadline miss ratio constraints,"
ACM Transactions on Embed. Comput. Syst, vol. 7,
no. 2, pp. 1-35, 2008.

7.

N. Zamora, X. Hu, and R. Marculescu, "System-level
performance/power analysis for platform-based
design of multimedia applications," ACM
Transactions on Design Automation of Electronic
Systems, vol. 12, no. 1, 2007.

8.

L. Abeni and G. Buttazzo, "Integrating multimedia
applications in hard real-time systems," in
roceedings of 19th IEEE Real-Time Systems
Symposium, 1998, pp. 4-13.

9.

S. Chakraborty and L. Thiele, "A new task model for
streaming applications and its schedulability
analysis," in Proceedings of Design, Automation and
Test in Europe DATE’05, 20005, pp. 486–491.

10.

P. Schleiss, M. Zeller, G. Weiss, and D. Eilers, "Safe
Adapt: Safe Adaptive Software for Fully Electric
Vehicles," in 3rd Conference on Future Automotive
Technology (CoFAT), 2014.

References

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

© 2018 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

9

Y
e
a
r

20
18

J

11. M. Hussein, R. Nouacer, A. Radermacher, "A Model-
driven Approach for Validating Safe Adaptive
Behaviors," in 19th Euromicro Conference on Digital
Systems Design (DSD 2016), Limassol, Cyprus,
August 31 – September 2, 2016.

12. D.J. Chen, S. Gerard, H. Lonn, M.O. Reiser, D.
Servat, C.J. Sjostedt, R.T. Kolagari, M. Torngren,
and M. Weber P. Cuenot, "Managing Complexity of
Automotive Electronics Using the EAST-ADL," in
12th IEEE International Conference on Engineering
Complex Computer Systems (ICECCS '07),
Washington, DC, USA, 2007, pp. 353-358.

13. B. Morin, O. Barais, J.M. Jezequel, F. Fleurey, and
A. Solberg, "Models@ Run. Time to Support
Dynamic Adaptation," Computer, vol. 42, pp. 44-51,
2009.

14. O. Scheickl, M. Rudorfer, "Automotive Real-Time
Development Using Timing augmented AUTOSAR
Specification, BMW Car IT," in 4th European
Congress Embedded Real-Time Software (ERTS
2008), Toulouse, France, January 29 - February 1,
2008.

15. M. Andrews, "Probabilistic end-to-end delay bounds
for earliest deadline first scheduling," Proceedings
IEEE INFOCOM 2000. Conference on Computer
Communications," in Nineteenth Annual Joint
Conference of the IEEE Computer and
Communications Societies, Tel Aviv, 2000, pp.
603-612.

16. G. Lipari and S. Baruah, "2001. A Hierarchical
Extension to the Constant Bandwidth Server
Framework," in Proceedings of the Seventh Real-
Time Technology and Applications Symposium
(RTAS '01), 2001.

17. F. Glover and M. Laguna, Tabu Search. Norwell,
MA, USA: Kluwer Academic Publishers, 1997.

18. D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P.
Steenkiste, "Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure," Computer,
vol. 37, no. 10, October 2004.

19. Q. Z. Sheng, J. Yu, A. Segev, K. Liao, "Techniques
on developing context-aware web services," Int.
Journal of Web Information Systems, vol. 6, no. 3,
pp. 185-202, 2010.

20. J. Zhang and B. H. C. Cheng, "Model-based
development of dynamically adaptive software," in
the 28th international conference on Software
engineering, Shanghai, China, 2006.

21. T. Gu, H. K. Pung, and D. Q. Zhang, "A service-
oriented middleware for building context-aware
services," J. Netw. Comput. Appl., vol. 28, pp. 1-18,
2005.

22. R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S.
Hallsteinsen, J. Lorenzo, A. Mamelli, and U. Scholz,
"MUSIC: Middleware Support for Self-Adaptation in
Ubiquitous and Service-Oriented Environments,"

Software Engineering for Self-Adaptive Systems, vol.
LNCS 5525, pp. 164-182, 2009.

23. W. Heaven, D. Sykes, J. Magee, and J. Kramer, "A
Case Study in Goal-Driven Architectural Adaptation,"
Software Engineering for Self-Adaptive Systems, vol.
LNCS 5525, pp. 109-127, 2009.

24. S. S. Andrade and R. J. de Araujo Macedo, "A non-
intrusive component-based approach for deploying
unanticipated self-management behaviour," in
Software Engineering for Adaptive and Self-
Managing Systems (SEAMS '09), 2009.

25. B. Morin, O. Barais, G. Nain, and J. Jezequel,
"Taming Dynamically Adaptive Systems using
models and aspects," in the 31st International
Conference on Software Engineering, 2009.

26. L. Abeni, L. Palopoli, G. Lipari, and J. Walpole,
"Analysis of a reservation-based feedback
scheduler," in Proceedings of 23rd IEEE Real-Time
Systems Symposium, 2002, pp. 71-80.

27. A. Oliveira, E. Camponogara, and G. Lima,
"Dynamic reconfiguration in reservation-based
scheduling: An optimization approach," in
Proceedings of 15th IEEE Real-Time and
Embedded Technology and Applications
Symposium, 2009, pp. 173–182.

28. P. Kumar Saraswat, P. Pop, and J. Madsen, "Task
Mapping and Bandwidth Reservation for Mixed
Hard/Soft Fault-Tolerant Embedded Systems," in
16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS '10), 2010.

29. P. Pop, V. Izosimov, P. Eles, and Z. Peng, "Design
optimization of time and cost-constrained fault-
tolerant embedded systems with check pointing and
replication," IEEE Transactions on VLSI Systems,
vol. 17, pp. 389-402, 2009.

30. T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei,
"Timing analysis of the Flex Ray communication
protocol," Real-Time Systems, vol. 39, no. 1, pp.
205-235, 2008.

31. P. Pop, P. Eles, Z. Peng, and T. Pop, "Analysis and
optimization of distributed real-time embedded
systems," ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 11, no. 3, pp.
593-625, July 2006.

32. D. Tămaş-Selicean and P. Pop, "Design
Optimization of Mixed-Criticality Real-Time
Embedded Systems," ACM Trans. Embed. Comput.
Syst., vol. 14, no. 3, pp. 1-29, April 2015.

33. R. France, and B. Rumpe, "Model-driven
Development of Complex Software: A Research
Roadmap," in Future of Software Engineering (FOSE
2007), Minneapolis, MN, USA, 2007, pp. 37-54.

34. M. Salehie, and L. Tahvildari, "Self-adaptive
software: Landscape and research challenges,"
ACM Trans. Auton. Adapt. Syst, vol. 4, no. 2, pp.
1-42, 2009.

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
V
ol
um

e
 X

V
II
I
 I
ss
ue

IV

V
er
si
on

 I

 10

Y
e
a
r

20
18

J

© 2018 Global Journals

35. M. Fowler, "UML Distilled: A Brief Guide to the
Standard Object Modeling Language (3 ed.).,",
Boston, MA, USA, 2003.

36. H. Kopetz, Real-Time Systems: Design Principles for
Distributed Embedded Applications: Kluwer
Academic Publishers, 1997.

37. L. Abeni and G. Buttazzo, "Stochastic analysis of a
reservation based system," in Proceedings of 15th
International Parallel and Distributed Processing
Symposium, 2001, pp. 946–952.

38. L. Abeni, G. Lipari, and J. Lelli, "Constant bandwidth
server revisited," ACM SIGBED Review - Special
Issue on the 4th Embedded Operating Systems
Workshop, vol. 11, no. 4, pp. 19-24, January 2015.

39. SafeAdapt: Safe Adaptive Software for Fully Electric
Vehicles. [Online]. http://www. safeadapt.eu/

40. S. Gérard, C. Dumoulin, P. Tessier, and B. Selic,
"Papyrus: A UML2 tool for domain-specific language
modeling," in International Dagstuhl conference on
Model-based engineering of embedded real-time
systems (MBEERTS'07), Berlin, Heidelberg, 2007,
pp. 361-368.

41. RACE: Robust and Reliable System Architecture for
Future eCars. [Online]. http://www.projekt-race.de/

42. N. Wang, D. Schmidt, and C. O'Ryan, "Overview of
the CORBA component model," in Component-
based software engineering. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.,
2001, pp. 557-571.

	Function Allocation and Bandwidth Reservation for MixedcriticalAdaptive Software Systems
	Author
	Keywords
	I. Introduction
	II. Related Work
	a) Designing Adaptive Systems
	b) Function Mapping and Bandwidth Reservation

	III. The Proposed Approach
	a) Modelling Adaptive Embedded System
	b) Task Mapping and Bandwidth Reservation

	IV. Implementation
	a) Modelling an Adaptive VehicleSystem
	b) Task Mapping and BandwidthReservation

	V. Conclusion
	References

