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Function Allocation and Bandwidth Reservation 
for Mixed-critical Adaptive Software Systems 

Mahmoud Hussein 

Abstract- The new Auto SAR adaptive platform makes mixed-
critical automotive systems able to adapt themselves in 
response to hardware and software failures at runtime. 
However, mapping functions of these automotive systems and 
reserving bandwidth for them are still major challenges. In this 
paper, we propose a model-based approach for mapping 
functions of an automotive system to its hardware nodes and 
reserving their bandwidth. To do so, an architecture 
description language for automotive systems (i.e. EAST-ADL) 
is used to design an embedded system, and to specify its 
timing requirements. The design model is then used for 
identifying functions allocation and their bandwidth in different 
system configurations. To schedule the critical functions of the 
system, the Earliest Deadline First (EDF) is used, while the 
Constant Bandwidth Server (CBS) is used for scheduling the 
non-critical functions. The quality of service for the non-critical 
functions is determined by their reserved bandwidth. In 
addition, a Tabu search-based approach is used for mapping 
the system functions to hardware nodes. Furthermore, there is 
a temporal isolation between the critical and non-critical 
functions. Thus, overruns of the non-critical functions do not 
affect the timing guarantees of the critical functions, and the 
quality of service for the non-critical functions is maximized. 
Keywords:  mixed-criticality; design space exploration, 
adaptive system; schedulability analysis; model-based. 

  

 

 

  
 

 
 

 
 

 
 

 

In recent years, a number of approaches has 
been proposed for mapping a system’s functions to its 
processing units, and for reserving their bandwidth to 
ensure that they are going to meet their deadlines at 
runtime (e.g. [5] [6] [7] [8] [9]). These approaches are 
aiming at functions mapping and bandwidth reservation 
for systems that do not have runtime adaptability. 
However, the new vehicle systems need to adapt 
themselves in response to hardware and software 
failures while they are in operation [10] [11]. To cope with 
system failures, a number of system configurations need 
to be specified as reactions to these failures. In addition, 
functions mapping and their bandwidth reservation in 
each system configuration need to be defined. 
Consequently, adopting the existing approaches for 
specifying a system’s different configurations, and 
defining its functions mapping and their bandwidth 
reservation is difficult and error-prone task, where these 
approaches have not been proposed for adaptive 
systems.  

Processing unit

…

Network

f1, f2

f3

Non-critical unctionfi Critical functionfi

f4

f1

f2
f5

Two replicas of a function

 Fig.1: Multiprocessor architecture for a system with 
mixed critical-functions 

In this paper, we propose a model-based 
approach to ease the specification of the different 
configurations of an adaptive system, and to identify 
functions mapping and their bandwidth reservation in 
each configuration. First, we use EAST-ADL (an 
architecture description language for automotive 
embedded systems [12]) for creating the system design 
model. This model captures the system’s functionality, 
timing requirements, and adaptive behavior. To model 
the adaptive behavior, we adopted the state machine 
approach [13]. In this machine, the states are 
corresponding to the system configurations, and the 
transitions represent adaptations between these 
configurations. To capture the timing requirements, we 
have adopted TIMMO (TIMing MOdel) approach [14]. 

Second, the system design model is used for 
identifying the functions allocation and their bandwidth in 
the different system configurations automatically. To 
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I. Introduction

ith the advances in micro-electronics, 
embedded system engineers are now able to 
integrate more system functions on a powerful 

System-on-Chips (see Figure 1)[1]. The automotive 
industry also benefits from these advances, where the 
engineers become able to integrate advanced vehicle 
functions on high performance electronic control units 
(ECUs).These functions can be classified as critical and 
non-critical functions. Thus, mixed-criticality concept has 
been introduced, where vehicle functions have different 

new Auto SAR adaptive platform makes automotive 
systems able to adapt themselves at runtime to cope 
with hardware and software failures [3]. A major 
challenge is how to map functions of an adaptive 
systems to its hardware nodes, and to reserve 
bandwidth for these functions [4]. 

W 

critically levels as shown in Figure 1[2]. In addition, the 
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schedule critical functions, Earliest Deadline First (EDF) 
[15]is used, while Constant Bandwidth Server (CBS) 
[16]is used to schedule non-critical functions. Quality of 
service for the non-critical functions is determined by 
their reserved bandwidth. In addition, a Tabu search-
based strategy is used to map functions to the hardware 
nodes[17]. Furthermore, there is a temporal isolation 
between critical and non-critical functions. Thus, 
overruns of the non-critical functions do not affect timing 
guarantees for the critical ones, and the quality of service 
for the non-critical functions is maximized. To show the 
applicability of our approach, a case study using it is 
performed in the context of Safe Adapt project. 

The remainder of the paper is organized as 
follows. A short description of related work is given in 
Section II. Our approach for designing an embedded 
system, and for functions mapping and their bandwidth 
reservation is described in Section III. In Section IV, we 
present our approach implementation. Finally, we 
conclude the paper in Section V. 

II. Related Work 

The work introduced in this paper is related to 

two research areas: designing adaptive systems, and 
functions mapping and their bandwidth reservation. In 
the following, we describe the related work from these 
two angles. 

a) Designing Adaptive Systems 

Rainbow framework provides mechanisms for 
monitoring the environment, performing the analysis of 

selecting the required adaptation strategy, and effecting 
the needed changes to a running system[18]. To capture 

 

 

  

An approach was introduced by Zhang and 
Cheng to create formal models of a system 

behaviour[20]. In this approach, the system adaptive 
behaviour is separated from its non-adaptive behaviour. 
This separation makes the system models easier to 
specify and verify. They used Petri-nets to capture the 
system’s adaptive behaviour, where they use context 
change as guidance for the transition between system 
states. The SOCAM (Service-Oriented Context-Aware 
Middleware) project introduces an architecture for 
building adaptive systems[21]. It uses a central server to 
gather context information from distributed context 
providers. This information is then processed, so that it 
can be used by the system functionality.  

MUSIC project is a component-based 
framework that is used to optimize a system overall utility 
in response to context changes[22]. They have a quality 

 
composition together with the relevant QoS dimensions, 
and how they are affected when the system is going to 
change from one configuration to another. The quality of 
service model is used for selecting a new configuration 
that has the best utility and is able to cope with the 
context changes. Heaven et al. have developed an 
approach to adapt a system in response to environment 
changes while preserving its high level goals[23]. They 
use Labelled Transition Systems (LTS) to capture the 
system states and the environment situations. 

Andrade et al. have proposed an approach to 
cope with unanticipated changes of an adaptive system 
behaviour [24]. They separate the system adaptation 
from its functionality, and represent the adaptation logic 
as a set of condition-action rules. These rules are 
constructed as a component-based system that can be 
changed at runtime. Morin et al. proposed a technique to 
handle the exponential growth of the number of 
configurations that are derived from the system 
variability[25]. They combine model driven and aspect 
oriented approaches to cope with the complexity of 
adaptive software systems. 

b) Function Mapping and Bandwidth Reservation 
A technique that uses Constant Bandwidth 

Server (CBS) for integrating critical and non-critical 
functions on the same processor has been introduced 
by Abeni and Buttazzo [8]. This technique uses 
scheduling algorithms such as Earliest Deadline First 
(EDF) or Rate Monotonic (RM) to guarantee meeting the 
deadlines of critical functions. The non-critical functions 
are scheduled by a number of servers. A server 
parameters (i.e., its bandwidth and period) determine the 
probability of meeting the deadline of a non-critical 
function (i.e. its quality of service). The approach is also 
extended to adjust the server parameters by proportional 
integral derivative (PID) controllers at runtime. The idea 
behind this is to maximize the QoS of the non-critical 
functions [26]. Offline and online approaches to derive 
CBS parameters have been also proposed [27]. They 
are aiming at increasing the probability of meeting 
deadlines of the system non-critical functions. 

A Tabu search-based algorithm has been 
introduced for performing functions mapping and their 
bandwidth reservation [28]. This algorithm considers 
mixed-critical real-time systems that should tolerate 
transient faults. It uses EDF to schedule critical functions 
and CBS to schedule non-critical ones. The faults are 
tolerated through defining check points with rollback 
recovery mechanism [29]. It also uses the probability 
density functions for the non-critical functions. Thus, 
decisions of the mappings and processor bandwidth 
allocations are improved. 

Function Allocation and Bandwidth Reservation for Mixed-critical Adaptive Software Systems
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the environment to initiate the adaptation process, 

the system reactions to environment changes, they used 
a language called Stitch. Sheng et al. have proposed a 
model-driven approach to ease the development of 
context-aware web services[19]. In their approach, they 
consider the system functionality as a single service, and 
the environment information is used by a set of rules to 
adapt the service output parameters in response to 
environment changes. 

of service (QoS) model that describes the system 



In the context of systems that have mixed time 
triggered (TT) and event triggered (ET) functions, an 
approach has been introduced [30]. This approach 
schedules the TT functions by static-cyclic scheduling 
(SCS), while the ET functions are scheduled using fixed-
priority scheduling (FPS). It can be also be extended to 
constrain the TT schedules by following a given 
partitioning. The problem of mapping and partitioning 
have been addressed [31]. However, the partitioning 
means deciding which functions are TT and which        
are ET. 

mixed critical real-time functions on distributed 
embedded architectureshas been introduced [32]. It 
assumes that the architecture provides spatial and 
temporal partitioning. Therefore, enough separation 
between functions are enforced. In temporal partitioning, 
each function executes in a separate partition. Each 
partition is also allocated a set of time slots on a 
processor (where the function is mapped). Time slots of 
all functions on a processor are also grouped within a 
major frame that is repeated periodically. The functions 
are scheduled using static-cyclic scheduling.  

The approaches discussed above are focusing 
on functions mapping and bandwidth reservation for 
embedded systems that do not adapt at runtime. 
However, new vehicle systems need to adapt 
themselves in response to hardware and software 
failures with the support of the new Auto SAR adaptive 
platform [3][10] [11]. To cope with failures of such 
systems, a number of system configurations need to be 
specified as system reactions. In addition, functions 
mapping and their bandwidth reservation for each 
configuration need to be identified. Therefore, using the 
existing approaches for specifying the system’s different 
configurations, and identifying the functions mapping 
and their bandwidth reservation is difficult and error-
prone tasks. 

III. The Proposed Approach 

To ease the process of mapping functions of an 
embedded adaptive system to its hardware nodes, and 
for reserving their bandwidth, we have proposeda two-
step process. In the first step, a model for the system is 
specified. This model includes the system’s functionality, 
timing requirements, and adaptive behavior. In step two, 
based on the system model, mappings of the system 
functions in each system configuration and their 
bandwidth are identified by schedule ability analysis 
techniques. In the following, we describe the two steps    

in detail. 

a) Modelling Adaptive Embedded System 

To model a safe adaptive system, three aspects 
need to be captured: the system functionality, its timing 
requirements, and its adaptive behavior. The adaptive 

behavior specifies system reactions to anticipated 
changes such as hardware failures. 
The System Functionality: The system functionality 
consists of functions that interact with each other to meet 
user requirements (see Figure 2). To model such 
functionality, an architecture description language for 
automotive domain (i.e. EAST-ADL [12]) is used. In 
EAST-ADL, the architecture is modeled at two levels of 
abstraction: an abstract functional model and a refined in 
form of a design model. Both levels are modelled as a 
composite structure that consists of components that 
interact with each other through functional ports. In our 
approach, we use cardinality of system components to 
specify the system variability. A component with 
cardinality {0 or 1} is optional while cardinality {2} 
means it has two instances and the system can switch 
between them at runtime. A cardinality {1} specifies that 
the component is mandatory and should always exist 
while the system is in operation (i.e. permanent). 
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2:

 
A representation of an adaptive embedded 

system
 A component may have two instances to 

increase the system availability and to ensure that the 
functionality of this component is always provided [33]. 
These two instances need to be allocated to different 
processing units, so that a failure does not lead to a total 
failure of the functionality (e.g. function f1 

in Figure 2). To 
specify such allocation, the system hardware need to be 
modelled and the functional allocation can be then 
defined. Similar to the system functions, the hardware 
model is specified using EAST-ADL modelling language. 
It is modelled a composite structure that contains the 
hardware elements such as processing units, sensors, 
actuators, etc. 

 
The System Timing Requirements:

 
To model the 

system’s timing requirements, we have adopted the 
technique proposed in TIMMO-2-USE [14]

 
(TIMing 

MOdel -
 

TOols, algorithms, languages, methodology, 
and USE cases) project. To specify a timing requirement, 
events that are associated with a software function or 
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Another approach to address the mapping of 
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one of its ports are defined. These events are then used 
for defining timing constraints such as execution time 
constraint, periodic constraint, reaction constraint, etc. 
Using TIMMO, the execution time of a function is 
specified by the Execution Time Constraint concept 
where the start and the stop events of the function are 
defined with lower and upper bound for the delay 
between them (see Figure 3). Similarly, to specify a 
periodic constraint, an event that is associated with a 
function is defined. Then, the Periodic Constraint 
concept is used, where a periodic constraint is specified 
that references this event. This constraint specifies the 
inter-arrival time and the period of a function (e.g. 60 
milliseconds). 

 

Fig.
 
3:

 
Representation of timing constraintsof a function fi

 

The System Adaptive Behavior:
 
To adapt the embedded 

system in response to context changes, we introduce a 
system management component [34]. This component 
switches from a system configuration

 
to another in 

response to an adaptation trigger (e.g. a failure of the 
function f1

 
as shown in Figure 2). Therefore, we need to 

model adaptation triggers and different runtime 
configurations (states) of the system. Both represent a 
runtime system state. To model a system state, we 
adopted the concept of UML instance specifications 
where a system design instance (i.e. the system’s 
functionality and hardware platform) is created and 
configured to specify a system runtime state or an 
adaptation trigger [35]. 

 
 
In order to model an adaptive behavior of a 

system, we adopted the state machine approach [13]. 
This technique makes adaptation policies easy to 
understand and it is useful for validation and verification 
purposes. In this machine, states are corresponding to 
the system configurations, while transitions represent the 
adaptations between these configurations. Each 
transition is guarded and triggered by an adaptation 
event. For example, in response to a function failure 
during a specific state, the system moves from its state 
or to a configuration that recovers from this failure as 
shown in Figure 2. 
b) Task Mapping and Bandwidth Reservation 

To identify functions mapping and bandwidth 
reservation of an embedded system, the design model is 
used as a base for doing that (i.e. Step 2). In the 
following, we first describe the formulation of functions 
mapping and bandwidth reservation problem. Then, we 
describe an approach to solve this problem. 

The problem can be formulated as follows. 
Given a mixed critical system (S), and a distributed 

architecture (N) with a maximum number of transient 
faults (k) (an example system is shown in Figure 2). We 
are interested in determining a solution (L) consisting of 
a mapping M (fi) ∈ N for each function fi∈ S, and a set B 
containing the bandwidth Bifor each function fi. Thus, the 
deadlines for critical functions are satisfied even in the 
case of transient faults. In addition, the probability for 
meeting the deadlines of non-critical functions is 
maximized. 

To solve the above problem, we have used a 
Tabu search-based strategy. Tabu search is an 
optimization metaheuristic [17]. It explores iteratively 
solutions in the neighbourhood of current solution to 
select a solution that minimizes the cost function. The 
cost function we use (described later) captures 
schedulability of critical functions and quality of service 
(QoS) of non-critical functions. The minimization of the 
cost function aims to improve schedulability of the critical 
functions and to maximize the QoS for the non-critical 
functions.  

Our Tabu search-based strategy is described in 
Table 1 (an extension for the algorithm described in 
[28]). The input is an adaptive system model in a form of 
configurations as described above (S), the hardware 
nodes (N), and maximum number of iteration for our 
strategy (MaxI). The output of the algorithm is a number 
of solutions (L) for the system configurations. The 
solutions consist of functions mapping M, and the set of 
bandwidth B for all critical and non-critical functions in 
each system configuration.  

Table 1: Tabu search-based strategy for task mapping 
and bandwidth reservation 

 Input: S: Adaptive system, N: Distributed 
architecture, MaxI: Maximum number of iterations. 

 
Strategy: 

1: c = 0; 
2: foreach configuration C: S[c] do 
3: if (c > 0)  L0 = GenerateInitialSolution (L[c-1]); 
4:   else Li= GenerateInitialSolution(S[c], N); 
5: end if 
6: Lcurrent = Lbest = L0; 
7: Costbest= CostFunction(L0); 
8: TabuList = new List; 
9: While iter < MaxI  or Costbest== 0 do 

10: NL = GenerateNeighborhood(Lbest); 
11: Lcurrent= SelectSolution(NL); 
12: if Cost Function(Lcurrent) <Costbestthen 
13: Costbest= CostFunction(Lcurrent); 
14: Lbest= Lcurrent; 
15: end if 
16: Add (Lcurrent, TabuList); 
17: end while 
18: L[c] =Lbest; 
19: c = c+1;  
20: end for 

 
 Output: L: Solutions for the system configurations 
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solution L0(see Table 1: Line 3-4). In this solution, the 
functions are allocated randomly to the hardware nodes, 
and critical tasks are assigned a bandwidth equals to 
their worst case execution time (WCET) while the non-
critical functions assigned a bandwidth equals to their 
average execution time (AET). The initial solution can be 

 

 

 
The strategy then starts to search the 

neighbourhood of the current solution for finding a better 
solution. New solutions are generated either by changing 
functions mappings or through increasing/reducing the 
bandwidth of the non-critical functions. The 
neighbourhood can be very large. Thus, we only 
consider a limited number of solution in each iteration. 
The generated solutions are evaluated by computing 
their costs. The one with the lowest cost is then selected 
as current solution (Lines 9-16 in Table 1). This process 
is repeated until maximum number of iterations is 
reached or the cost becomes zero. After finding a 
solution for a system configuration, the strategy is 
repeated for finding solutions for other system states 
which is the output of our strategy. 

One feature of Tabu-search based techniques is 
the storage of solutions history that are visited (called 
Tabu List in our strategy). The idea behind this list is to 
avoid revisiting already explored solutions. The solutions 
history is initialized in Line 8 of our strategy, and updated 
with the currently visited solution at Line 16. 

analysis for critical and non-critical functions needs to be 
calculated. In the following, we describe these 
calculations in detail. 
Schedulability Analysis for Critical Functions: To analyse 
schedulability of the critical functions and content 
bandwidth servers for the non-critical functions (describe 
below), we use a utilization-based test. The utilization of 
a hardware node Nj is computed by Equation 1 
(below)[36]. In this equation, first, C`i is worst case 
execution time (WCET) of a critical function fi allocated to 
the hardware node Nj. To compute the WCET while 
considering failures possibility, we use a number of 
checkpoints (ni) together with checkpoints overhead (oi), 
error detection overhead (ei), and the function’s 
execution time as shown in Figure 4-A: C`i = Ci + (ni -1) 
(oi + ei) + ei [28].  

         

1
)(
)(:

)(
)(:

'
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=∀

j

jij
ii

jij
ii
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i U
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(1)

 

Second, Ti is the deadline for a critical or a non-
critical function fi. Third, Bi is the bandwidth that is 
allocated to a non-critical function. Forth, when a fault 
occurs during the execution of a function fi, this function 
has to be restored from a previously saved checkpoint. 
Also, an execution segment of length (Ci/ni) needs to be 
executed. Therefore, the utilization needed for recovering 
from a fault is ((Ci/ni) + ei + mi)/Ti, where mi is the time 
required to recover from the error. For a processing unit 
Nj that can have up to k failures during the system 
execution, its utilization can be computed following 
Equation 2[28]. In this equation, the utilization is 
determined for recovery critical functions. In addition, the 
worst-case is the occurrence of the k faults, which is 
corresponding to largest recovery utilization. 
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4:

 
Execution of a function fi

 
and a queuing model for 

its constant bandwidth server
 

Schedulability Analysis for Non-critical Functions: The 
schedulability analysis of non-critical functions is 
probabilities of meeting their deadlines (i.e. their quality 
of service (QoS)). These probabilities depend on the 
allocated bandwidths B for them. Because of the 
temporal isolation property of Constant Bandwidth 
Server, each non-critical function can be analysed 
individually. Also, the computation of the system 
functions’ QoS is expensive, and then they are computed 
and stored to be later used by our strategy.  

For a non-critical function fi, the QoS (fi) is 
defined as the probability of meeting its deadline di 
which is P {fti,k≤ rti,k + di}. The fti,k and rti,k are the 
finishing and the arrival time of the kth job of the function. 
To calculate this probability, a CBS that serves the 
function fi is modelled as a queuing system [37]. The 
function jobs Ji are seen as tokens that need to be 
served by the server having the capacity Bias shown in 

Our strategy starts by generating an initial 

schedulable or not. A schedulable solution is the one 
that all critical functions meet their deadlines. The initial 
solution is used as a starting point in finding a better 
solution for a system configuration (state). However, in 
the case of it is not the first state, an initial solution is 
generated that takes into account the previous solution
as shown in Table 1: Line 4. 

To compute the cost of a solution, schedulability 
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Figure 4-B. A Markov matrix is then built and its steady 
state probability is computed to determine the probability 
of meeting the deadline of fi when its allocated 
bandwidth is Bi (for more detail about these calculations, 
see [26] and [38]).  

In our approach, we consider values of a 
bandwidth in the interval [AET, WCET]. In the case of 
Bi≥WCET, the deadline will be met in 100% of the cases, 
while if Bi <AET, the probability of meeting the deadline 
is very small. 
Cost Function: In our strategy, the solutions are 
evaluated based on a cost function that needs to be 
minimized. The cost function for a solution L is computed 
using Equation 3. The weight (wpenalty) is corresponding to 
a very large penalty added when a critical function is not 
schedulable (i.e. utilization of a hardware node is more 
than 1). If critical tasks are schedulable, the first part of 
the equation is 0. The second part of the cost function is 
corresponding to maximizing the QoS of the non-critical 
functions. For each function, a weight (wi) is assigned to 
differentiate these functions in terms of their importance. 
 

∑∑
−

=∀∈∀

×−+×−

criticalNon
fRf

ii
NN

penaltyN
iii

i
WfQoSwU

)(:
))(1()1,0max( (3)

 

IV.
 

Implementation
 

In this Section, we use the concepts previously  

system, and to identify its functions mapping and their 
bandwidth reservation. We also describe the tool that 
supports our approach. This case study has been done 
in the context of the Safe

 
Adapt project [39].

 

a)
 

Modelling an Adaptive Vehicle
 
System

 

As discussed previously to model an adaptive 
system, there is a need for specifying its functionality, 
timing requirements, and adaptive behavior. In the 
following, we discuss the design

 
model of an adaptive 

vehicle system. 
 

Modelling System Functionality:
 

To design an 
adaptive vehicle system following our approach, we use 
the Papyrus UML modeler [40]. Part of the system’s 
functional model is shown in Figure 5. The model 
consists of a set of functions

 
that are linked with each 

other through functional ports. In Figure 5, the full 
adaptive cruise control has the cardinality {2} that 
means it has two instances. The two instances can 
replace each other at runtime in case of one’s failure. 
The SomnoAlert is an optional function, i.e., it can exist or 
not while the system is in operation (the cardinality is 

    

{0 or 1}).
 

 

Fig. 5: Part of the design model for an embedded 
adaptive vehicle system 

Similar to the functional model, a hardware 
model of the system is also designed as a composite 
structure that consists of two electronic control units (i.e. 
Delphi TMDP (Trusted Multi Domain Platform) and RACE 
[41]). In addition, the two units are connected with each 
other by a hardware connector. The number of failures is 
also specified for these control units (e.g. “k = 2”). 
Modelling the System Timing Requirements: To model 
the system timing requirements, we have used TIMMO 
modelling. For the adaptive vehicle system, a number of 
constraints have been defined. Some of them are 
presented in Figure 6. First, to specify a periodic 
constraint, an event associated with the full cruise control 
(FullACC) function is defined (i.e. FACCEvent). Then, a 
periodic constraint is specified that reference this event 
(see Figure 6). The FullACC function has a minimum 
inter-arrival time and period of 300 milliseconds.  
Second, execution time (i.e. 50 milliseconds) of the 
steering controller function is defined based on the event 
(SCEvent) as shown in Figure 6. 

 

Fig. 6: Example of timing requirements 

Using our tool, the different information needed 
to execute our strategy for functions mapping and 
bandwidth reservation can be easily defined. For 

explained in Section III to model an adaptive vehicle 
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example, number of checkpoints, checkpoints overhead, 
and time of error detection and recovery can be 
specified as attributes of a UML class that represents a 
system function. 
Modelling the System Adaptive Behavior: To model the 
adaptive behavior of the system, both adaptation triggers 
and system configurations need to be specified. We 
model both of them using the instance specification 
concept. A set of UML in stance specifications that 
describe component instances along with values for their 
attributes. Such a set is called deployment plan, a term 
inspired from the CORBA component model[42]. In our 
approach, a deployment plan represents a system 
trigger or configuration (state). 

An example of an adaptation trigger modeled as 
an instance specification is shown in Figure 7 (see the 
top part). For each function, a runtime state is defined 
{e.g. Active, Inactive, Hot, Cold, and Failed}. In this 
example: BBW0, SMA, ACC0, and AEB are in “Active” 
state, SBW1 is “Hot”, BBW1 and ACC1 are in “Cold” 
state, and SBW0 is “Failed”. A system state to recover 
from the failure of SBW0 is shown in Figure 7 (bottom 
part). The instance specification for each function is 
defined as <Function Name, and State>. Therefore, this 
configuration is defined as follows: 
{<SBW0, Inactive>, <SBW1, Active>, <BBW0, 
Active>, <BBW1, Cold>, <SMA, Active>, <ACC0, 
Active>, <ACC1, Cold>, <ACC2, Hot>, <AEB, 
Active>} 

 

Fig. 7: Specifying an adaptation trigger and a system 
response 

To model the switching between the system 
configurations in response to the adaptation triggers, a 

state machine is created as shown in Figure 8. For 
example, in response to a failure of the steer-by-wire (the 
adaptation trigger specified on top part of Figure 7), the 
system adapts from its initial configuration to another that 
recovers this failure (i.e. the system configuration shown 
in the bottom part of Figure 7). This system switching is 
specified using the fourth transition shown in Figure 7 
(i.e. “Failure of SBW1”). In this transition, the state of the 
first instance of the SBW is changed from “Failed” to 
“Inactive”, while the state of the second instance of the 
SBW is changed from “Hot” to “Active”. 

 

Fig.
 
8:

 
Adaptive behavior for the vehicle system

 

b)
 

Task Mapping and Bandwidth
 
Reservation

 

Based on the timing information specified into 
the design model (see above), our tool (which 
implements the strategy described in previous section) 
finds the allocation and required bandwidth for each 
system function. An example screenshot of the tool is 

function. For example the degraded ACC is allocated on 
TMDP control unit. It also finds the required bandwidth 
for the degraded ACC which is “53” with QoS of 100% 
probability of meeting its deadline. The tool also shows 
how many iterations (e.g. 12) and how long (e.g. 64 
millisecond) it takes to find the allocations and to 
determine the bandwidth reservation.

 

A main feature of our approach is the 
consideration of all configurations in identifying the 
function mappings. Thus, our

 
approach improves 

existing techniques (e.g. Saraswat et al.
 
[28]), where we 

find allocations that reduce (limit) the changes of function 
allocation from a configuration to another as shown in 
Figure 10. Therefore, at runtime, functions re-allocation is 
reduced or restricted (if possible), while achieving the 
best quality of service for the non-critical functions.

 

shown in Figure 9. It determines the allocation for each 
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Initial bandwidth

Allocated bandwidth

Hardware nodes utilization 

Execution time and number 
of iterations in the strategy

Function Allocation

 
Fig.

 
9:

 
Output of the strategy for bandwidth reservation

 

Using our approach

Using Saraswat et al. Approach

Fig.
 
10:

 
Output of our strategy for function allocation in 

each system configuration
 

V.
 Conclusion

 

The new AutoSAR adaptive platform makes 
mixed-critical automotive systems able to adapt 
themselves at runtime to cope with hardware/software 
failures. However, mapping

 
functions of these 

automotive systems and reserving bandwidth for them 
are still major challenges. In this paper, we proposed a 
model-based approach for specifying different 
configurations of an embedded adaptive system, and for 
defining functions mapping

 
and bandwidth reservation in 

each system configuration. First, we have used EAST-
ADL to create the system design model. This model 
captures the embedded system functionality, timing 
requirements, and its adaptive behavior. Second, the 
system’s design model is used as a base for finding 
functions allocation and for reserving their bandwidth in 
the different system states (configurations). To schedule 
the

 
critical functions, the Earliest Deadline First (EDF) is 

used, while the Constant Bandwidth Server (CBS)
 

is 
used for scheduling the non-critical functions. Finally, to 

show our approach applicability, in the context of the 
Safe Adapt project, a case study has been conducted. 

As future work, we plan to extend our approach 
to enable code generation from the system design 
model, and automatic deployment of the generated 
system functions to its hardware nodes. Further 
evaluations will also be carried out to assess the 
approach robustness by applying it to a number of case 
studies. 
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