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Can Broken Multicore Hardware be Mended? 
János Végh α & József Vásárhelyi σ 

Abstract- A suggestion is made for mending multicore 
hardware, which has been diagnosed as broken. 

I.  The  Multicore Era is a Consequence 
of the Stalling of the Single-Thread  

Performance  

he multi- and many-core (MC) era we have 
reached was triggered after the beginning of the 
century by the stalling of single-processor 

performance. Technology allowed more transistors to 
be placed on a die, but they could not reasonably be 
utilized to increase single-processor performance. 
Predictions about the number of cores has only partly 
been fullfield: today's processors have dozens rather 
than the predicted hundreds of cores (although the 
Chinese supercomputer [3] announced in the middle of 
2016 comprises 260 cores on a die, but the new PEZY 
chip has 2048 cores [5]). Despite this, the big players 
are optimistic. They expect that Moore-law persists, 
though based on presently unknown technologies. The 
effect of the stalled clock frequency is mitigated, and it 
is even predicted [7] that "Now that there are multicore 
processors, there is no reason why computers shouldn't 
begin to work faster, whether due to higher frequency or 
because of parallel task execution. And with parallel task 
execution it provides even greater functionality and 
exibility!." 

Parallelism is usually considered in many 
forums [4] to be the future, usually as the only hope, 
rather than as a panacea. People dealing with 
parallelism are less optimistic. In general, the technical 
development tends to reduce the human effort, but 
"parallel programs ... are notoriously difficult to write, test, 
analyze, debug, and verify, much more so than the 
sequential versions" [12]. The problems have led 
researchers to the ViewPoint [11], that multicore 
hardware for general-purpose parallel processing is 
broken. 

II.  Manycore  Architectures Could Be 
Fresh Meat On The Market Of 
Processors, But They Are Not  
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The essence of the present Viewpoint is that 
multicore hardware can perhaps be mended. Although 
one can profoundly agree with the arguments [11] that 
using many-core chips cannot contribute much to using 
parallelism in general, and especially not in executing 
irregular programs, one has to realize also that this is 
not the optimal battlefield for the manycore chips, at 
least not in their present architecture. Present manycore 
systems comprise many segregated processors, which 
make no distinction between two processing units that 
are neighbours within the same chip or are located in 
the next rack. The close physical proximity of the 
processing units offers additional possibilities, and 
provides a chance to implement Amdahl's dream [1] of 
cooperating processors. 

Paradigms used presently, however, assume a 
private processor and a private address space for a 
running process, and no external world. In many-core 
systems, it is relatively simple to introduce signals, 
storages, communication, etc., and deploy them in 
reasonable times. They cannot, however, be utilized in a 
reasonable way, if one cannot provide compatibiliy 
facades providing the illusion of the private world. 
Cooperation must be implemented in a way which 
provides complete (upward) compatibility with the 
presently exclusively used Single-Processor Approach 
(SPA) [1]. It means that on the one hand that new 
functionality must be formulated using the terms of 
conventional computing, while on the other, it provides 
considerably enhanced computing throughput and 
other advantages. 

It is well known, that general purpose 
processors have a huge handicap in performance when 
compared to special purpose chips, and that the 
presently used computing stack is the source of further 
serious inefficiencies. Proper utilization of available 
manycore processors can eliminate a lot of these 
performance losses, and in this way (keeping the same 
electronic and programming technology) can 
considerably enhance (apparently) the performance of 
the processor. Of course, there is no free lunch. Making 
these changes requires a simultanous change in nearly 
all elements of the present computing stack. Before 
making these changes, one should scrutinize the 
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promised gain, and whether the required efforts will pay 
off. 

Below, some easy-to follow case studies are 
presented, all of which lead to the same conclusion: we 
need a cooperative and exible rather than rigid 
architecture comprising segregated MCs, and the 70-
years-old von Neumann computing paradigms should 

be extended. At the end, the feasibility of implementing 
such an architecture is discussed. The recently 
introduced Explicitly Many-Processor Approach [10] 
seems to be quite promising: it not only provides higher 
computing throughput, but also offers advantageous 
changes in the behavior of computing systems. 
 

 

Fig. 1: Theoretical parallelism (left) vs dynamic parallelism implemented on a processor system with runtime 
configurable architecture (right). 

III. Is Implementing Mathematical 
Parallelism Just A Dream? 

Today’s computing utilizes many forms of 
parallelism [6], both hardware (HW) and software (SW) 
facilities. The software is systematically discussed in 
[11] and hardware methods are scrutinized in [6]. A 
remarkable difference between the two approaches is, 
that while the SW methods tend to handle the parallel 
execution explicitly, the HW methods tend to create the 
illusion that only one processing unit can cope with the 
task, although some (from outside invisible) helper units 
are utilized in addition to the visible processing unit. 
Interestingly enough, both approaches arise from the 
von Neumann paradigms: the abstractions process and 
the processor require so. 

The inefficiency of using several processing 
units is nicely illustrated with a simple example in [6] 
(see also Fig 1, left side). A simple calculation 
comprising 4 operand loadings and 4 aritmetic 
operations, i.e. altogether 8 machine instructions, could 
be theoretically carried out in 3 clock cycles, provided 
that only dependencies restrict the execution of the 
instructions and an unlimited number of processing 
units (or at least 4 such units in the example) are 
available. It is shown that a single-issue processor 
needs 8 clock cycles to carry out the calculation 
example. 

Provided that memory access and instruction 
latency time cannot be further reduced, the only 

possibility to shorten execution time is to use more than 
one processing unit during the calculation. Obviously, a 
fixed architecture can only provide a fixed number of 
processing units. In the example [6] two such ideas are 
scrutinized: a dual- issue single processor, and a two-
core single issue processor. The HW investment in both 
cases increases by a factor of two (not considering the 
shared memory here), while the performance increases 
only moderately: 7 clock cycles for the dual-issue 
processor and 6 clock cycles for the dual-core 
processor, versus the 8 clock cycles of the single-issue 
single core processor. The obvious reasons here are 
the rigid architecture and the lack of communication 
possibilities, respectively. 

Consider now a processor with exible 
architecture, where the processor can outsource part of 
its job: it can rent processing units from a chip-level 
pool just in the time it takes to execute a few 
instructions. The cores are smart: they can 
communicate with each other, and even they know the 
task to be solved and are able to organize their own 
work while outsourcing part of the work to the rented 
cores. The sample calculation, borrowed from [6] as 
shown in Fig. 1, left side, can then be solved as shown 
on the right side of the figure. 

The core  originally receives the complete 
task to make

 
the calculation, as it would be calculated 

by a conventional
 
single-issue, single core system, in 8 

clock cycles. However,  is more intelligent. Using the 
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hints hidden in the object code, it notices that the task 
can be outsourced to another cores. For this purpose it 
rents, one by one, cores  and  to execute two 
multiplications. The rented  cores are also intelligent, 
so they also outsource loading the operands to cores 

 and . They execute the outsourced job: load the 
operands and return them to the requesting cores , 
which then can execute the multiplications (denoted by 

) and return the result to the requesting core, which 
can then rent another two cores  and  for the final 
operations. Two results are thus produced. 

This unusual kind of architecture must respond 
to some unusual requirements. First of all, the 
architecture must be able to organize itself as the 
received task requires it, and build the corresponding 
"processing graph", see Fig. 3, for legend see [8]. 
Furthermore, it must provide a mechanism for mapping 
the virtually infinite number of processing nodes to the 
finite number of cores. Cores  must receive the 

address of the operand, i.e. at least some information 
must be passed to the rented core. Similarly, the loaded 
operand must be returned to the renting core in a 
synchronized way. In the first case synchronization is 
not a problem: the rented core begins its independent 
life when it receives its operands. In the second case 
the rented core finishes its assigned operation and 
sends the result asyncronously, independently of the 
needs of the renting core. This means that the 

architecture must provide a mechanism for transferring 
some (limited amount of) data between cores, a 
signalization mechanism for renting and returning 
cores, as well as a latched intermediate data storage for 
passing data in a synchronized way. 

 

Fig. 2: Timeline of supercomputer parallelism. The 

diagrams show (1 – α ) values for the actual first three 
out of the Top500 supercomputers over the past 24 
years, and to guide the eye, their tendency. 

The empty circles are the theoretically needed 
operations, and the shaded ones are additional 
operations of the "smart" cores. The number of the 
cores being used changes continuously as they are 
rented and returned. Although physically they may be 
the same core, logically they are brand new. Note that 
the "smart" operations are much shorter - they comprise 
simple bit manipulations and multiplexing -, than the 
conventional ones that comprise complex machine 
instructions, and since the rented cores work in parallel 
(or at least mostly overlap), the calculation is carried out 
in 3 clock periods. The cycle period is somewhat 
longer, but the attainable parallelism approaches the 
theoretically possible one, and is more than twice as 
high as the one attainable using either two-issue or 
dual-core processors. 

Although the average need of cores is about 3, 
these cores can be the simplest processors, i.e. the 
decreasing complexity of the cores (over)compensates 
for the increasing complexity of the processor. In 
addition, as the control part of the processors 
increases, the need for the hidden parallelization (like 
out-of-order and speculation) can be replaced by the 
functionality of the exible architecture, the calculational 
complexity can be decreased, and as a result, the clock 
speed can be increased. A processor with such an 
internal architecture appears to the external world as a 
"superprocessor", having several times greater 
performance than could be extracted from a single-
threaded processor. That processor can adapt itself to 
the task: unlike in the two issue processor, all (rented) 
units are permanently used. The many-core systems 
with exible architecture comprising cooperating cores 
can approach the theoretically possible maximum 
parallelism. In addition, the number of the cores can be 
kept at a strict minimum, allowing reduction of the 
power consumption. 

IV. How Long Can The Parallelism Of 
The Many-Many Processor 

Supercomputers Still Be Enhanced, At 
A Reasonable Cost? 

In the many-many processor (supercomputer) 
systems the processing units are assembled using the 
SPA [1], and so their maximum performance is 
bounded by Amdahl's law. Although Amdahl's original 
model [1] is pretty outdated, its simple and clean 
interpretation allows us to derive meaningful results 
even for today's computing systems. Amdahl assumed 
that in some part of the total time the computing system 
engages in parallelized activity, in the remaining (1 – α ) 
part it performs some (from the point of view of 
parallelization) non-payload activity, like sequential 
processing, networking delay, control or organizational 
operation, etc. The essential point here is that all these 
latter activities behave as if they were sequential 
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processing. Under such conditions, the efficiency E is 
calculated as the ratio of the total speedup S and the 
number of processors k: 

E =
𝑆𝑆
𝑘𝑘

=
1

𝑘𝑘(1 − 𝛼𝛼) +  𝛼𝛼
 (1) 

  Although in the case of supercomputers (1 – α) 
comprises contributions of a technically different nature 
(it can be considered as the "imperfectness" of 
implementation of the supercomputer), it also behaves 
as if it were a sequentially processed code. 

Fig. 2 shows how this "imperfectness" was 
decreased during the development of supercomputers, 
calculated from the actual data of the first three 
supercomputers in the year in question over a quarter of 
a century. As the figure shows, this parameter behaves 
similarly to the Moore-observation, but it is independent 
of that one (because the parameter is calculated from 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 , any technology dependence is removed). 

At first glance, it seems to be at least surprising 
to look for any dependence in function of 
"imperfectness". The key is Equ. (1). Since the α 
approaches unity, the term k(1 – α) determines the 
overall efficiency of the computing system. To increase 
k by an order or magnitude alone is useless if not 
accompanied by an order of magnitude decrease in the 
value of (1 – α). However, while increasing k is simply a 
linear function, decreasing (1 – α) as any kind of 
increasing perfectness, is exponentially more difficult. 

Fig. 2 proves that today's supercomputers are 
built in SPA, and makes it questionable whether further 
significant decrease of value (1 – α) could be reached 
at reasonable cost. This means that it is hopeless to 
build exa-scale computers, using the principles drawn 
from the SPA. 

Looking carefully at k (1 – α), one can notice 
that the two terms describe two important behavioral 
features of the computing system. As already 
discussed, (1 – α) describes, how much the work of the 
many-processor system is coordinated. The factor k, on 
the other hand, describes, how much the processing 
units cooperate. In the case of using the SPA, the 
processing units are segregated entities, i.e. they do 
not cooperate at all. 

If we could make a system where the 
processing units behave differently in the presence of 
another processors, we could write f(k) in Equ. (1). 
Depending on how cores behave together in the 
presence of another cores when solving a computing 
task, the f(k), the cooperation of the processing units 
can drastically increase the efficiency of the many-
processor systems. In other words, to increase the 

performance of many-many-processor computers, the 
cores must cooperate (at least with some) other cores. 
Using cooperating cores is inevitable for building 
supercomputers at a reasonable cost. 

V.  Can We  Eliminate Non-Payload 
Calculations By Replacing Them With 

Architectural Changes?  

A computer computes everything, because it 
cannot do any other type of operations. Computational 
density has reached its upper bound, so no further 
performance increase in that direction is possible. In 
addition to introducing different forms of HW and SW 
parallelism, it is possible to omit some non-payload, do-
not-care calculations, through providing and utilizing 
special HW signals instead. The signals can be 
provided for the participating cores, and can be used to 
replace typical calculational instruction sequences by 
using special hardware signals. The compilation is 
simple: where the compiler should generate non-
payload loop organization commands, it should give a 
hint about renting a core for executing non-payload 
instructions and providing external synchronization 
signals. 

A simple example: when summing up elements 
of a vector, the only payload instruction is the respective 
add. One has, however, to address the operand (which 
includes handling the index, calculating the offset and 
adding it to the base address), to advance the loop 
counter, to compare it to the loop bound, and to jump 
back conditionally. All those non-payload operations 
can be replaced by handling HW signals, if the cores 
can cooperate, resulting in a speed gain of about 3, 
using an extra core only. Even, since the intermediate 
sum is also a do-not-care value until the summing is 
finished, a different sumup method can be used, which 
may utilize dozens of cores and result in a speed gain 
of dozens. When organizing a loop, the partial sum is 
one of the operands, so it must be read before adding 
a new summand, and must be written back to its 
temporary storage, wasting instructions and memory 
cycles; in addition it excludes the possibility of 
parallelizing the sumup operation. For details and 
examples see [8]. 

This latter example also demonstrates that the 
machine instruction is a too rigid atomic unit of 
processing. Utilizing HW signals from cooperating cores 
rather than providing some conditions through 
(otherwise don-not-care) calculations, allows us to 
eliminate obsolete calculational instructions, and thus 
apparently accelerate the computation by a factor of 
about ten. 

VI. Do We Really Need To Pay With An 
Indeterministic Operation For 

Multiprocessing? 

The need for multi-processing (among others) 
forced to use exceptional instruction execution. I.e., a 
running process is interrupted, its HW and SW state is 
saved and restored, because the hard and soft parts of 
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the only processor must be lent to another process. The 
code of the interrupting process is effectively inserted in 
the flow of executing the interrupted code. This 
maneuver causes an indeterministic behavior of the 
processor: the time when two consecutive machine 
instructions in a code flow are executed, becoming 
indeterminate. 

The above is due to the fact that during 
development, some of the really successful 
accelerators, like the internal registers and the highest 
level cache, became part of the architecture: the soft 
part of the processor. In order to change to a new 
thread, the current soft part must be saved in (and later 
restored from) the memory. Utilizing asynchronous 
interrupts as well as operating system services, implies 
a transition to new operating mode, which is a complex 
and very time-consuming process. 

All these extensions were first developed when 
the computer systems had only one processor, and the 
only way to provide the illusion of running several 
processes, each having its own processor, was to 
detach the soft part from the hard one. Because of the 
lack of proper hardware support, this illusion depended 
on using SW services and on the architectures being 
constructed with a SPA in mind, conditions that require 
rather expensive execution time: in modern systems a 
context change may require several thousands of clock 
cycles. As the hyper-threading proved, detaching soft 
and hard part of the processors results in considerable 
performance enhancement. 

By having more than one processor and the 
Explicitly Many-Processor Approach [9], the context 

change can be greatly simplified. For the new task, 
such as providing operating system services and 
servicing external interrupts a dedicated core can be 
reserved. The dedicated core can be prepared and held 
in supervisor mode. When the execution of the 
instruction flow follows, it is enough to clone the 
relevant part of the soft part: for interrupt servicing 
nothing is needed, for using OS services only the 
relevant registers and maybe cache. (The idea is 
somewhat similar to utilizing shadow registers for 
servicing an asynchronous interrupt.) 

If the processors can communicate among 
each other using HW signals rather than OS actions, 
and some communication mechanism, different from 
using (shared) memory is employed, the apparent 
performance of the computing systems becomes much 
faster. For cooperating cores no machine instructions 
(that waste real time, machine and memory cycles) are 
needed for a context change, allowing for a several 
hundredfold more rapid execution in these spots. The 
application can even run parallel with the system code, 
allowing further (apparent) speedup. 

Using the many-processor approach creates 
many advantageous changes in the real-time behavior 
of the computing systems. Since the processing units 
do not need to save or restore anything, the servicing 
can start immediately and is restricted to the actual 
payload instructions. The dedicated processing units 
cannot be addressed by non-legal processing units, so 
issues like exluding priority inversion are handled at HW 
level. And so on. 
 

 

Fig. 3: The processing graphs corresponding to Figure 1, running on an 8-core (left) and 4-core(right) EMPA 
processor.
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VII. The Common Part: Implement 
Supervised Cooperating Cores, 
Handling Extra Signals And 

Storages 

From all points of view (the just-a-few and 
many-many processors, as well as utilizing kernel-mode 
or real-time services) we arrive at the same conclusion: 
segregated processors in the many-processor systems 
do not allow a greater increase in the performance of 
our computing systems, while cooperating processors 
can increase the attainable single- threaded 
performance. Amdahl contented this by a half century 
ago: "the organization of a single computer has reached 
its limits and that truly significant advances can be made 
only by interconnection of a multiplicity of computers in 
such a manner as to permit cooperative solution." [1] 

At this point the many-core architectures have 
the advantage that they are in the close proximity to one 
another: there is no essential difference between that a 
core needing to reach its own register (or signal) or that 
of another core. The obstacle is actually the SPA: for a 
core and a process, there exists no other core. 

In the suggested new approach, which can be 
called Explicitly Many-Processor Approach (EMPA), the 
cores (through their supervisor) can know about their 
neighbours. Today, radical departures from 
conventional approaches (including rethinking the 
complete computing stack) are advanced [2], but at the 
same time a smooth transition must be provided to that 
radically new technology. To preserve compatibility with 
conventional computing, the EMPA approach [9] is 
phrased using the terms of conventional computing (i.e. 
it contains SPA as a subset). 

VIII. How Do Algorithms Benefit From 
The Empa Architecture? 

Some of the above-mentioned boosting 
principles are already implemented in the system. From 
the statistics one can see that in some spots, 
performance gain in the range 3-30 can be reached. 
The different algorithms need different new accelerator 
building stone solutions in frame of EMPA. 

For example, the gain 3 in an executing loop, 
when used in an image processing task where for edge 
detection a 2- dimensional matrix is utilized, means 
nearly an order of magnitude performance gain, using 
the same calculational architecture in calculating a new 
point. And, to consider all points of the picture another 
double loop is used. This means, that a 4-core EMPA 
processor can produce nearly 100 times more rapid 
processing (not considering that several points can be 
processed in parallel on processors with more cores). 
This is achieved not by increasing computing density, 
but by replacing certain non-payload calculations with 

HW signals, and so executing 100 times less machine 
instructions. 

IX. How Amdahl’s Dream Can Be 
Implemented? 

The MC architecture comprising segregated 
cores is indeed broken. It can, however, be mended, if 
the manycore chips are manufactured in the form using 
cooperating cores. 

As the first step toward implementing such a 
system, for simulating its sophisticated internal 
operation and providing tools for understanding and 
validating it, an EMPA development system [8] has 
been prepared. An extended assembler prepares 
EMPA-aware object code, while the simulator allows us 
to watch the internal operation of the EMPA processor. 

To illustrate the execution of programs using 
the EMPA method, a processing diagram is 
automatically prepared by the system, and different 
statistics are assembled. Fig. 3 shows the equivalent of 
Fig. 1, running on an 8-core and a 4-core processor, 
respectively (for legend see [8]). The left hand figure 
depicts the case when "unlimited" number of 
processing units are available, the right hand one 
shows the case when the processor has a limited 
number of computing resources to implement the 
maximum possible parallelism. 

The code assembled by the compiler is the 
same in both cases. The supervisor logic detects if not 
enough cores are available (see right side), and delays 
the execution (outsourcing more code) of the program 
fragments until some cores are free again. The 
execution time gets longer if the processor cannot rent 
enough cores for the processing, but the same code 
will run in both cases, without deadlock and violating 
dependencies. 

For electronic implementation, some ideas may 
be borrowed from the technology of reconfigurable 
systems. There, in order to minimize the need for 
transferring data, some local storage (block-RAM) is 
located between the logical blocks, and a LOT of wires 
is available for connecting them. 

In analogy also with FPGAs, the cores can be 
implemented as mostly fixed functionality processing 
units, having multiplexed connecting wires to their 
supervisor with fixed routing. Some latch registers and 
non-stored program functionality gates can be placed 
near those blocks, which can be accessed by both 
cores and supervisor. The inter-core latch data can be 
reached from the cores using pseudo- registers (i.e. 
they have a register address, but are not part of the 
register file) and the functionality of the cores also 
depends on the inter-core signals. In the prefetch stage 
the cores can inform the supervisor about the presence 
of metainstruction in their object code, and in this way 
the mixed code instructions can be directed to the right 
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destination. In order to be able to organize execution 
graphs, the cores (after renting) are in parent-child 
relation to unlimited depth. 

As was very correctly stated [11], "due to its 
high level of risk, prototype development fits best within 
the research community." The principles and practice of 
EMPA differ radically from those of SPA. To compare 
the performance of both, EMPA needs a range of 
development. Many of the present components, 
accelerators, compilers, etc., with SPA in mind, do not 
fit EMPA. The research community can accept (or 
reject) the idea, but it definitely warrants some 
cooperative work. 
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