
© 2018. János Végh & József Vásárhelyi . This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial
use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Researches in Engineering: A
Mechanical and Mechanics Engineering
Volume 18 Issue 1 Version 1.0 Year 2018
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals

 Online ISSN:2249-4596 Print ISSN:0975-5861

Can Broken Multicore Hardware be Mended?

By János Végh & József Vásárhelyi

University of Miskolc

Abstract-

A suggestion is made for mending multicore hardware, which has been diagnosed as broken.

GJRE-A Classification:

FOR Code: 091399p

CanBrokenMulticoreHardwarebeMended

Strictly as per the compliance and regulations of:

Can Broken Multicore Hardware be Mended?
János Végh α & József Vásárhelyi σ

Abstract- A suggestion is made for mending multicore
hardware, which has been diagnosed as broken.

I. The Multicore Era is a Consequence
of the Stalling of the Single-Thread

Performance

he multi- and many-core (MC) era we have
reached was triggered after the beginning of the
century by the stalling of single-processor

performance. Technology allowed more transistors to
be placed on a die, but they could not reasonably be
utilized to increase single-processor performance.
Predictions about the number of cores has only partly
been fullfield: today's processors have dozens rather
than the predicted hundreds of cores (although the
Chinese supercomputer [3] announced in the middle of
2016 comprises 260 cores on a die, but the new PEZY
chip has 2048 cores [5]). Despite this, the big players
are optimistic. They expect that Moore-law persists,
though based on presently unknown technologies. The
effect of the stalled clock frequency is mitigated, and it
is even predicted [7] that "Now that there are multicore
processors, there is no reason why computers shouldn't
begin to work faster, whether due to higher frequency or
because of parallel task execution. And with parallel task
execution it provides even greater functionality and
exibility!."

Parallelism is usually considered in many
forums [4] to be the future, usually as the only hope,
rather than as a panacea. People dealing with
parallelism are less optimistic. In general, the technical
development tends to reduce the human effort, but
"parallel programs ... are notoriously difficult to write, test,
analyze, debug, and verify, much more so than the
sequential versions" [12]. The problems have led
researchers to the ViewPoint [11], that multicore
hardware for general-purpose parallel processing is
broken.

II. Manycore Architectures Could Be
Fresh Meat On The Market Of
Processors, But They Are Not

Permission to make digital or hard copies of all
or part of this work for personal or classroom use is

Author α: University of Miskolc, Hungary.
Author σ: Department of Mechanical Engineering and Informatics,
3515 Miskolc-University Town, Hungary.
e-mails: jvegh@mazsola.iit.uni-miskolc.hu,
vajo@mazsola.iit.uni-miskolc.hu

granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The essence of the present Viewpoint is that
multicore hardware can perhaps be mended. Although
one can profoundly agree with the arguments [11] that
using many-core chips cannot contribute much to using
parallelism in general, and especially not in executing
irregular programs, one has to realize also that this is
not the optimal battlefield for the manycore chips, at
least not in their present architecture. Present manycore
systems comprise many segregated processors, which
make no distinction between two processing units that
are neighbours within the same chip or are located in
the next rack. The close physical proximity of the
processing units offers additional possibilities, and
provides a chance to implement Amdahl's dream [1] of
cooperating processors.

Paradigms used presently, however, assume a
private processor and a private address space for a
running process, and no external world. In many-core
systems, it is relatively simple to introduce signals,
storages, communication, etc., and deploy them in
reasonable times. They cannot, however, be utilized in a
reasonable way, if one cannot provide compatibiliy
facades providing the illusion of the private world.
Cooperation must be implemented in a way which
provides complete (upward) compatibility with the
presently exclusively used Single-Processor Approach
(SPA) [1]. It means that on the one hand that new
functionality must be formulated using the terms of
conventional computing, while on the other, it provides
considerably enhanced computing throughput and
other advantages.

It is well known, that general purpose
processors have a huge handicap in performance when
compared to special purpose chips, and that the
presently used computing stack is the source of further
serious inefficiencies. Proper utilization of available
manycore processors can eliminate a lot of these
performance losses, and in this way (keeping the same
electronic and programming technology) can
considerably enhance (apparently) the performance of
the processor. Of course, there is no free lunch. Making
these changes requires a simultanous change in nearly
all elements of the present computing stack. Before
making these changes, one should scrutinize the

T

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
A

V
ol
um

e
 X

V
II
I
 I
ss
ue

I
 V

er
si
on

 I

 15

Y
e
a
r

20
18

© 2018 Global Journals

promised gain, and whether the required efforts will pay
off.

Below, some easy-to follow case studies are
presented, all of which lead to the same conclusion: we
need a cooperative and exible rather than rigid
architecture comprising segregated MCs, and the 70-
years-old von Neumann computing paradigms should

be extended. At the end, the feasibility of implementing
such an architecture is discussed. The recently
introduced Explicitly Many-Processor Approach [10]
seems to be quite promising: it not only provides higher
computing throughput, but also offers advantageous
changes in the behavior of computing systems.

Fig. 1: Theoretical parallelism (left) vs dynamic parallelism implemented on a processor system with runtime
configurable architecture (right).

III. Is Implementing Mathematical
Parallelism Just A Dream?

Today’s computing utilizes many forms of
parallelism [6], both hardware (HW) and software (SW)
facilities. The software is systematically discussed in
[11] and hardware methods are scrutinized in [6]. A
remarkable difference between the two approaches is,
that while the SW methods tend to handle the parallel
execution explicitly, the HW methods tend to create the
illusion that only one processing unit can cope with the
task, although some (from outside invisible) helper units
are utilized in addition to the visible processing unit.
Interestingly enough, both approaches arise from the
von Neumann paradigms: the abstractions process and
the processor require so.

The inefficiency of using several processing
units is nicely illustrated with a simple example in [6]
(see also Fig 1, left side). A simple calculation
comprising 4 operand loadings and 4 aritmetic
operations, i.e. altogether 8 machine instructions, could
be theoretically carried out in 3 clock cycles, provided
that only dependencies restrict the execution of the
instructions and an unlimited number of processing
units (or at least 4 such units in the example) are
available. It is shown that a single-issue processor
needs 8 clock cycles to carry out the calculation
example.

Provided that memory access and instruction
latency time cannot be further reduced, the only

possibility to shorten execution time is to use more than
one processing unit during the calculation. Obviously, a
fixed architecture can only provide a fixed number of
processing units. In the example [6] two such ideas are
scrutinized: a dual- issue single processor, and a two-
core single issue processor. The HW investment in both
cases increases by a factor of two (not considering the
shared memory here), while the performance increases
only moderately: 7 clock cycles for the dual-issue
processor and 6 clock cycles for the dual-core
processor, versus the 8 clock cycles of the single-issue
single core processor. The obvious reasons here are
the rigid architecture and the lack of communication
possibilities, respectively.

Consider now a processor with exible
architecture, where the processor can outsource part of
its job: it can rent processing units from a chip-level
pool just in the time it takes to execute a few
instructions. The cores are smart: they can
communicate with each other, and even they know the
task to be solved and are able to organize their own
work while outsourcing part of the work to the rented
cores. The sample calculation, borrowed from [6] as
shown in Fig. 1, left side, can then be solved as shown
on the right side of the figure.

The core originally receives the complete
task to make

the calculation, as it would be calculated

by a conventional

single-issue, single core system, in 8

clock cycles. However, is more intelligent. Using the

Can Broken Multicore Hardware be Mended?

G
l o
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
A

V
ol
um

e
 X

V
II
I
 I
ss
ue

I
 V

er
si
on

 I

 16

Y
e
a
r

20
18

© 2018 Global Journals

hints hidden in the object code, it notices that the task
can be outsourced to another cores. For this purpose it
rents, one by one, cores and to execute two
multiplications. The rented cores are also intelligent,
so they also outsource loading the operands to cores

 and . They execute the outsourced job: load the
operands and return them to the requesting cores ,
which then can execute the multiplications (denoted by

) and return the result to the requesting core, which
can then rent another two cores and for the final
operations. Two results are thus produced.

This unusual kind of architecture must respond
to some unusual requirements. First of all, the
architecture must be able to organize itself as the
received task requires it, and build the corresponding
"processing graph", see Fig. 3, for legend see [8].
Furthermore, it must provide a mechanism for mapping
the virtually infinite number of processing nodes to the
finite number of cores. Cores must receive the

address of the operand, i.e. at least some information
must be passed to the rented core. Similarly, the loaded
operand must be returned to the renting core in a
synchronized way. In the first case synchronization is
not a problem: the rented core begins its independent
life when it receives its operands. In the second case
the rented core finishes its assigned operation and
sends the result asyncronously, independently of the
needs of the renting core. This means that the

architecture must provide a mechanism for transferring
some (limited amount of) data between cores, a
signalization mechanism for renting and returning
cores, as well as a latched intermediate data storage for
passing data in a synchronized way.

Fig. 2: Timeline of supercomputer parallelism. The

diagrams show (1 – α) values for the actual first three
out of the Top500 supercomputers over the past 24
years, and to guide the eye, their tendency.

The empty circles are the theoretically needed
operations, and the shaded ones are additional
operations of the "smart" cores. The number of the
cores being used changes continuously as they are
rented and returned. Although physically they may be
the same core, logically they are brand new. Note that
the "smart" operations are much shorter - they comprise
simple bit manipulations and multiplexing -, than the
conventional ones that comprise complex machine
instructions, and since the rented cores work in parallel
(or at least mostly overlap), the calculation is carried out
in 3 clock periods. The cycle period is somewhat
longer, but the attainable parallelism approaches the
theoretically possible one, and is more than twice as
high as the one attainable using either two-issue or
dual-core processors.

Although the average need of cores is about 3,
these cores can be the simplest processors, i.e. the
decreasing complexity of the cores (over)compensates
for the increasing complexity of the processor. In
addition, as the control part of the processors
increases, the need for the hidden parallelization (like
out-of-order and speculation) can be replaced by the
functionality of the exible architecture, the calculational
complexity can be decreased, and as a result, the clock
speed can be increased. A processor with such an
internal architecture appears to the external world as a
"superprocessor", having several times greater
performance than could be extracted from a single-
threaded processor. That processor can adapt itself to
the task: unlike in the two issue processor, all (rented)
units are permanently used. The many-core systems
with exible architecture comprising cooperating cores
can approach the theoretically possible maximum
parallelism. In addition, the number of the cores can be
kept at a strict minimum, allowing reduction of the
power consumption.

IV. How Long Can The Parallelism Of
The Many-Many Processor

Supercomputers Still Be Enhanced, At
A Reasonable Cost?

In the many-many processor (supercomputer)
systems the processing units are assembled using the
SPA [1], and so their maximum performance is
bounded by Amdahl's law. Although Amdahl's original
model [1] is pretty outdated, its simple and clean
interpretation allows us to derive meaningful results
even for today's computing systems. Amdahl assumed
that in some part of the total time the computing system
engages in parallelized activity, in the remaining (1 – α)
part it performs some (from the point of view of
parallelization) non-payload activity, like sequential
processing, networking delay, control or organizational
operation, etc. The essential point here is that all these
latter activities behave as if they were sequential

Can Broken Multicore Hardware be Mended?

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
A

V
ol
um

e
 X

V
II
I
 I
ss
ue

I
 V

er
si
on

 I

 17

Y
e
a
r

20
18

© 2018 Global Journals

processing. Under such conditions, the efficiency E is
calculated as the ratio of the total speedup S and the
number of processors k:

E =
𝑆𝑆
𝑘𝑘

=
1

𝑘𝑘(1 − 𝛼𝛼) + 𝛼𝛼
 (1)

 Although in the case of supercomputers (1 – α)
comprises contributions of a technically different nature
(it can be considered as the "imperfectness" of
implementation of the supercomputer), it also behaves
as if it were a sequentially processed code.

Fig. 2 shows how this "imperfectness" was
decreased during the development of supercomputers,
calculated from the actual data of the first three
supercomputers in the year in question over a quarter of
a century. As the figure shows, this parameter behaves
similarly to the Moore-observation, but it is independent
of that one (because the parameter is calculated from
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 , any technology dependence is removed).

At first glance, it seems to be at least surprising
to look for any dependence in function of
"imperfectness". The key is Equ. (1). Since the α
approaches unity, the term k(1 – α) determines the
overall efficiency of the computing system. To increase
k by an order or magnitude alone is useless if not
accompanied by an order of magnitude decrease in the
value of (1 – α). However, while increasing k is simply a
linear function, decreasing (1 – α) as any kind of
increasing perfectness, is exponentially more difficult.

Fig. 2 proves that today's supercomputers are
built in SPA, and makes it questionable whether further
significant decrease of value (1 – α) could be reached
at reasonable cost. This means that it is hopeless to
build exa-scale computers, using the principles drawn
from the SPA.

Looking carefully at k (1 – α), one can notice
that the two terms describe two important behavioral
features of the computing system. As already
discussed, (1 – α) describes, how much the work of the
many-processor system is coordinated. The factor k, on
the other hand, describes, how much the processing
units cooperate. In the case of using the SPA, the
processing units are segregated entities, i.e. they do
not cooperate at all.

If we could make a system where the
processing units behave differently in the presence of
another processors, we could write f(k) in Equ. (1).
Depending on how cores behave together in the
presence of another cores when solving a computing
task, the f(k), the cooperation of the processing units
can drastically increase the efficiency of the many-
processor systems. In other words, to increase the

performance of many-many-processor computers, the
cores must cooperate (at least with some) other cores.
Using cooperating cores is inevitable for building
supercomputers at a reasonable cost.

V. Can We Eliminate Non-Payload
Calculations By Replacing Them With

Architectural Changes?

A computer computes everything, because it
cannot do any other type of operations. Computational
density has reached its upper bound, so no further
performance increase in that direction is possible. In
addition to introducing different forms of HW and SW
parallelism, it is possible to omit some non-payload, do-
not-care calculations, through providing and utilizing
special HW signals instead. The signals can be
provided for the participating cores, and can be used to
replace typical calculational instruction sequences by
using special hardware signals. The compilation is
simple: where the compiler should generate non-
payload loop organization commands, it should give a
hint about renting a core for executing non-payload
instructions and providing external synchronization
signals.

A simple example: when summing up elements
of a vector, the only payload instruction is the respective
add. One has, however, to address the operand (which
includes handling the index, calculating the offset and
adding it to the base address), to advance the loop
counter, to compare it to the loop bound, and to jump
back conditionally. All those non-payload operations
can be replaced by handling HW signals, if the cores
can cooperate, resulting in a speed gain of about 3,
using an extra core only. Even, since the intermediate
sum is also a do-not-care value until the summing is
finished, a different sumup method can be used, which
may utilize dozens of cores and result in a speed gain
of dozens. When organizing a loop, the partial sum is
one of the operands, so it must be read before adding
a new summand, and must be written back to its
temporary storage, wasting instructions and memory
cycles; in addition it excludes the possibility of
parallelizing the sumup operation. For details and
examples see [8].

This latter example also demonstrates that the
machine instruction is a too rigid atomic unit of
processing. Utilizing HW signals from cooperating cores
rather than providing some conditions through
(otherwise don-not-care) calculations, allows us to
eliminate obsolete calculational instructions, and thus
apparently accelerate the computation by a factor of
about ten.

VI. Do We Really Need To Pay With An
Indeterministic Operation For

Multiprocessing?

The need for multi-processing (among others)
forced to use exceptional instruction execution. I.e., a
running process is interrupted, its HW and SW state is
saved and restored, because the hard and soft parts of

Can Broken Multicore Hardware be Mended?

G
l o
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
A

V
ol
um

e
 X

V
II
I
 I
ss
ue

I
 V

er
si
on

 I

 18

Y
e
a
r

20
18

© 2018 Global Journals

the only processor must be lent to another process. The
code of the interrupting process is effectively inserted in
the flow of executing the interrupted code. This
maneuver causes an indeterministic behavior of the
processor: the time when two consecutive machine
instructions in a code flow are executed, becoming
indeterminate.

The above is due to the fact that during
development, some of the really successful
accelerators, like the internal registers and the highest
level cache, became part of the architecture: the soft
part of the processor. In order to change to a new
thread, the current soft part must be saved in (and later
restored from) the memory. Utilizing asynchronous
interrupts as well as operating system services, implies
a transition to new operating mode, which is a complex
and very time-consuming process.

All these extensions were first developed when
the computer systems had only one processor, and the
only way to provide the illusion of running several
processes, each having its own processor, was to
detach the soft part from the hard one. Because of the
lack of proper hardware support, this illusion depended
on using SW services and on the architectures being
constructed with a SPA in mind, conditions that require
rather expensive execution time: in modern systems a
context change may require several thousands of clock
cycles. As the hyper-threading proved, detaching soft
and hard part of the processors results in considerable
performance enhancement.

By having more than one processor and the
Explicitly Many-Processor Approach [9], the context

change can be greatly simplified. For the new task,
such as providing operating system services and
servicing external interrupts a dedicated core can be
reserved. The dedicated core can be prepared and held
in supervisor mode. When the execution of the
instruction flow follows, it is enough to clone the
relevant part of the soft part: for interrupt servicing
nothing is needed, for using OS services only the
relevant registers and maybe cache. (The idea is
somewhat similar to utilizing shadow registers for
servicing an asynchronous interrupt.)

If the processors can communicate among
each other using HW signals rather than OS actions,
and some communication mechanism, different from
using (shared) memory is employed, the apparent
performance of the computing systems becomes much
faster. For cooperating cores no machine instructions
(that waste real time, machine and memory cycles) are
needed for a context change, allowing for a several
hundredfold more rapid execution in these spots. The
application can even run parallel with the system code,
allowing further (apparent) speedup.

Using the many-processor approach creates
many advantageous changes in the real-time behavior
of the computing systems. Since the processing units
do not need to save or restore anything, the servicing
can start immediately and is restricted to the actual
payload instructions. The dedicated processing units
cannot be addressed by non-legal processing units, so
issues like exluding priority inversion are handled at HW
level. And so on.

Fig. 3: The processing graphs corresponding to Figure 1, running on an 8-core (left) and 4-core(right) EMPA
processor.

Can Broken Multicore Hardware be Mended?

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
A

V
ol
um

e
 X

V
II
I
 I
ss
ue

I
 V

er
si
on

 I

 19

Y
e
a
r

20
18

© 2018 Global Journals

VII. The Common Part: Implement
Supervised Cooperating Cores,
Handling Extra Signals And

Storages

From all points of view (the just-a-few and
many-many processors, as well as utilizing kernel-mode
or real-time services) we arrive at the same conclusion:
segregated processors in the many-processor systems
do not allow a greater increase in the performance of
our computing systems, while cooperating processors
can increase the attainable single- threaded
performance. Amdahl contented this by a half century
ago: "the organization of a single computer has reached
its limits and that truly significant advances can be made
only by interconnection of a multiplicity of computers in
such a manner as to permit cooperative solution." [1]

At this point the many-core architectures have
the advantage that they are in the close proximity to one
another: there is no essential difference between that a
core needing to reach its own register (or signal) or that
of another core. The obstacle is actually the SPA: for a
core and a process, there exists no other core.

In the suggested new approach, which can be
called Explicitly Many-Processor Approach (EMPA), the
cores (through their supervisor) can know about their
neighbours. Today, radical departures from
conventional approaches (including rethinking the
complete computing stack) are advanced [2], but at the
same time a smooth transition must be provided to that
radically new technology. To preserve compatibility with
conventional computing, the EMPA approach [9] is
phrased using the terms of conventional computing (i.e.
it contains SPA as a subset).

VIII. How Do Algorithms Benefit From
The Empa Architecture?

Some of the above-mentioned boosting
principles are already implemented in the system. From
the statistics one can see that in some spots,
performance gain in the range 3-30 can be reached.
The different algorithms need different new accelerator
building stone solutions in frame of EMPA.

For example, the gain 3 in an executing loop,
when used in an image processing task where for edge
detection a 2- dimensional matrix is utilized, means
nearly an order of magnitude performance gain, using
the same calculational architecture in calculating a new
point. And, to consider all points of the picture another
double loop is used. This means, that a 4-core EMPA
processor can produce nearly 100 times more rapid
processing (not considering that several points can be
processed in parallel on processors with more cores).
This is achieved not by increasing computing density,
but by replacing certain non-payload calculations with

HW signals, and so executing 100 times less machine
instructions.

IX. How Amdahl’s Dream Can Be
Implemented?

The MC architecture comprising segregated
cores is indeed broken. It can, however, be mended, if
the manycore chips are manufactured in the form using
cooperating cores.

As the first step toward implementing such a
system, for simulating its sophisticated internal
operation and providing tools for understanding and
validating it, an EMPA development system [8] has
been prepared. An extended assembler prepares
EMPA-aware object code, while the simulator allows us
to watch the internal operation of the EMPA processor.

To illustrate the execution of programs using
the EMPA method, a processing diagram is
automatically prepared by the system, and different
statistics are assembled. Fig. 3 shows the equivalent of
Fig. 1, running on an 8-core and a 4-core processor,
respectively (for legend see [8]). The left hand figure
depicts the case when "unlimited" number of
processing units are available, the right hand one
shows the case when the processor has a limited
number of computing resources to implement the
maximum possible parallelism.

The code assembled by the compiler is the
same in both cases. The supervisor logic detects if not
enough cores are available (see right side), and delays
the execution (outsourcing more code) of the program
fragments until some cores are free again. The
execution time gets longer if the processor cannot rent
enough cores for the processing, but the same code
will run in both cases, without deadlock and violating
dependencies.

For electronic implementation, some ideas may
be borrowed from the technology of reconfigurable
systems. There, in order to minimize the need for
transferring data, some local storage (block-RAM) is
located between the logical blocks, and a LOT of wires
is available for connecting them.

In analogy also with FPGAs, the cores can be
implemented as mostly fixed functionality processing
units, having multiplexed connecting wires to their
supervisor with fixed routing. Some latch registers and
non-stored program functionality gates can be placed
near those blocks, which can be accessed by both
cores and supervisor. The inter-core latch data can be
reached from the cores using pseudo- registers (i.e.
they have a register address, but are not part of the
register file) and the functionality of the cores also
depends on the inter-core signals. In the prefetch stage
the cores can inform the supervisor about the presence
of metainstruction in their object code, and in this way
the mixed code instructions can be directed to the right

Can Broken Multicore Hardware be Mended?

G
l o
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
A

V
ol
um

e
 X

V
II
I
 I
ss
ue

I
 V

er
si
on

 I

 20

Y
e
a
r

20
18

© 2018 Global Journals

destination. In order to be able to organize execution
graphs, the cores (after renting) are in parent-child
relation to unlimited depth.

As was very correctly stated [11], "due to its
high level of risk, prototype development fits best within
the research community." The principles and practice of
EMPA differ radically from those of SPA. To compare
the performance of both, EMPA needs a range of
development. Many of the present components,
accelerators, compilers, etc., with SPA in mind, do not
fit EMPA. The research community can accept (or
reject) the idea, but it definitely warrants some
cooperative work.

Acknowledgement

Project no. 125547 has been implemented with
the support provided from the National Research,
Development and Innovation Fund of Hungary, financed
under the K funding scheme.

References Références Referencias

1. G. M. Amdahl. Validity of the Single Processor
Approach to Achieving Large-Scale Computing
Capabilities. In AFIPS Conference Proceedings,
volume 30, pages 483-485, 1967.

2. H. Esmaeilzadeh. Approximate acceleration: A path
through the era of dark silicon and big data. In
Proceedings of the 2015 International Conference
on Compilers, Architecture and Synthesis for
Embedded Systems, CASES '15, pages 31-32,
Piscataway, NJ, USA, 2015. IEEE Press.

3. H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang,
C. Yang, W. Xue, F. Liu, F. Qiao, W. Zhao, X. Yin, C.
Hou, C. Zhang, W. Ge, J. Zhang, Y. Wang, C. Zhou,
and G. Yang. The Sunway TaihuLight
supercomputer: system and applications. Science
China Information Sciences, 59(7):1-16, 2016.

4. S. H. Fuller and L. I. Millett. Computing
Performance: Game Over or Next Level? Computer,
44:31-38, 2011.

5. fuse.wikichip.org. The 2,048-core PEZY-SC2 sets a
Green500 record. https://fuse.wikichip.org/news/
191/the-2048-core-pezy-sc2-sets-a-green500-
record/, 2017.

6. K. Hwang and N. Jotwani. Advanced Computer
Architecture: Parallelism, Scalability, Programma-
bility. Mc Graw Hill, 3 edition, 2016.

7. Intel. Why has CPU frequency ceased to grow?,
2014.

8. J. Vegh. A new kind of parallelism and its
programming in the Explicitly Many-Processor
Approach. ArXiv e-prints, Aug. 2016.

9. J. Vegh. Introducing the explicitly many-processor
approach. Parallel Computing, 75:28 - 40, 2018.

10. J. Vegh. Renewing computing paradigms for more
efficient parallelization of single-threads, volume 29

of Advances in Parallel Computing, chapter 13,
pages 305-330. IOS Press, 2018.

11. U. Vishkin. Is Multicore Hardware for General-
Purpose Parallel Processing Broken? Communi-
cations of the ACM, 57(4):35, May 2014.

12. J. Yang, H. Cui, J. Wu, Y. Tang, and G. Hu. Making

Parallel Programs Reliable with Stable Multithre-
ading. Communications of the ACM, 57(3):58-69,
2014.

Can Broken Multicore Hardware be Mended?

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
A

V
ol
um

e
 X

V
II
I
 I
ss
ue

I
 V

er
si
on

 I

 21

Y
e
a
r

20
18

© 2018 Global Journals

	Can Broken Multicore Hardware be Mended?
	Author
	I. The Multicore Era is a Consequenceof the Stalling of the Single-ThreadPerformance
	II. Manycore A rchitectures Could BeFresh Meat On The Market OfProcessors, But They Are Not
	III. Is Implementing MathematicalParallelism Just A Dream?
	IV. How Long Can The Parallelism OfThe Many-Many ProcessorSupercomputers Still Be Enhanced, AtA Reasonable Cost?
	V. Can We Eliminate Non-PayloadCalculations By Replacing Them WithArchitectural Changes?
	VI. Do We Really Need To Pay With AnIndeterministic Operation ForMultiprocessing?
	VII. The Common Part: ImplementSupervised Cooperating Cores,Handling Extra Signals AndStorages
	VIII. How Do Algorithms Benefit FromThe Empa Architecture?
	IX. How Amdahl’s Dream Can BeImplemented?
	Acknowledgement
	References Références Referencias

