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Thermo Dynamic Analysis on MHD Casson
Nano-Fluid Flow in a Vertical Porous 

Space with Stretching Walls

Abstract- This work is concerned with MHD Casson nanofluid 
flow in a vertical porous space with heat and mass transfer in 
the presence of chemical reaction. The governing non-linear 
partial differential equations are reduced to ordinary 
differential equation by employing the similarity 
transformations then it solved by homotopy analysis method 
(HAM). The results are presented with the help of graphs for 
different values of the involved parameters and discussed.  It 
is found that increasing Brownian motion parameter, 
thermophoresis parameter and Prandtl number are lead to 
promote fluid temperature significantly than other 
parameters. Also, it is observed that increasing Lewis 
number lead to enhance the concentration field whereas the 
opposite trend can be noticed with increasing thermal 
parameters. Further, we have compared HAM solution with 
the numerical solution by using ND solver in Mathematica. 
Keywords: homotopy analysis method, MHD, chemical 
reaction, stretching walls.  

I. Introduction

he problem of mixed convective flow in vertical 
channels with different wall temperatures has a 
number of important engineering applications 

such as microelectronic components cooling, in the 
design of compact heat exchangers, industrial 
furnaces, power engineering and so on.  Also, 
convection flows with heat and mass transfer under the 
influence of a magnetic field, chemical reaction occurs 
in many branches of engineering applications and
transport processes in industrial applications such as 
chemical industry, power and cooling industry for 
drying, chemical vapour deposition on surfaces, 
cooling of nuclear reactors and MHD power generators 
(See Refs. [1-10]).  Moreover, MHD channel flows 
gained significant theoretical and practical importance 
owing to their applications in MHD generators, 
accelerators and blood flow measurements. In view of 
these applications, Srinivas et al. [7] have studied the 
effects of thermal-diffusion and diffusion-thermo effects 
in a two-dimensional viscous flow between slowly 
expanding or contracting walls with weak permeability. 

Author α σ : Department of Mathematics, PSNA College of 
Engineering & Technology, Dindigul-624622, India.

The effect of chemical reaction and thermal 
radiation on MHD flow over an inclined permeable 
stretching surface with non-uniform heat source was 
examined by Srinivas et al. [8]. Later, Muthuraj et al. [9] 
discussed the combined effects of thermal-diffusion 
and diffusion-thermo with space porosity on MHD 
mixed convective flow of micropolar fluid in a vertical 
channel. Immaculate et al. [10] have investigated the 
influence of thermophoretic particle deposition on fully 
developed MHD mixed convective flow in a vertical 
channel with thermal-diffusion and diffusion-thermo 
effects. More recently, effects of thermal diffusion and 
diffusion thermo on MHD Couette flow of Powell-Eyring 
fluid in an inclined porous space in the presence of 
chemical reaction was investigated by Muthuraj et al. 
[11].   

In engineering applications, the flows of non-
Newtonian fluid have been attracting researchers 
significantly during the past few decades. In particular, it 
occurs in the extrusion of polymer fluids, cooling of 
metallic plate in the bath, exotic lubricants, artificial gels, 
natural gels, colloidal and suspension solutions.  The 
most important among these fluids is the Casson fluid. 
It can be defined as a shear thinning liquid which is 
assumed to have an infinite viscosity at zero rate of 
shear, a yield stress below which no flow occurs and a 
zero viscosity at an infinite rate of shear.  Human blood 
can also be treated as a Casson fluid due to the blood 
cells’ chain structure and the substances contained 
like protein, fibrinogen, rouleaux etc [16].  Hence the 
Casson fluid has its own importance in scientific as 
well as in engineering areas.  Many researchers have 
used the Casson fluid model for mathematical 
modeling of blood flow in narrow arteries at low shear 
rates (See Refs.[12-18]). Nadeem et al. [15] examined 
MHD flow of a Casson fluid over an exponentially 
shrinking sheet. Sarojamma et al.[16] have 
investigated MHD  Casson fluid flow with heat and 
mass transfer in a vertical channel with stretching 
walls.  Arthur et al.[17] have analyzed of Casson fluid 
flow over a    vertical porous surface with chemical 
reaction in the presence of magnetic field.   More 
recently, the unsteady MHD free flow of a Casson fluid 
past an oscillating vertical plate with constant wall 
temperature was analyzed by Khalid et al.[18].  
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Nanoparticle research is currently an area of 
intense scientific interest due to a wide variety of 
potential applications in biomedical, optical and 
electronic fields. It is a microscopic particle with at 
least one dimension less than 100 nm. Many existing 
studies indicate that an enormous enhancement in the 
emission intensity, quantum yield, and lifetime of the 
molecular rectangles has been observed when the 
solvent medium is changed from organic to aqueous 
and it clearly exhibit enhanced thermal conductivity, 
which goes up with increasing volumetric fraction of 
nanoparticles[19-28]. The model of nanofluid was first 
developed by Choi [19].  Later, fully developed mixed 
convection flow between two paralleled vertical flat 
plates filled by a nanofluid with the Buongiorno 
mathematical model using HAM was analyzed by Xu et 
al. [25].  Nadeem et al. [26] presented the steady 
stagnation point flow of a Casson nanofluid in the 
presence of convective boundary conditions.  Khan et 
al. [27] analyzed the fully-developed two-layer Eyring–
Powell fluid in a vertical channel divided into two equal 
regions. One region is filled with the clear Eyring–
Powell fluid and the other with the Eyring–Powell 
nanofluid. The problem of MHD laminar free convection 
flow of nanofluid past a vertical surface was analyzed 
by Freidoonimehr [28]. More recently, Immaculate et al. 
[29] examined the MHD unsteady flow of Williamson 
nanofluid in a vertical channel filled with a porous 
material and oscillating wall temperature using HAM.  To 
the best of our knowledge MHD Casson nanofluid in a 
vertical channel with stretching walls has not been 
studied before.  In this paper, we therefore propose to 
analyzed the steady fully-developed mixed convection 
flow of MHD Casson nanofluid in a vertical porous 
space with stretching walls in the presence of chemical 
reaction. It is important to note that this type of analysis 
has direct applications to the study of blood flow in the 
cardiovascular system subject to external magnetic 
field. The reduced non-dimensional, highly non-linear,

coupled system of equations is solved by HAM [30-
35]. The influence of significant parameters on heat 
and mass transfer characteristics of the flow is 
presented through graphs and discussed.

II. Formulation of The Problem

We consider MHD Casson nanofluid flow in a 
vertical porous space bounded by two stretching walls
and are maintained at different temperatures, 
concentrations. The channel walls are at the positions y
= -L and y = L, as shown in Fig.1.  A constant 
magnetic field of strength B0 is applied perpendicular 
to the channel walls.  The fluids in the region of the 
parallel walls are incompressible, non-Newtonian and 
their transport properties are assumed to be constant. 

The constitutive equation for the Casson fluid 
can be written as [16]

                  

y
B ij c

ij
y

B ij c
c

2 e ,
2

2 e ,
2

 τ 
µ + π > π  π 

τ =   τ µ + π < π  π  

             (1)
                      

where Bµ is the plastic dynamic viscosity of the non-

Newtonian fluid, yτ is the yield stress of the fluid, π is 

the product of the component of deformation rate with 
itself, namely, ij ije eπ = , and ije is the (i, j) th 

component of deformation rate, and cπ is critical value 
of this product based on non-Newtonian model. Under 
the above assumptions and usual Boussinesq 
approximation, the fluid flow is governed by the 
following equations (See Refs. [16, 25, 26])

                                  

u v 0
x y
∂ ∂

+ =
∂ ∂

                           (2)  
                                                                                 

          

*
2 2 2f

f f 0 f F f t 0 0*

c p f 0

u u p 1u v 1 u B u u C u g (1 C )(T T )
x y x k

g ( )(C C )

    µ ϕ∂ ∂ ∂
ρ + = − + µ + ∇ −σ − −ρ +ρ β − −   ∂ ∂ ∂ β  

+ β ρ −ρ −
          (3)                       

                                                    
*

2 f
f f *

v v p 1u v 1 v v
x y y k

    µ ϕ∂ ∂ ∂
ρ + = − + µ + ∇ −   ∂ ∂ ∂ β  

                                               (4)

                          
22

* 2 * T
B

DT T C T C T T Tu v T D
x y x x y y x yT

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + = α ∇ + τ + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
                      (5)
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                                                   2 2T T
B 1

D kC Cu v D C T k C
x y T
∂ ∂

+ = ∇ + ∇ −
∂ ∂

                            (6)

The boundary conditions of the problem are

                                                   
u bx= , v = 0, 1T T= , 1C C=   at  y L= −                                               

  
(7)

                                                   u bx= , v = 0, 2T T= , 2C C=   at  y L=                                                        (8)

where u and v are the velocity components in x and y 
directions,  1T and 2T are the wall temperatures 

2 1(T T )> , 1C and 2C are the wall concentrations, T
is the mean value of 1T and 2T , FC is the inertial 

coefficient, pC is the specific heat, 0B is the

transverse magnetic field, BD is the Brownian

diffusion coefficient, TD is the thermophoresis 

diffusion coefficient, g is the acceleration due to 

gravity, p is the pressure, T is the temperature,  *k is 
the permeability of the medium, K is the thermal 

conductivity of the fluid, ( )
*

p f

K
C

α =
ρ

is the thermal 

diffusivity of the fluid, 
( )
( )

p p*

p f

C

C

ρ
τ =

ρ
, b>0  is the stretch 

of the channel walls, respectively, B c

y

2µ π
β =

τ
is the 

Casson parameter,  f p,ρ ρ densities of the base fluid

and nanoparticle, respectively, p f
C 

 
 
ρ is the heat 

capacity of the fluid,  ( )p p
Cρ gives the effective heat 

capacity of the nanoparticle material, ν is the

kinematic viscosity, *ϕ is the porosity of the medium, 

fµ is the dynamic viscosity of the fluid, σ is the

coefficient of electric conductivity, tβ is the  coefficient 

of thermal expansion, cβ is the  coefficient of 

expansion with concentration and 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
.

We introduce the similarity variables

                                             'u bxf ( )= η ; v Lbf ( )= − η ; 
y
L

η = ; 1

2 1

T T
T T
−

θ =
−

;  1

2 1

C C
C C
−

φ =
−

                          (9)

Invoking the above similarity variables to equations (3)-(6) and eliminating pressure gradient, we get

                                          ( )iv ' ' ' ' ' ' ' ' ' ' ' ' '11 f R f f ff Hf I f f G G 0e r c
 
+ − − − − + θ + φ = β 

                          (10)                                             

                                                                ' ' ' ' ' 2 '
r b t eP [N N ( ) R f ] 0θ + φθ + θ + θ =                                                (11)

                                                           ' ' ' ' ' *t
e e 1

b

N L (R f k ) 0
N

φ + θ + φ − γφ+ =                                                    (12)

The corresponding boundary conditions are:

                                                               'f 1= , f 0= , 0θ = , 0φ = at   1η = −                                             (13)

                                                                 'f 1= , f 0= , 1θ = , 1φ = at   1η =                                                (14)
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Where

is the Reynolds number,  

the  inertia   coefficient, 

is the Hartmann number, 

,  

2

e
f

L b
R 



2
F

f

2C bxL
I 


is

2 2
0

f

σB L
M 


 

a

1
H M

D
 

2
* 1 1
1

f 2 1

k C L
k

(C C )



 



 

  

 

 

 

  

 

  

 

 

 

      

 

 

    

 
 

 

  

 

 

 

 

  
 

 

 

  

 

 

 
 

 

 

                                             

  w
f

f

LC
bx
τ

=
µ

; w

2 1

LqNu
K(T T )

=
−

; w

B 2 1

LmSh
D (C C )

=
−

                                     

  (16)where w f
u11
y

 
 
  
 

 ∂
τ = µ +  β ∂ 

; w
Tq K
y

 ∂
= −  ∂ 

; w B
Cm D
y

 ∂
= −  ∂ 

Its non-dimensional form is given by

                                                   ' '
f 1

1C 1 f ( )
 
 
   η=± 

= + η
β

; '

1
Nu ( )

η=±
= −θ η ; '

1
Sh ( )

η=±
= −φ η                         (17)

III. SOLUTION BY HOMOTOPY ANALYSIS 
METHOD (HAM)

For HAM solutions, we can choose the initial 
guesses and auxiliary linear operators in the following 
form:

3

0 0 0
1 1f ( ) ; ( ) ; ( )2 2 2
+η +ηη −ηη = θ η = φ η =   (18)    

               
iv '

3
' ''

1 2L (f ) f L ( ) L ( )= θ = θ φ = φ
                          

(19)

with 2 3
31 2 41 cL (c c c ) 0η+ η + η+ = 52 6L (c c ) 0η+ =

&  73 8L (c c ) 0η+ = , where ic (i 1...8)=   are constants 

and prime denotes the derivative with respect to η .

a) Zero-order deformation equations
Let [0,1]℘∈ be an embedding parameter 

and h be the auxiliary non-zero parameter. We 
construct the following zero-order deformation 
equations.

      1 0 1
ˆ ˆ ˆ ˆ(1 )L [f ( , ) f ( )] h [f ( , ), ( , ), ( , )]−℘ η℘ − η =℘ η℘ θ η℘ φ η℘N                   ˆ ˆf ( 1, ) 0, f (1, ) 0− ℘ = ℘ =        (20)             

            

      2 0 2
ˆˆ ˆ ˆ(1 )L [ ( , ) ( )] h [f ( , ), ( , ), ( , )]−℘ θ η℘ −θ η =℘ η℘ θ η℘ φ η℘N ,     ̂ ˆ( 1, ) 0, (1, ) 1θ − ℘ = θ ℘ =   (21)           

3 30
ˆˆ ˆ ˆ(1 )L [ ( , ) ( )] h [f ( , ), ( , ), ( , )]−℘ φ η℘ −φ η =℘ η℘ θ η℘ φ η℘N ,                       ˆ ˆ( 1, ) 0, (1, ) 1φ − ℘ = φ ℘ =        (22)

where,

  
1

ˆ ˆ ˆ[f ( , ), ( , ), ( , )]η℘ θ η℘ φ η℘ =N        

                  
( )iv ' ' ' ' ' ' ' '

e

' ' ' ' '

1 ˆ ˆ ˆ ˆ ˆ1 f R f f f( , ) ( , ) ( , ) ( , ) ( , ) (f Hf

ˆ ˆ ˆ ˆ

,

I f f G Gr

)

( , ) ( , ) ( , ) ,c ( )

η℘ η℘ η℘ η℘ η℘ η℘

η℘ η℘ η℘

 
+ − − − β

+ θ + φ η



℘−
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The skin friction coefficient, local heat rate transfer and the local mass diffusion rate at the walls are defined as

2
t 0 2 1

r
f

g (1 C )(T T )LG
bx

β − −
=

ν
local temperature 

Grashof number ,
2

c p f 2 1
c

f

g ( )(C C )L
G

bx
β ρ −ρ −

=
µ

is 

the local nano-particle Grashof number,  f
r *P ν
=
α

is 

the Prandtl number, f
e

B

L
D
ν

= is the Lewis number,  

*
B 2 1

b
f

D (C C )N τ −
=

ν
is the Brownian motion 

parameter
*

T 2 1
t

f

D (T T )N
T

τ −
=

ν
is the thermophoresis 

parameter,
2

1

f

k L
γ =

ν
is the chemical reaction 

parameter.

The dimensionless volume flow rate Q is given by

                  
1 'Q f d
1

= η∫
−

.                                          (15)

*

a * 2

kD
L

=
ϕ

is the permeability  parameter, 
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' ' ' ''
r b t e

2
2' ˆˆ ˆ ˆ ˆ ˆP [

ˆ ˆ ˆ[f ( , ), ( , ), ( , )]

( , ) ( , )N N( , ) ( , ) ( ,R ) ( , )f ] 
  
 

η℘ θ η℘ φ η℘

= η℘ η℘ ηθ + φ θ + θ + θ℘ η℘ η℘ η℘

N

                                                 ' ' ' ' ' *t
3 e e 1

b

N ˆˆˆ ˆ ˆ[f ( , ), ( , ), ( , )] ( , ) ( , ) ( , ) (ˆ ˆ ˆL (R f k )N , ) ( , )φ + θ + φ − γφη℘ θ η℘ φ η℘ = η℘ η +℘ η℘ η℘ η℘N
                                 
For 0 and 1℘= ℘= , we have

                  0
ˆ ˆf ( ,0 ) f ( ) f ( ,1) f ( )η = η η = η          (23)

                                            

      

                                    

                          (24)    

  

                         

          

                  (25)

  

                                          

                        

when ℘ increases from 0 to 1, then f̂ ( , ),η℘
ˆ( , ),θ η℘ ˆ( , )φ η℘ vary from initial guess 0f ( ),η 0 ( ),θ η

0 ( )φ η to the approximate analytical solution f ( ),η
( ),θ η ( )φ η .  By Taylor's theorem the series 

ˆ ˆ ˆf ( , ), ( , ), ( , )η℘ θ η℘ φ η℘   can be expressed as a 
power series of ℘ as follows,

                

                                     

    
m

m
0 m m m

m 1
0

ˆ1 f ( , )f̂ ( , ) f ( ) f ( ) , f ( )
m!

∞

=
℘=

∂ η℘
η℘ = η + η℘ η =∑

∂℘
                                   (26)                                

  

             

                

                                          

m
m

0 m m m
m 1

0

ˆ1 ( , )ˆ( , ) ( ) ( ) , ( )
m!

∞

=
℘=

∂ θ η℘
θ η℘ = θ η + θ η℘ θ η =∑

∂℘
                              (27)                                               

                

                                          

m
m

0 m m m
m 1

0

ˆ1 ( , )ˆ( , ) ( ) ( ) , ( )
m!

∞

=
℘=

∂ φ η℘
φ η℘ = φ η + φ η℘ φ η =∑

∂℘
.                              (28)

In which ‘h’ is chosen in such a way that these series are convergent at 1℘= , therefore we have

                             0 m
m 1

f ( ) f ( ) f ( ),
∞

=
η = η + η∑ 0 m

m 1
( ) ( ) ( ),

∞

=
θ η = θ η + θ η∑ 0 m

m 1
( ) ( ) ( )

∞

=
φ η = φ η + φ η∑            (29)

b) The m-th order deformation equations
Differentiating the zero-order deformation Eqns. 

(20) - (22) m -times with respect to ℘ and then dividing 

them by m ! and finally setting 0℘= , we obtain the 
following m-th order deformation equations:

                          (30)                       

                (31)

              (32)

together with condition      

                           m mf ( 1) 0 f (1) 0− = =                 (33)

                        m m( 1) 0 (1) 0θ − = θ =                   (34)                          

         
m m( 1) 0 (1) 0φ − = φ =                    (35)   

                                 

where,

( )m 1 m 1f ' ' ' ' ' ' ' ' ' ' ' ' '
e m k 1 k m k 1 k m 1 m

iv
m m 1 r ck 1 k m 1 m 1

k 0 k 0
R f f f1R ( ) 1 f f Hf I f G Gf

− −

− − − − − − − − −
=

−
=

 
η = + + + β 

− − − − θ φ∑ ∑

           

( )m 1' ' ' ' ' ' '
r b m k 1 k t mm m 1 k 1 k e m k 1 k

k 0
R ( P N N R f)θ

−

−

− − − − − −
=

η  φ θ + θ φ + θ∑  = θ +
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θ( 0) =θ0( )        θ( 1) =θ( )ηˆ η ηˆ η, ,

φ̂( 0)η, =φ0
( )η φ̂( 1)η, =φ( )η

     

ʟ1[fᵐ (  ) – ᵡᵐ 1 (  )] = hR m
f ( )η fᵐ− η η

ʟ 22[θᵐ (  ) η – ᵡᵐθ 1ᵐ− (  )]η = hR θ

ᵐ
(  )η



 
 

 
 

  

     

    

 

 

 

 

 

  

 

  

 

    

 
 

 

    
 

 
  

     
        
       

         

   
      

        

         

        

 

 
  

 

 

  

 

 

  

 

                                                                                                   

( )m 1' ' ' ' ' *
m m 1 m 1 e e m k 1 k m 1 1 m

k 0

NtR ( ) L R f k (1 )
Nb

−
φ

− − − − −
=

η = φ + θ + φ − γφ + −χ∑

                                                                           
where,                

m

0 for m 1
1 for m 1

=
χ =  ≠

.

IV. Convergence and the Residual Error

The convergence and rate of approximation for 
the HAM solution depends on auxiliary parameter ‘h’ 
(See Refs. [29-34]), for this purpose, we have plotted 
h-curves in Fig.2 with fixing the values of involved 
parameters rG = 5, cG = 5, eR 1= , I = 1, tN = 0.45,

bN = 0.45,  eL = 10, M = 2, rP = 2.5, aD 0.5= , 

1K 1= , 0.5γ = , 0.6β = .  As a result, we can choose 
proper value of ‘h’ and also we obtain the optimal 
values of the auxiliary parameter ‘h’ by minimizing the 
average square residual error for the equations (10) to 
(12).  We define the residual error for above mentioned 
equations as:

                                   

  

(36)

           

                              

  

Further, we have tabulated the minimum 
average square residual errors for 10th, 15th, 20th, 25th

order of HAM approximation for different values of  
parameters with optimal ‘h’ in Table 1. It is noted that the 
number of HAM approximation increases the 
corresponding minimum square residual error 
decreases significantly and hence it leads to more 
accurate solutions. Further, it is important to note that 
our present HAM solution is good agreement with 
Numerical solution which is obtained by NDSolve 
scheme of Mathematica (See Fig.9). 

Table 1: The average square residual error for the optimal value of ‘h’ for different order of  
approxi-mations

Optimal h m∆
10th order 15thorder 20thorder 25thorder

-0.50 M = 5 4.48300x10-1 2.17722 x10-2 8.560151 x10-3 6.293116 x10-3

-0.46 β= 0.4 9.61660x10-1 4.76619 x10-2 1.085990 x10-2 7.63834 0x10-3

-0.28 γ= 1.5 2.41549 x10-1 6.41384 x10-2 1.741480 x10-2 7.771010 x10-3

-0.46
rP = 1 3.23985x10-3 8.82479 x10-4 1.155850 x10-6 1.230240 x10-8

-0.51
tN = 0.5 5.53236x10-1 2.67400 x10-2 1.01741 0x10-2 6.737690 x10-3

-0.49
bN = 0.2 7.79008 x10-3 7.15877 x10-3 6.053300 x10-3 6.032410 x10-3

-0.58
eL = 5 1.341560x10-1 1.15096 x10-2 7.017850 x10-3 6.73713 0x10-3

V. Results and Discussions 

To study the behavior of solutions, numerical 
calculations for different values of magnetic parameter
(M), Permeability parameter ( aD ), Casson fluid

parameter (β ), thermophoresis parameter ( tN ),

Brownian motion parameter ( bN ), Lewis number ( eL ), 

Chemical   reaction   parameter ( γ ) and Prandtl number 

( rP ) have been carried out. Throughout the 

computations we employ rG = 5, cG = 5, eR 1= , I =

1, tN = 0.45, bN = 0.45, eL = 10, M = 2, rP = 2.5, 
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' ' ' ' ' 2 '

2 r b t eE P [N N ( ) R f ]= θ + φθ + θ + θ     (37)

    ' ' ' ' ' *t
3 e e 1

b

NE L (R f k )
N

= φ + θ + φ − γφ+          (38)

where ,1 2E E and 3E are the residual error at m-th 

order of HAM approximation for f , θ and φ
respectively.  The average square residual error is 
given by:

13
2
im

i 1 1

1 E d
3

η=

= η=−
∆ = η∑ ∫ .              (39)

( )iv ' ' ' ' ' ' ' ' ' ' ' ' '
1 e

1E 1 f R f f ff Hf I f f G Gr c
 

= + − − − − + θ + φ β 
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aD 0.5= , 1K 1= , 0.5γ = , 0.6β = unless otherwise 

stated.  Fig. 3a is prepared to see the influence of the 
Casson fluid parameter with two different values of 
magnetic parameter ‘M’ with fixed values of all other 
parameters. It is observe that magnitude of velocity is a 
decreasing function with increasing Casson fluid 
parameter and also we noted that increasing ‘M’ is lead 
to decelerate the velocity.  Physically it means that the 
application of transverse magnetic field produces a 
resistive type force (Lorentz force) similar to drag force 
which tends to resist the fluid flow and thus reducing its 
velocity (as noted in [18]).  The effect of permeability 
parameter aD on the velocity is displayed in Fig. 3b. It 

depicts that the effect of increasing the value of aD is to 

increase the velocity, which means that the drag force is 
reduced by increasing the value of the permeability 
parameter.  Fig. 3c illustrates the influence of 
thermophoresis parameter tN on velocity.  It shows 

that increasing tN is not shown much influence on 

velocity distribution.   The quite similar effect can be 
noticed by varying Brownian motion parameter bN on

the velocity (See Fig.3d). 
Fig. 4a is graphed to see the effect of Lewis 

number on temperature distribution.  It is seen that 
temperature field is an increasing function in the left half 
of the channel whereas the behavior is reversed in the 
other region.  Fig. 4b describes that, increasing 
chemical reaction parameter gives opposite behavior 
that of Fig.4a.  Fig. 4c is plotted to see the influence of 
Brownian motion parameter on temperature distribution.  
It is evident that increasing bN is to increase the fluid 

temperature significantly.  The similar effect can be 
noticed with increasing tN and rP , which are shown in 

Figs.4d  and 4e. Physically speaking, increasing 
thermal parameters is to increase momentum diffusivity, 
which leads to enhance the fluid temperature. Further, it 
is noted that tN , rP shows the significant influence on 

temperature field than other parameters.  Fig. 5a shows 
the variation in concentration field with different values of 
Lewis number eL .  It depicts that increasing eL lead to 

enhance species concentration significantly.  Also, it is 
observed that when increasing eL from 0 to 5 there is 

nearly 45% increase in concentration whereas 
increasing eL from 5 to 10 there is only 20% (approx) 

decrease in the same, which means that low values of 

eL dominates on concentration field. The opposite 

trend can be seen if eL is replaced by chemical 

reaction parameter. (See Fig. 5b).  Fig. 5c is prepared to 

see the effect of bN on concentration. It is observed 
that concentration enhances with an increase of bN
whereas increasing thermal parameters tN and rP
leads to suppress the concentration gradually (See Figs. 
5d and 5e).

The variation of pressure gradient 
dp
dx

with M

and rG is plotted in Fig.6a.  It is observed that 

increasing both the parameters lead to enhance the 
pressure gradient whereas in the absence of magnetic 
field pressure gradient is negative with increasing rG , it 

means that high pressure gradient is need to promote 
the flow in the presence of magnetic field. The influence 

of inertia coefficient and material parameter on 
dp
dx

is 

graphed in Fig. 6b. It illustrates that pressure gradient is 
decreasing function with increasing I and β whereas
very high pressure gradient exist for lower value of 
material parameter ( 0.5β < ). It indicates that more 
driving force is required for non-Newtonian fluid than 
Newtonian fluid.  The variations on wall heat transfer rate 
(Nu) and wall mass transfer rate (Sh) with different 
values of  b t eN , N , L and γ are presented in Figs. 7 

and 8 respectively.  Influence of bN and tN on ‘Nu’ at 

both the walls is displayed in Fig 7. At the wall η=-1, 

‘Nu’ is a decreasing function with increasing b tN , N
whereas at the other wall there is no much influence with 
increasing bN .  Also, a sharp increment occurs in ‘Nu’

with increasing tN . Variation on ‘Sh’ with different values 

of eL and γ at both the walls is displayed in Fig 8.  It 

depicts that, ‘Sh’ is a decreasing function with 
increasing eL while increasing γ is not shown much 

influence at the wall η=-1.  At the other wall, the 

opposite trend is noticed with increasing eL .

VI. CONCLUSIONS

This article looks at flow, heat and mass 
transfer characteristics of a MHD Casson nanofluid in a 
vertical porous space with stretching walls in the 
presence of chemical reaction.  HAM is adopted to 
obtain analytical solutions of the reduced set of 
ordinary differential equations.  The results are 
presented through graphs for various values of the 
pertinent parameters and the salient features of the 
solutions are discussed graphically. This type of 
investigations is very important for mathematical 
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modeling of blood flow in narrow arteries at low shear 



 
   

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
       

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and Hartmann number whereas increasing 
permeability parameter aD . Increasing bN , tN and 

rP   are tends to promote the fluid temperature 
significantly. Concentration field significantly enhances 

with    increasing eL   while   increasing   tN   and rP
suppresses the fluid concentration.  Nusselt number 
distribution is a decreasing function with increasing bN ,

tN at the wall η= -1 while the parameter tN tends to 

enhance at the other wall η=1.

Fig. 1: Schematic diagram of the problem

Fig. 2: h-curves for velocity, temperature and concentration distribution
(___ 10th, …. 15th, - - - 25th orders of approximation)
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rates.   It is found that magnitude of velocity is a 
decreasing function with the Casson fluid parameter 
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Fig. 3: Effects of M, β , aD , tN and bN on Velocity distribution

   

Fig. 4: Effects of eL , γ , bN , tN and rP on Temperature distribution
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Fig. 6: Effects of M and I on Pressure gradient distribution
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Fig. 5: Effects of eL , γ , bN , tN and rP on Concentration distribution
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Fig. 7: Effect of tN on Nusselt number distribution Fig. 8: Effect of γ on Sherwood number distribution

Fig. 9: Comparison between ____HAM Solution and -----Numerical Solution
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NOMENCLATURE

0B     Transverse magnetic field

  

b>0     Stretch of the channel walls(m)

C       Dimensional concentration( 3Kg / m )

1C , 2C Wall concentrations ( 3Kg / m )

0C     Initial concentration ( 3Kg / m )

FC     

  

Inertial coefficient

pC     Specific heat

aD     Permeability parameter

BD     Brownian diffusion coefficient ( 2m / s )

TD     Thermophoresis diffusion 

      

  

coefficient    ( 2m s/ )

ije     (i, j) th component of deformation rate

f       Dimensionless stream function
'f     Dimensionless velocity

g      Acceleration due to gravity( 2m / sec )

rG    Local temperature Grashof number

cG     Local nano-particle Grashof number

I       Inertia coefficient
*k     Permeability of the medium( 2m )

K     Thermal conductivity of the
        fluid ( W / m K )

eL     Lewis number

M     Hartmann number

bN     Brownian motion parameter

tN     Thermophoresis parameter

p     Pressure( 2N / m )

rP     Prandtl number

eR     Reynolds number

T       Dimensional temperature

1T , 2T Wall temperatures (K)

T     Mean value of 1T and 2T (K)

0T       Inlet temperature (K)

u , v    Dimensional velocity components in
         x and y directions (m/s)

Greek Symbols
*α     Thermal diffusivity of the fluid ( 2m / s )

β      Casson parameter

θ     Dimensionless temperature

tβ     Coefficient of thermal expansion( 1K− )

cβ      Coefficient of expansion with

        concentration( 1K− )

Bµ     Plastic dynamic viscosity of the 

        non-Newtonian fluid ( 2N s / m )

fµ     Dynamic viscosity of the 

        fluid ( 2N sec/ m )

γ       Chemical reaction parameter

ν     Kinematic viscosity( 2m / sec )

f p,ρ ρ   Densities of the base fluid and nano-            

         particle ( 3Kg / m )

( )p f
Cρ Heat capacity of the fluid(J/K)

( )p p
Cρ Effective heat capacity of the

        nanoparticle

  

Material (J/K)
*ϕ    Porosity of the medium

φ     Dimensionless fluid concentration
σ     Coefficient of electric conductivity(S/m)

yτ     Yield stress of the fluid ( 2N / m )

π     Product of the component of 
        deformation rate 
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