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Abstract

This paper presents a comparative study of approximate analytical methods is carried out
using differential transformation, homotopy perturbation and variation parameter methods for
the analysis of a steady two-dimensional axisymmetric flow of nanofluid under the influence of
a uniform transverse magnetic field with slip boundary condition. Also, parametric studies are
carried out to investigate the effects of fluid properties, magnetic field and slip parameters on
the squeezing flow. It is revealed from the results that the velocity of the fluid increases with
increase in the magnetic parameter under the influence of slip condition while an opposite
trend is recorded during no-slip condition. Also, the velocity of the fluid increases as the slip
parameter increases but it decreases with increase in the magnetic field parameter and
Reynold number under the no-slip condition. The approximate analytical solutions are
verified by comparing the results of the approximate analytical methods with the numerical
method using Runge-Kutta coupled with shooting method. Although, very good agreements
are established between the results, the results of variation parameter method provide
excellent agreement with the results of numerical method.

Index terms— nanofluid; squeezing flow; slip boundary; differential transformation method; homotopy
perturbation method; variation parameter method.

1 Introduction

he flow of nanofluid in a channel, between two contracting or expanding plates and also, over a stretching sheet
have aroused research interests in recent times. Among the recent studies, the analysis of squeezing flow of
nanofluid or viscous fluid between two parallel plates have increased tremendously due to its various industrial
and biological applications. After the pioneer work on squeezing flow by Stefan [1], there have been improved
works on the flow phenomena. However, the earlier studies [1][2][3] on squeezing flow were based on Reynolds
equation. Jackson [4] and Usha and Sridhar an [5] pointed out the insufficiencies of the Reynolds equation for
some cases of flow situations. Consequently, there have been several attempts and renewed research interests
by different researchers to properly analyze and understand the squeezing flows using different analytical and
numerical methods . Also, effects of magnetic field, flow characteristics and fluid properties on the squeezing flow
have been widely investigated under no slip conditions [27][28][29][301][31][32][33][34][35][36][37][38][39][40][41][42].
However, in many cases of fluid and flow problems such as polymeric liquids, thin film problems, nanofluids,
rarefied fluid problems, fluids containing concentrated suspensions, and flow on multiple interfaces, slip condition
prevails at the boundary of the flow process.

Therefore, Navier [43] proposed the general boundary condition which demonstrates the fluid slip at the
surface. Such consideration of slip condition in the flow analysis of fluids is of great importance especially when
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3 III. APPROXIMATE ANALYTICAL METHODS OF SOLUTION:
DIFFERENTIAL TRANSFORM METHOD

fluids with elastic character are under consideration [44]. In a past study on slip effects on flow conditions of
fluids, Ebaid [45] investigated the effects of magnetic field and wall slip conditions on the peristaltic transport in
an asymmetric channel. The influence of slip on the peristaltic motion of third-order fluid in asymmetric channel
was analyzed by Hayat et al. [46]. Also, Hayat and Abelman [47] presented a study on the effects of slip condition
on the rotating flow of a third grade fluid in a nonporous medium. Abelman et al. [48] extended their work to a
porous medium and obtained the numerical solutions for the steady magnetodrodynamics flow of a third grade
fluid in a rotating frame.

The past efforts in analyzing the squeezing flow problems have been largely based on the applications of various
numerical and approximate analytical methods such as differential transformation method (DTM), Adomian
Decomposition Method (ADM), homotopy analysis method (HAM), optimal homotopy asymptotic method
(OHPM), variational iteration method (VIM). Moreover, most of the studies are based on viscous fluids. To the
best of the authors’ knowledge, a Approximate Analytical Methods study on squeezing flow of nanofluid under
the influences of magnetic field and slip boundary conditions using variation parameter method (VPM) has not
been carried out in literature. Also, a comparative study of the three approximate analytical methods (differential
transformation, homotopy perturbation and variation parameter methods) has presented in this paper has not
been analyzed in past work. Therefore, in the paper, a comparative study of approximate analytical methods
is carried out using differential transformation, homotopy perturbation and variation parameter method for the
analysis of a steady twodimensional axisymmetric flow of nanofluid under the influence of a uniform transverse
magnetic field with slip boundary condition. The analytical solutions are used to investigate the effects of fluid
properties, magnetic field and slip parameters on the squeezing flow.

II.

2 Problem Formulation

Consider a squeezing flow of nanofluid squeezed between two parallel plates which are at distance 2h apart and
they approach each other with slowly with a constant velocity under in the presence of a magnetic field as shown
in Fig. 1. Assuming that the fluid is incompressible, the flow is laminar and isothermal, the governing equations
of motion for the quasi steady flow of the nanofluid are given as: . Ov? =7 (1) () () ()()2202511.1.

Introducing the stream function ( ), r z ? , vorticity function () ,rz ?

and a generalized pressure for the cylindrical coordinate system as follows:( ) () ()2221111,,,,2fsuv

Eliminating the pressure term from Egs. ( 3) and (4), we have Neglecting the body force, the continuity and
Navier-Stokes’ equation for the problem is givenas( ) () () ()()22242025252,/111B,11fffsrr
?7=7222221rrrz?7?27=72477727(7)

The boundary conditions are given as 0,00, wvzvandzvzHvVandvz? 7?7 ===77==7

+4+=777729)

And the slip boundary conditionsas( ) () () () ()”’700,00,,2ffvfhfhfh? ====(10)
Using the following dimensionless parameters in Eq. (11)()2**20B1,,,=/2ffofHvfzFzR Gh
Damvhk??2pupn??===4+=+777777.(11)

The dimensionless form of Eq. ( 9)is givenas( ) () () () ()()()25727110ivsfFzRFzFzGF

And the dimensionless boundary conditions in Eq. (10)as() () ()()()00,0011, 11FFFFF 7?7?77 =
=777 == (13)

where the asterisk, * has been omitted in Egs. (12) and Eq. ( ?7?3) for the sake of conveniences.

3 III. Approximate Analytical Methods Of Solution: Differen-
tial Transform Method

The differential transform method has widely been used to solve both singular and non-singular perturbed
boundary values problems. It gives analytical solution to differential or integral solutions in the form of a
polynomial by transforming each term in the differential equation or integral into a recursive form or relation of
the equation which follows an iterative procedure for obtaining analytical series solutions of differential equation.
The basic definitions of the method is as follows:
If () u x is analytic in the domain T, then it will be differentiated continuously with respect to space x.
()(,)ppduxxpdx? =forallxT?(17) () () (,)ipipxxduxUpxpdt? =7?==7777(18)
where p U is called the spectrum of ()u() () ()!pipxxuxUpp??27?2=2777777(19)
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where Eq. ( 19) is called the inverse of ) (k U using the symbol 'D’ denoting the differential transformation
process and combining Eq. ( 18) and Eq. (19), it is obtained that ()10 () () ()! pipxxuxUpDUpp?

a) Operational properties of differential transformation method If () () u x and v x are two independent
functions with space (x) where ( ) U p and () V p are the transformed function corresponding to ( ) ux and () v
x , then it can be shown from the fundamental mathematics operations performed by differential transformation
thati. If () () (),zxuxvx==xthen () ()()pUpVp?==4ii. If()(),zxux? =then()()ZpU
p?=iii. f()(),nnduxzxdx=then ()(1)(2)(3)...() ()pppppnUpn? =+4+++++iv. If ()
()(),zxuxvx=then0()()()prpVrUpr=?2=?7?2v.If()()mzxux=,then10() () ()p
mrpUrUpr?=?=7?2vilf()()(),zxuxvx=then0()(1)(1)()prprVrUpr=7=++
??7vil. If () (), nmnduxzxxdx=then ()()()()()()0()1123...plplmplplplplnUpln

?7=7=7?774+72472+74+?24+7viii. f33()())(),duxduxzxdxdx=then ()()()()()0()1
233plZpUpllllUl==7++++7ix. If22()())(),duxduxzxdxdx=then () ()()() ()
0()11122plZpplUplllUl==?24+?24++++?x If2()()duxzxdx??=777?7then () (
)()0()1111plZpplUpllULl==24+7+++7xi. If()(),duxzxudx=then ()()()0()
11plZpUpllUl==?7++71222())(),duxzxdx??=27?7?7then()()()()()()0()12
2122plZpplplUplllUl==74+7+7++++1IV.()O)OO) [TO) O OO [TTTOO)[1()0
25123443213220111klsfkkkkFkRkIkIkIFIFkIGkkFk??2?2?7?7=4+++4+4+77

With differential transformed boundary conditions Where a and b are unknowns to be determined later using
the boundary conditions of Eq. (16b).[][][][]00,1,20,3, FFaFFb====7777 (22) (1) [1](
)(2)[2)kFkkkFk?+4+=+++722[]04F=7[]()(

Using Egs. ( 21) and ( 7?72), the value of ( ), 1, 2,3, 4,5,... 19, 20. ii F = ? are Application of the Differential
Transform Method to the Present Problem
The differential transform of ( ??5) and ( ??6) isgiven by [] () () () () () () () () () ()ssffssffsfbG

a) The basic idea of homotopy perturbation method In order to establish the basic idea behind homotopy
perturbation method, consider a system of nonlinear differential equations given as() ()0, AUfrr? =7 7(24)

where A is a general differential operator, B is a boundary operator,

4 ()

f r a known analytical function and 1?7 is the boundary of the domain ? The operator A can be divided into
two parts, which are L and N, where L is a linear operator, N is a non-linear operator. Eq.( 24) can be therefore
rewritten as follows( ) () ()0 LuNufr + ? =(26)

By the homotopy technique, a homotopy( ) [],: 0,1 Ur p R ? x ? can be constructed, which satisfies () ()

Oor()()()()()(),0HUpLULUpLUpNUfr??2=7?24++7?7=7777(28)

In the above Egs. ( 27) and ( 28),[ ] 0,1 p ? is an embedding parameter, o

u is an initial approximation of equation of Eq.( 24), which satisfies the boundary conditions. Also, from Egs.
(27) and ( 28), we willhave( ) () (), 000 HULULU=?7=(29)()()(),00HUAUfr =7 =(30)

The changing process of p from zero to unity is just that of ( ), Ur p from () our to ()

u r . This is referred to homotopy in topology. Using the embedding parameter p as a small parameter, the
solution of Egs. ( 27) and ( 28) can be assumed to be written as a power series in p as given in Eq. ( 28)2 1 2
.oUUpUp U=+ + +(31)

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result.

Therefore, setting 1 p =, results in the approximation solution of Eq.(24)1 2 1lim ... opuUUUU? ==
+ + +(32)

The basic idea expressed above is a combination of homotopy and perturbation method.
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6 B) APPLICATION OF THE HOMOTOPY PERTURBATION METHOD TO
THE PRESENT PROBLEM

5 A

Hence, the method is called homotopy perturbation method (HPM), which has eliminated the limitations of the
traditional perturbation methods. On the other hand, this technique can have full advantages of the traditional
perturbation techniques. The series Eq.( 32) is convergent for most cases.

6 b) Application of the homotopy perturbation method to the
present problem

On substituting Eqgs. (34) and into Eq.( 33) and expanding the equation and collecting all terms with the same
order of p together, the resulting equation appears in form of polynomial in p . On equating each coefficient of
the resulting polynomial in p to zero, we arrived at a set of differential equations and the corresponding boundary
conditions as 00,00,10,()00:0,ivpF=2()()()()()?’70000000,00,11,11FFFFF?=

===7722235)()()()2512771000:110,ivsf FFGFpFR???2?77227224+747=77
22722222236) ()()()()()”’71111100,00,10,11FFFFF?2====222727()()(
)()()2525227 77211

00
?

2927272222222 222 42 4222222222222222222?2' 0=11FFFFF?====77
2722000000000 ()()2525527 754304025257 7°31222513:1111111
111ivssffssffsfpGRRFFFFFFFFFFFFRRR??7277222272722722722222°27277
27277227 47 4242 422222222222222222 42 4242 4222222222272727
2742 422222722222222222222()()25”7 " 04110sfFRF?2?22?2227?2 47247 =
27227227222 140)()()()() ()" 7"5555500,00,10,11FFFFF?====272777

On solving the above Eqgs. (35)(36)(37)(38)(39)(40), we arrived at ( ) () ()30321231zzFz? 7?77 + =
22 @) ()()()()()()25252571222525222911213113312312319011216311
603131311321ssffssffRRGzzzRRFG?7?7727?272727272727?2727272722727?22°27272272727277

¢) The Procedure of Variation Parameter Method The basic concept of VPM for solving differential equations
is as follows: The general nonlinear equation is in the operator form( ) () () LERfNfg? 7 7 + 4+ = (44)

The linear terms are decomposed into L + R, with L taken as the highest order derivative which is easily
invertible and R as the remainder of the linear operator of order less than L. where g is the system input or the
source term and u is the system output, Nu represents the nonlinear terms.

()!'imiikffi? ==7(46)

m is the order of the given differential equation, k i s are the unknown constants that can be determined by
initial/boundary conditions and (, ) ? 7 7 is the multiplier that reduces the order of the integration and can be
determined with the help of Wronskian technique.
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In the same manner, the expressions for () () () () ()23456,,,,..22zFFFFFzz?77?7?7?77
were obtained. However, they are too large expressions to be included in this paper. Setting 1 p =, results in
the approximation solution of Eq. ( 24)

123432232577270()26113!'212!3nzsnnnfzzFzkkzkkzzzRFFGFd? 777777

The above equation can also be written as

7 Global

OO)OH(()(H)231322325”270()(0)(0) (@) (0)26113'2!1213'nzsnnnfzzFzFFzF

Consequently, an exact solution can be obtained when n approaches infinity.

Using the standard procedure of VPM as stated above, one can write the solution of Eq. ( 7?5) as

From the boundary conditions in Eq. ( ?776)

(0) 0, (0) OF F?? = =

Using the above statement and inserting the boundary conditions of Eq. ( ??76) into Eq. ( 49), we have( ) ()

From the iterative scheme, it can easily be shown that the series solution is given as3201 ()6kzFzkz =
+(51)

Here, k 1,k 2,k 3, and k 4 are constants obtained by taking the highest order linear term of Eq. ( ??5)
and integrating it four times to get the final form of the scheme. sfsfkk RzkzGkzFzkzRkz? 7?77

? 7 + Similarly, the other iterations F z F z F z F F z F z are obtained.

Although, analytically, the VPM and DTM are somehow easier and straight-forward as compared to HPM,
there is no search for Wronskian multiplier (as carried out in VPM) or the rigour of developing recursive relations
or differential transforms coupled with the search for included unknown parameter that will satisfy second the
boundary condition lead to additional computational cost in the generation of the solution to the problem using
DTM. This drawback is not only peculiar to VPM and DTM, other approximate analytical methods such as
HAM, ADM, VIM, DJM, TAM also required additional computational cost and time for the determination
of included unknown parameter that will satisfy second the boundary condition. Also, the VPM and DTM
have their own operational restrictions that severely narrow there functioning domains as they are limited to
small domain. Using VPM or DTM for large or infinite domain is accompanied with either the application
of before-treatment techniques such as domain transformation techniques, domain truncation techniques and
conversion of the boundary value problems to initial value problems or the use of aftertreatment techniques
such as Pade-approximants, basis functions, cosine after-treatment technique, sine aftertreatment technique and
domain decomposition technique. This is because VPM and DTM were initially established for initial value
problems. Amending the methods to boundary value problems especially for large or infinite domains boundary
value problems leads to the inclusion of unknown parameters (that will satisfy second the boundary condition)
in the solution. This drawback in the other approximation analytical methods is not experienced in HPM as
such tasks of before-and after-treatment techniques might not necessarily be required in HPM. This is because
HPM is easily applied to the boundary value problems without any included unknown parameter in the solution
as found in VPM and DTM. In order to get an insight into the problem, the effects of pertinent flow, magnetic
field and slip parameters on the velocity profile of the fluid are investigated. Fig. 2 and 4 shows the effects of
magnetic field and porous parameter on the velocity of the fluid under the influence of slip condition, while Fig.
3 and 5 depicts the influence of the porous and magnetic on the velocity of the fluid under no-slip condition. It
could be inferred from the figures that the velocity of the fluid increases with increase in the porous-magnetic
parameter under slip condition while an opposite trend was recorded during no-slip condition as the velocity of
the fluid decreases with increase in the porous-magnetic parameter under the no slip condition. Fig. ?? shows
the influence of the slip parameter 7?7 on the fluid velocity. By increasing 77, it is observed that the velocity of
the fluid increases. Fig. 7 presents the effects of Reynold’s number on the velocity of the fluid. It is observed
from the figure that by increasing the value R, the velocity of the fluid decreases.
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9 Conclusion

In this work, a comparative study of three approximate analytical methods have been carried out for the analysis
of two-dimensional axisymmetric flow of an incompressible viscous fluid through porous medium under the
influence of a uniform transverse magnetic field with slip boundary condition. From the analysis, it is established
that VPM give higher accurate results than DTM and HPM with faster rate of convergence. Also, from the
parametric study, it was established from the results that, the velocity of the fluid increases with increase in
the porous-magnetic parameter under slip condition while the velocity of the fluid decreases with increase in
the porous-magnetic parameter under no slip condition. By increasing the slip parameter, the velocity of the
fluid increases, and the fluid velocity decreases as the Reynolds number increases. The approximate analytical
solutions have been verified by comparing the results of the approximate analytical method with the numerical
method using Runge-Kutta coupled with shooting method * 2 2
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.1 Results and Discussion

... 396249600
where the constants k 1 and k 2 are determined using the boundary conditions in Eq. ( 776) i.e.

)

The equations are solved for the corresponding values of k 1 and k 2 for the different values of 7.

V.

.1 Results and Discussion

The above analyses show the applications of three approximate analytical methods of differential transformation,
homotopy perturbation and variation of parameters methods for the analysis of a steady twodimensional
axisymmetric flow of an incompressible viscous fluid under the influence of a uniform transverse magnetic field
with slip boundary condition. Using VPM and DTM, closed form series solutions are obtained as they provide
excellent approximations to the solution of the non-linear equation with higher accuracy than HPM. Also, the
VPM and DTM shows to more convenient for engineering calculations compared to HPM as they appear more
appealing than the HPM. However, higher accuracy and high rate of convergence was recorded in VPM than
DTM as shown the table, the solution of VPM is used to carry out the parametric study shown in Figs. ?7-7.
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