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A cable-sag-compensated (catenary) model was implemented in simulation for an 
example large outdoor cable-suspended robot system to solve the coupled kinematics and 
statics problems. This involved optimization of cable tensions and finding the errors involved in 
the cable length. A comparative analysis between the straight-line and cable sag model is 
presented, the main contribution of this paper. Based on the qualitative and quantitative results 
obtained, recommendations were made on the choice of model and solution methodologies.

Keywords: cable‐suspended robot, cable sag, non‐negligible cable mass, catenary model, 
forward and inverse position kinematics, pseudostatics.

GJRE-H Classification: FOR Code: 091007



Kinematics and Statics Including Cable Sag for 
Large Cable‐Suspended Robots 

Dheerendra Sridhar α & Robert L. Williams II σ  

Abstract-  Cable sag can have significant effects on the cable 
length computation in a cable suspended robot and this is 
more pronounced in large‐scale outdoor systems. This 
requires modeling the cable as a catenary instead of an 
approximated straight‐line model. Furthermore, when there is 
actuation redundancy involved, the modeling and simulation of 
the system becomes much more complex, requiring 
optimizing routines to solve the problem. 

A cable‐sag‐compensated (catenary) model was 
implemented in simulation for an example large outdoor 
cable‐suspended robot system to solve the coupled 
kinematics and statics problems. This involved optimization of 
cable tensions and finding the errors involved in the cable 
length. A comparative analysis between the straight‐line and 
cable sag model is presented, the main contribution of this 
paper. Based on the qualitative and quantitative results 
obtained, recommendations were made on the choice of 
model and solution methodologies. 
Keywords: cable ‐suspended robot, cable sag, non‐ 
negligible cable mass, catenary model, forward and 
inverse position kinematics, pseudostatics. 

I. Introduction 

 distinct attribute of cable‐suspended robots is the 
possibility of achieving very large workspaces 
which is difficult or impossible to achieve using 

rigid link manipulators. In the past two decades major 
progress has been made in the design and 
implementation of large scale robots throughout the 
world. The Five hundred meter Aperture Spherical radio 
Telescope (FAST) is large scale cable‐suspended robot 
under development in China for astronomical study [1]. 
Another example is the Skycam [2], which is an aerial 
camera system that is widely used in sporting arenas. 
Other examples include CoGiRo (Control of Giant 
Robots) used for industrial purposes [3] and the Large 
Cable Mechanism (LCM) used for Radio Telescope 
Application [4]. 

Kozak et al. [5] addressed the issue of cable 
sag by studying the effects of considering mass in the 
statics and stiffness analysis of the FAST robot. This 
research used the “elastic catenary” discussed by Irvine 
[6], to model the cable lengths and subsequently 
address the inverse pose kinematics problem. Kozak et 
al. [5] also provided experimental validation and showed 
that  the  equations  of  the  elastic  catenary are in good  
 

   
 

 

agreement with experimental results. Additionally, 
Russell and Lardner [7] provided experimental validation 
of the elastic catenary model and quantified the 
difference between theoretical and experimental cable 
tensions. 

An accuracy and error compensation study of 
the 6‐dof FAST robot was presented by Yao et al. [8] 
and force distribution in the cables by Li et al. [9]. These 
results showed that cable sag has a considerable effect 
on the overall accuracy and control of the robot. 

Research on the effects of sag on the 
workspace and cable characteristics was performed by 
Riehl et al. [10]. The findings, based on simulations for a 
3‐cable, 3‐dof robot, showed that the workspace and 
the cable tension distribution for straight‐line and elastic 
catenary (cable sag) models differ. Cable tension under 
cable sag, unlike the cable tension for the straight‐line 
model, is not constant throughout the cable. 

Irvine [6] presented a simplified model for cable 
sag based on perturbation analysis. This was used by 
Gouttefarde et al. [11] to model and simulate a 6‐cable, 
6‐dof robot. Although this model is still nonlinear and 
does not give an analytical solution, it is simpler 
compared to the elastic catenary. Also, the relationship 
between the components of the cable tension is linear in 
this model. This model was further researched by 
Nguyen et al. [12] to find the limitation of the simplified 
model, which is that the straight‐line model is not 
necessarily applicable throughout the workspace of the 
robot, unlike the catenary model. This model also lacks 
sufficient experimental validation, whereas the catenary 
model has been experimentally verified. 

Another noteworthy work was by Dallej et al. 
[13], which was vision‐based control of a cable‐ 
suspended robot. This method used cameras in 3D 
space to instantaneously compute inverse kinematics, 
thereby attempting to compensate for cable sag. But 
this approach is expensive and requires further research 
to make it viable for field operations and also to mitigate 
the iterative steps involved.  

The mathematical modeling of kinematics and 
pseudostatics for small scale cable suspended robots 
generally works well with the assumption of ideal 
massless cables (straight‐line model). However, for 
large‐scale cable‐suspended robots, significant errors 
may arise when assuming the straight‐line model for all 
cables. The main purpose of this paper is to investigate 
the differences in cable length errors and computation, 

A 
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comparing the straight‐line cables assumption vs. a 
cable‐sag model. dit Sandretto et al. [14] test the 
hypothesis that ignoring cable mass and cable sag is 
sufficient, with regard to their CoGiRo project. This 
hypothesis was confirmed for their current prototype 
hardware, but it was rejected for a planned larger robot. 
Riehl et al. [10] simply conclude that the cable 
caternaries must be accounted for, in large workspace 
cable robots, “in order to achieve good positioning and 
accuracy.” Yaun et al. [15] develop static and dynamic 
stiffness models for large cable‐suspended robots; they 
conclude that the cable catenary is “important” for 
stiffness studies. 

This paper first presents the methods, followed 
by results and discussion. 

II. Methods 

The methods used by Kozak et al. [5] and 
subsequently used in [10‐12] will be followed in this 
research. 

a) Cable Sag Catenary 
The equations of the cable catenary have been 

known for more than 80 years and they have been 
applied in various contexts of engineering. and their 
derivations are not presented (see [5, 6]). Consider a 
cable suspended between two points A and B as in 
Figure 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:

  

Cable suspended between two points

 

Where A is the cable drawing point, B is the 
end‐effector attachment point, Le

 

is

 

the straight‐line 
(Euclidean norm) distance between A and B, L is the 
catenary (actual)

 

length between A and B, g is the 
acceleration due to gravity, T is the cable tension with X

 

and Z components Tx

 

and Tz

 

at the end effector side, Tdx

 

and Tdz

 

are the X and Z

 

components of the cable tension 
at the cable drawing point, and (xend, zend) are the

 

coordinates of the cable at the end‐effect

 

or attachment 
point. For this cable, the static

 

catenary displacement 
equations for the inextensible case after simplification 
are (we

 

ignore the axial elasticity since the cable mass 
dominates the sag):

 
 

(1)

 
 

 
  

 

b)

 

Cable‐suspended Robot Model
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1 1sinh sinhx z z L
end

L x x

T T T gL
x

g T T




     
     

    

2 2 2 21
( )end x z x z L

L

z T T T T gL
g




      
(2)

Where pL is the linear density of the cable material.

kinematics and statics including cable sag for large cable‐suspended robots

The kinematic diagram of the cable‐suspended 
robot considered is shown in Figure 2. The base frame 
{A} is fixed to the center of the robot footprint. The 
end‐effector control point is point P, with hi being the 
height of the towers. Points Bi and Pi are the base and 
top points of the towers / poles respectively and points 
Ai are the points where winches / motors are located on 
the ground. Li (or Lei according to the notation in Figure
1 and used later in this paper) are the Euclidean norm 
(straight‐line) cable lengths. In all cases i = 1,2,3,4. The 
length and width of the cable‐suspended robot footprint 
are L and W, respectively.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Kinematic diagram of the cable‐suspended robot (1 acre footprint, 4047 m2) 1 acre is about the size of an 
American Football Field

c)
 

Inverse Position Kinematics (IPK) and Statics
 

The IPK problem consists of finding the active 
cable lengths for a given position.

 
When considering the 

effects of cable sag (i.e., the mass of the cables) in 
modeling, cable tension is involved in finding the cable 
length, unlike the traditional straight‐line IPK

 
problem. 

Hence, the kinematics and pseudostatics problems are 
coupled and have to be

 
solved simultaneously, as 

evident from equations (1) and (2). This is a system of 
nonlinear

 
implicit equations, hence there are no 

analytical solutions, thus forcing the use of
 
numerical 

methods.
 

As shown in [5] and [10], for a minimally or 
perfectly constrained case, the

 
catenary equations (1)  

 

 
 

(3)

 
 
 
 
 

For a redundant or overconstrained case, an 
additional impediment is that the

 
static problem does 

not have a unique solution. Since the number of 
variables

 
outnumbers the equations available, there are 

infinite valid solutions. Consider a 4‐cable
 
3‐dof (XYZ 

translation) cable‐suspended robot as shown in Figures 
2 and 3.

 
 

 
 
 
 
 
 
 
 
 

Figure 3:

 

Free‐Body Diagram of a four‐cable robot 

Solving only the static equations, for a given 
valid position, can have infinite solutions i.e. infinite valid 

combinations for . The physical
 

interpretation of this scenario is that at a given position 
there are multiple valid ways of

 

tensing the cables to 
maintain static equilibrium. To get one desired solution 
out of the

 

many feasible solutions, techniques of 
mathematical optimization are used.

 

There are various methods available for 
mathematical optimization based on the

 

nature of the 
problem. One popular approach used in field of robotics 
is that of the

 

Moore–Penrose pseudoinverse of the 
statics Jacobian matrix, which minimizes the

 

Euclidean 
norm of the cable tensions. Another useful technique is 
Linear Programming,

 

which helps to find a solution to 
the above problem, provided the objective function and

 

constraints are linear.

 

0

0

0

x

y

z

F

F

F











and (2) are solved along with the static equilibrium
equations (3).

 1 2 3 4

T
T T T T T
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As pointed out in [5], when using the catenary 
equations for finding the cable lengths of a redundant 
cable‐suspended robot, one feasible approach is to 
solve it as constrained optimization problem or specify 
the (m‐n) number of forces prior to solving. 

The methodology adapted here to address the 
Inverse Position Kinematics and Statics problem is as 
described in [5,8,9,12]. The details of the method 
adapted and coded in MATLAB are shown in Figure 4 
and described below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:

 

Steps involved in the solution of the inverse position problem

 
 

Step 1 ‐

 

Computation of Initial Values

 

In this step, all the required inputs are entered 
for solving the IPK problem, along

 

with necessary 
parameters such dimensional details of the robot 
footprint, robot

 

variables, and properties of the cable. 
Then necessary coordinate transformations are

 

made, 

which includes transforming global coordinates to local 
cable coordinates and vice

 

versa. Subsequently, the 
Euclidean norm lengths of the cable and statics 
Jacobian matrix

 

are calculated. Table 1 shows the input 
variables required.

 

Table 1:

 

Input variables

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Euclidean norm length of the straight‐line 
cable is calculated using:

 
 

(4)

 
 

The straight‐line static Jacobian matrix 
expressed in {A} coordinates is given by:

 
 
 

(5)

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

1
•Computation of Initial Values

2
•Cable Tensions Optimization

3
•Cable Lengths Computation

 

Input Variable  Symbol  Unit 

Length  L  m 

Width  W  m 

Pole Height  h  m 

End‐effector mass  m  kg 

Cable Diameter  d  mm 

Density of the Cable   kg/m3 

End‐effector location  (x,y,z)  m 
 

2 2 2( ) ( ) ( )ei xi yi ziL P x P y P z     

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

31 2 4

1 2 3 4

x x x x

e e e e

y y y yA

e e e e

zz z z

e e e e

P x P x P x P x

L L L L

P y P y P y P y
A

L L L L

P zP z P z P z

L L L L

    
 
 
    

     
 
   
 
 

Step 2 – Cable Tensions Optimization
In this step, the cable tensions for a given 

position are calculated. As mentioned previously, this is 
a case with multiple valid solutions. To find a unique 
solution, this problem is solved as a constrained 
minimization problem. So, the statics problem is treated 
as a linear programming problem with an aim of 
minimizing the cable tensions. The problem is 
formulated as shown below:

Objective function: Minimize (T1+T2+T3+T4)

Subject to Constraints:      0A A AA T F m g       

min maxiT T T   

Where the cable tensions are 
is the external force, mAg is the end‐effector 

weight (both expressed in {A} coordinates), and Tmin

and Tmax are the minimum and maximum allowable 
cable tensions.

 1 2 3T T T T
4

T
T ,   AF
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winch  / motor. This problem is solved using the linear 

programming solver linprog( ) in MATLAB.

 

Additionally, 
the pseudoinverse method was also implemented using 
the pinv( )

 

command in MATLAB for comparison 
purposes.

 

Step 3 –

 

Cable Lengths Computation

 

In this final step, cable lengths are computed 
using the catenary equations, by

 

numerically solving a 
system of equations. This system of equations is shown 
below:

 
 

(6)

 
 
 

(7)

 
 
 

(8)

 
 
 

where i = 1,2,3,4. For each cable this a system of three 
equations with three variables

 

(Txi, Tzi, and Li). To solve 
this system of equations the fsolve() command in 
MATLAB is used,

 

which is an iterative solver used to 
solve a system of nonlinear equations with real

 

variables. Also, the number of iterations is recorded. 
Finally, this solver returns the

 

components of the cable 
tensions along with the cable lengths.

 

To summarize, the methodology consists of 
finding the initial variables and

 

subsequent coordinate 
transformation. An optimization routine is then 
performed to get

 

a valid set of cable tensions {T}, such 

that the sum of cable tensions 

 

is minimized.

 

Finally, these cable tensions are used in the catenary 
equations to obtain the cable

 

lengths. The code 
combines all the three steps to solve the Inverse 
Position Kinematics

 

and Statics Problem 

 
 

  

 

 
 

  

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

This problem is a standard linear programming 
problem in four variables, with the static equilibrium 
equations used as constraints and bounds on the cable 
tensions based on necessary conditions (Ti > 0). 
Bounds not only help in obtaining non‐negative 
solutions (a negative solution for cable tension means a 
cable must push, which is unacceptable), but also 
restrict the solution to be within practical limitations, 
avoiding extremely high cable tensions, which might 
break the cable or which cannot be supported by the 

1 1sinh sinhxi zi zi L i
iend

L xi xi

T T T gL
x

g T T




     
     

    

2 2 2 21
( )iend xi zi xi zi L i

L

z T T T T gL
g




      

  2 2
i xi ziT T T                        

 ( iT ) 

as the 3‐sphere intersection algorithm presented in [14], 
which is valid only for the straight‐line model. When 
cable sag is considered, FPK suffers the same 
hindrances that the IPK problem faces, i.e. the 
kinematics and statics problems are coupled, highly 
nonlinear, and have to be solved iteratively. The 
methodology here involves finding components of cable
tensions using cable lengths and tensions and 
subsequently finding the position of the robot.

comprehensively, such that when the user enters a valid 
position, the program returns the cable tensions and 
lengths.

d) Forward Position Kinematics (FPK) And Statics
The FPK problem consists of finding the 

position of the robot when the cable lengths are given. 
There are analytical methods to solve this problem such 

 

1

•Computation of Initial Values

2

•Calculation of Position

Figure 5: Steps involved in the solution of the forward position problem
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a)

 

Snapshot Example

 

Both the Inverse and Forward Position 
Problems were solved for four random

 

positions and a 

nominal position .

 

The five positions are 

graphically

 

shown in

 

Figure 6 and stated numerically in 
Table 3.

 

 
 
 
 

 

 
 
 
 
 
 

Step 1 – Computation of Initial Values
Similar to the IPK problem, in this step all the 

necessary input values and coordinate transformations 
are entered. The active cable lengths and their 
respective tensions, dimensional details of the robot 
footprint, and the geometrical and material properties of 
the cables are entered.
Step 2 – Calculation of Position

In this step, the static displacement equations 
of the catenary (6‐8) along with the static equilibrium 
equations (3) are solved numerically along with 
necessary transformations of coordinate system. This 
system of equations is also solved using the fsolve() 
command in MATLAB and its solution yields the XYZ 
position of the robot. In summary, the method consists 
of finding the initial values and necessary
transformations. This is followed by solving a system of 

nonlinear equations whose solution gives the position. A 
major difference in this FPK problem, when compared to
the inverse position problem, is the absence of 
optimization step, thus making it considerably faster to 
solve. However, both problems must be solved 
numerically (i.e. iteratively), when the effect of cable sag 
has to be considered.

III. Results and Discussion

Based on the methods described in the 
previous section, simulations were performed. This 
included simulating snapshot examples, a trajectory, 
and parameter variations. The results obtained and their 
interpretations are discussed in this section. The 
simulation results presented here use the values in 
Table 2.

Table 2: Values of the variables used for simulation
 

Variable  Value  Notes 

Length (L)  50 m  1 acre footprint 

Width (W)  80.9 m 

Pole Height (h)  7.6 m  All poles are same height 

End‐effector mass (m)  258.6 kg  ‐ 

Cable Diameter (d)  20 mm  ‐ 

Density of the Cable ()  7860 kg/m3  Density of a steel cable 

External Force (AF)  {0}  0 xyz vector 

Tension Lower Limit (Tmin)  2537 N  ‐ 

Tension Higher Limit (Tmax)  + ∞  To find the maximum force  

 0 0 0
T
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Figure 6:

 

Snapshot points

 

When the code for the inverse problem is executed with these snapshot points as

 

inputs, the program 
calculates the cable lengths and tensions.

 

Table 3:

 

Cartesian coordinates of snapshot points

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First, the circular check is performed to verify 
and partly validate the results

 

obtained. To serve this 
purpose, both the inverse and forward problems were 
solved for

 

all the five snapshot points. The results are 

summarized in Table 4 and the circular check

 

is verified 
(the highlighted columns have equal corresponding 
values).

 
 

 

Table 4:

 

Circular check for snapshot points

 

 
 
 
 
 
 
 
 
 
 
 

 

 
Point No. 

End‐effector position (m) 

X  Y  Z 

1  0  0  0 

2  ‐29.4  10.2  1.5 

3  ‐33.0  ‐18.8  2.0 

4  28.5  ‐18.0  3.1 

5  35.0  22.0  5.0 

 

   
No. 

Inverse Position Solution  Forward Position Solution 

Input  Output  Input  Output

Point  L1  L2  L3  L4  L1  L2  L3  L4  Point 

1 

0, 
0, 
0 

56.70  56.70  56.70 56.70 56.70 56.70 56.70  56.70 
0, 
0, 
0 

2 

‐29.4, 
10.2, 
1.5 

45.25  27.72  81.38 87.87 45.25 27.72 81.38  87.87 
‐29.4, 
10.2, 
1.5 

3 

‐33, 
‐18.8, 
2 

19.14  52.46  96.41 83.22 19.14 52.46 96.41  83.22 
‐33, 
‐18.8, 
2 

4 

28.5, 
‐18, 
3.1 

77.75  90.26  53.11 22.75 77.75 90.26 53.11  22.75 
28.5, 
‐18, 
3.1 

5 

35, 
22, 
5 

97.64  84.7  14.93 54.92 97.64 84.7  14.93  54.92 
35, 
22, 
5 
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The cable length difference between the cable sag and straight model is calculated, followed by cable 
length error computation: 
 

(9) 
 
 

(10)  

The results of difference in cable lengths and their percentage error are plotted in
 
Figure 7 and 8.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:

 

Difference in cable lengths vs. position

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:

 

Percentage error in cable lengths vs. position
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Along with computation of cable lengths, the 
cable tensions were also calculated using two methods; 
Linear Programming (LP) and Pseudoinverse Method 
(PI). These two methods give different values for cable 
tensions as the objective functions in both cases are 
different. The resulting graph is shown in Figure 9.
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Figure 9:

 

LP and PI Cable tensions vs. position

 

From the graphs, it can be observed that the 
difference in cable lengths obtained

 

from the

 

straight‐line model and cable sag model ranges from 0 
–

 

2600 mm, which

 

appears to be significantly high. 
However, when the relative error is computed, the range

 

is 0‐3 %. The current cable‐suspended Robot System, 
unlike the FAST [1] or LCM [4], is not

 

meant for accurate 
positioning of the end‐effector, hence from the snapshot 
examples

 

the effects of cable sag appears to be 
tolerable. But the five examples are a small sample

 

size 

of random points; this necessitates running the program 
to simulate a trajectory.

 

b)

 

Trajectory Example

 

A pick‐and‐place robot trajectory was simulated 
with a step size of 0.5 m as shown

 

in Figure 10. The 
ideal Cartesian coordinates and straight‐line cable 
lengths for this

 

trajectory are shown in Figures 11 and 
12.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Pick‐and‐Place Trajectory Example 
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Figure 11:

 

Cartesian coordinates vs. steps

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12:

 

Straight‐line cable lengths vs. steps

 

Similar to the snapshot example, the cable 
length differences between the cable sag and 
straight‐line models are calculated, followed by cable 
length error computatio.

 

This is shown in Figure 13 and 
14. As observed from the

 

graphs, the difference in cable 
lengths obtained from the straight‐line model and cable 
sag model ranges from 0‐800 mm and the relative error 
ranges from 0‐1.4%. These values further indicate that, 
although cable sag contributes to erroneous cable 
length computation, the error is low enough for 
purposes where high accuracy is not a prime 
requirement.
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 Figure 13:

 

Difference in cable lengths vs. steps

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14:

 

Percentage error in cable lengths vs. steps

 

The cable tensions were calculated for all the 
steps in the trajectory by both

 

methods. This was 
followed by finding the difference between the 
summation   of   cable   tensions   obtained   from   linear

 

programming  (LP) and pseudoinverse (PI) methods

  

15 and 16.

 
 
 

 

.   The results are presented in FiguresLPi PIiT T 
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Figure 15:
 
LP and PI Cable tensions vs. steps

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16:

 

Difference in cable tensions between LP and PI vs. steps

 

From Figures 9, 15, and 16, a straightforward 
observation is that the two methods

 

(LP and PI) give 
different solutions for cable tensions except when the 
cable lengths are

 

equal. Except for this case, the linear 
programming  method gives   a   solution  such  that  the

 

  

 

overall cable tensions are less, when compared to the 
corresponding pseudoinverse solution.

Another major advantage of using linear 
programming is that we can restrict the solution space 
by using the bounds (Tmin and Tmax). For example, in 
this simulation Tmin was set to be equal to the weight of 
end‐effector, which can be increased if the cable
tensions are found to be insufficient to keep it taut and 
decreased if feasible. A similar argument can be made 
for Tmax. In this simulation, Tmax was set to be +∞ to 

get an idea of the maximum tension that a particular 
configuration reaches.

The pseudoinverse method on the other hand 
does not give this flexibility. But a major merit of the 
pseudoinverse approach is that it has a closed‐form 
analytical solution, unlike the iterative linear 
programming method.

There are a few issues associated with the use 
of the LP method that require attention. The LP 
approach at times gives an abrupt increase or decrease 
in the tension solutions, thus not resulting in smooth 
curves for trajectories (see Figure 15). Another issue is 
that the LP solution at times tends to give a solution that 
is the lower bounds or upper bounds (Tmin or Tmax) for 
one of the cables. Regardless, a valid solution can be
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Table 5:

 

Comparison between linear programming and pseudoinverse methods

 

 
 
 
 
 
 
 
 

c)

 

Variation of Parameters

 

Effects of Cable Parameters and End‐Effector Mass

 

The input parameters of the cable are diameter 
(geometric property) and density

 

(material property). For 

a nominal position 

 

and an arbitrary position

 

,  these parameters were varied 

 

independently and the results are graphically

 

presented 
in Figures 17 and 18; all results compare the 
straight‐line to the sag cable

 

models.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17:

 

Difference in cable length vs. cable diameter for nominal position

 

obtained by this method and research is being done in 
this field to get smoother results with less iterations. 
Borgstrom et al. [15] show that linear programming can 
be suitably modified and, with the assistance of suitable 
control systems, make it more efficient and

computationally less expensive. Considering all of these 
factors, use of linear programming for cable tension 
calculation is advisable. A summary of this discussion is
provided in the form of a comparison chart in Table 5.

 

Linear Programming (LP)  Moore Penrose Pseudoinverse (PI) 

Minimize the sum of the cable tensions; 

Min  1 2 3 4( )T T T T    

Minimizes the second norm of the cable 

tensions; Min ( 2 2 2 2
1 2 3 4T T T T   ) 

Can be applied for other objective 
functions. 

Only one objective function possible 

Iterative method  Closed form analytical solution possible 

The overall cable tensions are relatively 
small 

Cable tensions at the least can be equal 
to the LP solution 

More flexible method  Less flexible method 

Multiple solutions possible  Single solution results 

MATLAB command – linprog( )  MATLAB command – pinv( ) 

 0 0 0
T

 8 5 2
T

© 2017    Global Journals Inc.  (US)

                

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
su

e 
 I
  

V
er
si
on

 I
  

  
  
 

  

13

Y
e
a
r

20
17

H

kinematics and statics including cable sag for large cable‐suspended robots



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

© 2017    Global Journals Inc.  (US)

G
l o
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
s u

e 
 I
  

V
er
si
on

 I
  

  
  
 

  14

Y
e
a
r

20
17

H

kinematics and statics including cable sag for large cable‐suspended robots

Figure 18: Difference in cable length vs. cable diameter for arbitrary position

From the effects of cable sag, it is evident that if 
the cable weight increases, then cable sag increases, 
which in turn increases the error or cable length 
difference between the cable sag and straight‐line 
models. Increasing cable diameter and / or cable 
material density increases cable weight. Based on the 
nature of the catenary equations, we expect a nonlinear 
increase in the difference in cable lengths when cable 
diameter and density is increased, as verified by the 

simulations of Figures 17 and 18. The trends for 
increasing cable density are very similar to increasing 
cable diameter and hence are not shown [16].

Another important parameter is the end‐effector 
mass. This is of special importance since it may vary 
during the operation of a cable‐suspended robot. The
variation of difference in cable length between the cable 
sag and straight‐line models with an increase in 
end‐effector mass is shown in Figures 19 and 20.

Figure 19: Difference in cable length vs. end‐effector mass for nominal position



For this case there is an inverse relationship, i.e. 
the cable lengths differences decrease as the 
end‐effector mass increases. This makes sense since, 
for a given cable size, larger end‐effector mass will 

dominate more and more relative to the cable mass, 
meaning the straight‐line model becomes more and 
more accurate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20:

 

Difference in cable length vs. end‐effector mass for arbitrary position

 

An increase in end‐effector mass has different 
effects on different cables for the

 

arbitrary position. The 
reason for this is one of the limitations of the LP method: 
solutions

 

tend to fall on the tension bounds. In case of 
the arbitrary position (Figure 20), the third

 

cable solution 
falls on

 

the lower bound, hence the variation in cable 
length 3 is constant.

 

Cables 2 and 4 follow the same 
inverse trend of Figure 19, and the cable 1 length

 

difference actually increases with increasing 
end‐effector mass.

 

d)

 

Effects of Footprint Dimensions

 

As the size of the robot footprint increases, the 
cable length and its overall weight

 

increases, thus 
increasing the cable sag and increasing the difference in 
cable length.

 

Keeping the ratio of footprint length to 
width constant (L/W = constant), the area was

 

increased in steps from 1 to 6 acres and the difference 
in cable lengths was computed. As

 

expected, the cable 
length difference increases with an increase in area as 
shown in Figure

 

21.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21:

 

Difference in cable length vs. footprint area

 
 

Footprint Area (m2) 
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Complimentary to the previous case, we next 
study the effects of variation of length to width (L/W) 
ratio, keeping the area constant. For the nominal 
position, at a constant tower height, the variation of the 
Euclidean norm length depends on the footprint length L 
and width W. By the Pythagorean Theorem, this is 

dependent on the term . Also, the point where 

the length and width interchange their values, we
 
expect 

the difference in cable lengths to remain the same. All 
these facts are verified by

 
simulation results as shown in 

Figure 22.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22:

 

Difference in length (mm) vs. L/W (unitless)

 

e)

 

Computational Considerations

 

The straight‐line model has been used in most 
cable‐suspended robot systems

 

when compared to the 
cable sag model. One of the main reasons for this is its 
simplicity

 

and an analytical model which is easy to use, 
manipulate, and implement in control

 

systems.

 

The cable sag model which uses the catenary 
equations describes the profile of

 

the cable more 
accurately when compared to the straight‐line model. 
However, the

 

methods required to handle this are highly 
complicated. Ultimately, any model has to be

 

implemented in a real‐time control system to manipulate 
the cable‐suspended robot

 

system. Hence, 
understanding the computational complexities involved 
is important.

 

The catenary equations by themselves are 
highly nonlinear and are implicit. These

 

equations have 
to be solved simultaneously with other equations by 

 
 

 

 

 
 

the accuracy of the
 
solution, such approximations have 

to be made with more
 

terms in a series expansion, 
hence requiring more data storage and ultimately 
increasing

 
the computational cost.

 

To investigate this issue, during the 
computation of cable lengths the number of

 
iterations 

for both snapshot points and trajectory was recorded for 
the cable sag model.

 
This information is presented in 

Figures 23 and 24. For comparison, the straight‐line
 

model requires no iteration, so the number of iterations 
for that case is always 1.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2 2L W  

L / W

numerical methods iteratively, which is not only time 

consuming, but may also involve iteration errors. This is 
a major drawback to the cable sag model.

Another major impediment in using iterative 
methods is the truncation errors involved. These are 
especially dominant when exponential and hyperbolic 
terms are approximated using truncated infinite series, 
thus reducing the accuracy of the solution. To improve 

Figure 23: Number of iterations vs. position, snapshots

2 2L W

© 2017    Global Journals Inc.  (US)

G
l o
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
s u

e 
 I
  

V
er
si
on

 I
  

  
  
 

  16

Y
e
a
r

20
17

H

kinematics and statics including cable sag for large cable‐suspended robots



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24:

 

Number of iterations vs. steps, trajectory

 

There is no definitive prediction that can be 
made on the number of iterations for

 

a different 
trajectory or snapshot example, but the examples shown 
above are

 

representative. They show that even for the 
simplest trajectories or snapshot points, each

 

cable 
length computation requires a considerable number of 

iterations, ranging from 10‐

 

40. Thus, the cable sag 
model, despite being an accurate model, suffers from 
increased

 

computational requirement. A relative 
comparison between the straight‐line model and

 

cable 
sag model is shown in Table 6.

 

Table 6:

 

Comparison between straight‐line and cable sag model.

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 

Criteria  Straight‐line model  Cable sag model 

Governing equations  Euclidean norm between 
two points 

Catenary equations 

Type of model  Approximate model  Accurate model 

Kinematics and Statics  Analytical solution for 
both; problems solved 

independently. 

Both problems are coupled 
and there is no analytical 
solution.  

Nature of solutions  Analytical  Numerical 

Mass of the cable  Neglected  Included 

Areas of application  Small scale robots and 
where accuracy is not a 

prime concern. 

Any cable‐suspended 
robot system, especially 
large outdoor systems. 

Errors involved  Cable length computation 
errors 

Iterative errors, truncation 
errors 

Solving the cable tension and length problems 
independently in separate steps (i.e. using the 
straight‐line model) offers significant practical benefits. 
Firstly, it offers easy control system implementation, 
since ensuring positive cable tension is a necessary
condition and cable sag computation can be 
circumvented if the corresponding error is within limits. 
Secondly, solving the steps separately greatly reduces 
the computational time. Additionally, if the steps are 
combined (i.e. using the cable‐ sag model) the problem
becomes a constrained non‐linear optimization problem 
(instead of a robust linear programming problem) which 

needs more sophisticated optimization routines and is 
not practical to implement in simple, cost‐effective, 
real‐time control system architectures.

IV. Conclusion and Recommendations

The current research was conducted primarily 
with an intention of studying and understanding the 
qualitative and quantitative effects of cable sag on the 
calculation of cable lengths in cable‐suspended robots. 
The research also involved studying the effects of cable 
density, cable diameter, robot footprint size, and 
computational requirements.
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Control system application  Straight‐forward  Difficult 



 

 
 

 

 
 

 

 
 

  

 

 
 

 

 

 
 

 
 

 
 

 
 

  
 

 
 

 

 
 

  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

Based on the results of the snapshot and 
trajectory examples (for a 1‐acre footprint robot), the 
relative error in cable lengths does not exceed 3%. The 
cable sag model suffers from computational 
complexities. On the other hand, the straight‐line model 
is simple to manipulate, control, and implement 
practically. Considering all these factors and quantitative 
comparison results presented earlier, the straight‐line 
model is preferred over the cable sag model at this 
particular scale (1‐acre footprint, 4047 m2). In cases 
where the cable sag and errors are greater, the use of a 
Cartesian servo controller based on GPS sensing of the 
end‐effector location is recommended.

Cable tension distribution is an important 
aspect of cable‐suspended robots and, based on the
results of this research, linear programming serves as 
an efficient tool for computing and ensuring appropriate 
cable tensions in cables (the pseudoinverse‐based
method is much more common). An additional benefit of 
the LP method is to help in finding if a given cable 
tension range is acceptable for motion control of a 
cable-suspended robot system and is within the torque 
limitations of a winch / motor. Conversely, the simulation 
results could be used for appropriate choices in winch / 
motor design.
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