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6

Abstract7

Cable sag can have significant effects on the cable length computation in a cable suspended8

robot and this is more pronounced in largescale outdoor systems. This requires modeling the9

cable as a catenary instead of an approximated straigh-tline model. Furthermore, when there10

is actuation redundancy involved, the modeling and simulation of the system becomes much11

more complex, requiring optimizing routines to solve the problem.A cable-sag-compensated12

(catenary) model was implemented in simulation for an example large outdoor13

cable-suspended robot system to solve the coupled kinematics and statics problems. This14

involved optimization of cable tensions and finding the errors involved in the cable length. A15

comparative analysis between the straight-line and cable sag model is presented, the main16

contribution of this paper. Based on the qualitative and quantitative results obtained,17

recommendations were made on the choice of model and solution methodologies.18

19

Index terms— cable ?suspended robot, cable sag, nonnegligible cable mass, catenary model, forward and20
inverse position kinematics, pseudostatics21

1 I. Introduction22

distinct attribute of cable-suspended robots is the possibility of achieving very large workspaces which is difficult23
or impossible to achieve using rigid link manipulators. In the past two decades major progress has been24
made in the design and implementation of large scale robots throughout the world. The Five hundred meter25
Aperture Spherical radio Telescope (FAST) is large scale cable-suspended robot under development in China for26
astronomical study [1]. Another example is the Skycam [2], which is an aerial camera system that is widely used27
in sporting arenas. Other examples include CoGiRo (Control of Giant Robots) used for industrial purposes [3]28
and the Large Cable Mechanism (LCM) used for Radio Telescope Application [4].29

Kozak et al. [5] addressed the issue of cable sag by studying the effects of considering mass in the statics30
and stiffness analysis of the FAST robot. This research used the ”elastic catenary” discussed by Irvine [6], to31
model the cable lengths and subsequently address the inverse pose kinematics problem. Kozak et al. [5] also32
provided experimental validation and showed that the equations of the elastic catenary are in good agreement33
with experimental results. Additionally, Russell and Lardner [7] provided experimental validation of the elastic34
catenary model and quantified the difference between theoretical and experimental cable tensions.35

An accuracy and error compensation study of the 6-dof FAST robot was presented by Yao et al. [8] and force36
distribution in the cables by Li et al. [9]. These results showed that cable sag has a considerable effect on the37
overall accuracy and control of the robot.38

Research on the effects of sag on the workspace and cable characteristics was performed by Riehl et al. [10].39
The findings, based on simulations for a 3-cable, 3-dof robot, showed that the workspace and the cable tension40
distribution for straight-line and elastic catenary (cable sag) models differ. Cable tension under cable sag, unlike41
the cable tension for the straight-line model, is not constant throughout the cable.42

Irvine [6] presented a simplified model for cable sag based on perturbation analysis. This was used by43
Gouttefarde et al. [11] to model and simulate a 6-cable, 6-dof robot. Although this model is still nonlinear44
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4 FIGURE 1: CABLE SUSPENDED BETWEEN TWO POINTS

and does not give an analytical solution, it is simpler compared to the elastic catenary. Also, the relationship45
between the components of the cable tension is linear in this model. This model was further researched by Nguyen46
et al. [12] to find the limitation of the simplified model, which is that the straight-line model is not necessarily47
applicable throughout the workspace of the robot, unlike the catenary model. This model also lacks sufficient48
experimental validation, whereas the catenary model has been experimentally verified.49

Another noteworthy work was by Dallej et al. [13], which was vision-based control of a cablesuspended robot.50
This method used cameras in 3D space to instantaneously compute inverse kinematics, thereby attempting to51
compensate for cable sag. But this approach is expensive and requires further research to make it viable for field52
operations and also to mitigate the iterative steps involved.53

The mathematical modeling of kinematics and pseudostatics for small scale cable suspended robots generally54
works well with the assumption of ideal massless cables (straight-line model). However, for large-scale cable-55
suspended robots, significant errors may arise when assuming the straight-line model for all cables. The main56
purpose of this paper is to investigate the differences in cable length errors and computation, comparing the57
straight-line cables assumption vs. a cable-sag model. dit Sandretto et al. [14] test the hypothesis that ignoring58
cable mass and cable sag is sufficient, with regard to their CoGiRo project. This hypothesis was confirmed for59
their current prototype hardware, but it was rejected for a planned larger robot. Riehl et al. [10] simply conclude60
that the cable caternaries must be accounted for, in large workspace cable robots, ”in order to achieve good61
positioning and accuracy.” Yaun et al. [15] develop static and dynamic stiffness models for large cable-suspended62
robots; they conclude that the cable catenary is ”important” for stiffness studies.63

This paper first presents the methods, followed by results and discussion.64

2 II. Methods65

The methods used by Kozak et al. [5] and subsequently used in [10][11][12] will be followed in this research.66

3 a) Cable Sag Catenary67

The equations of the cable catenary have been known for more than 80 years and they have been applied in68
various contexts of engineering. and their derivations are not presented (see [5,6]). Consider a cable suspended69
between two points A and B as in Figure ??.70

4 Figure 1: Cable suspended between two points71

Where A is the cable drawing point, B is the end-effector attachment point, L e is the straight-line (Euclidean72
norm) distance between A and B, L is the catenary (actual) length between A and B, g is the acceleration due to73
gravity, T is the cable tension with X and Z components T x and T z at the end effector side, T dx and T dz are74
the X and Z components of the cable tension at the cable drawing point, and (x end , z end ) are the coordinates75
of the cable at the end-effect or attachment point. For this cable, the static catenary displacement equations for76
the inextensible case after simplification are (we ignore the axial elasticity since the cable mass dominates the77
sag):(1) b) Cable-suspended Robot Model ( ) Volume XVII Issue I Version I 2 Year 2017 H 1 1 sinh sinh x z z L78
end L x x T T T g L x g T T ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 2 2 1 ( ) end x z x z L L z79
T T T T g L g ? ? ? ? ? ? ? ? ? ? ?(2)80

Where p L is the linear density of the cable material.81
kinematics and statics including cable sag for large cable-suspended robots82
The kinematic diagram of the cable-suspended robot considered is shown in Figure 2. The base frame {A} is83

fixed to the center of the robot footprint. The end-effector control point is point P, with hi being the height of84
the towers. Points B i and Pi are the base and top points of the towers / poles respectively and points Ai are the85
points where winches / motors are located on the ground. L i (or L ei according to the notation in Figure ?? and86
used later in this paper) are the Euclidean norm (straight-line) cable lengths. In all cases i = 1,2,3,4. The length87
and width of the cable-suspended robot footprint are L and W, respectively. The IPK problem consists of finding88
the active cable lengths for a given position. When considering the effects of cable sag (i.e., the mass of the89
cables) in modeling, cable tension is involved in finding the cable length, unlike the traditional straight-line IPK90
problem. Hence, the kinematics and pseudostatics problems are coupled and have to be solved simultaneously,91
as evident from equations ( ??) and ( 2). This is a system of nonlinear implicit equations, hence there are no92
analytical solutions, thus forcing the use of numerical methods.93

As shown in [5] and [10], for a minimally or perfectly constrained case, the catenary equations (1)94
(3) For a redundant or overconstrained case, an additional impediment is that the static problem does not95

have a unique solution. Since the number of variables outnumbers the equations available, there are infinite valid96
solutions. Consider a 4-cable 3-dof (XYZ translation) cable-suspended robot as shown in Figures 2 and 3. There97
are various methods available for mathematical optimization based on the nature of the problem. One popular98
approach used in field of robotics is that of the Moore-Penrose pseudoinverse of the statics Jacobian matrix,99
which minimizes the Euclidean norm of the cable tensions. Another useful technique is Linear Programming,100
which helps to find a solution to the above problem, provided the objective function and constraints are linear.101
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5 ? ?102

As pointed out in [5], when using the catenary equations for finding the cable lengths of a redundant cable-103
suspended robot, one feasible approach is to solve it as constrained optimization problem or specify the (m-n)104
number of forces prior to solving.105

The methodology adapted here to address the Inverse Position Kinematics and Statics problem is as described106
in [5,8,9,12]. The details of the method adapted and coded in MATLAB are shown in Figure 4 and described107
below. In this step, all the required inputs are entered for solving the IPK problem, along with necessary108
parameters such dimensional details of the robot footprint, robot variables, and properties of the cable. Then109
necessary coordinate transformations are made, which includes transforming global coordinates to local cable110
coordinates and vice versa. Subsequently, the Euclidean norm lengths of the cable and statics Jacobian matrix111
are calculated. Table ?? shows the input variables required.112

6 Table 1: Input variables113

The Euclidean norm length of the straight-line cable is calculated using:(4)114
The straight-line static Jacobian matrix expressed in {A} coordinates is given by: (5) P z L L L L ? ? ? ? ?115

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?116
Step 2 -Cable Tensions Optimization117
In this step, the cable tensions for a given position are calculated. As mentioned previously, this is a case with118

multiple valid solutions. To find a unique solution, this problem is solved as a constrained minimization problem.119
So, the statics problem is treated as a linear programming problem with an aim of minimizing the cable tensions.120
The problem is formulated as shown below:Objective function: Minimize (T 1 +T 2 +T 3 +T 4 ) Subject to121
Constraints: ? ? ? ? ? ? 0 A A A A T F m g ? ? ? ? ? ? ? min max i T T T ? ?122

Where the cable tensions are is the external force, m A g is the end-effector weight (both expressed in {A}123
coordinates), and T min and T max are the minimum and maximum allowable cable tensions. winch / motor. This124
problem is solved using the linear programming solver linprog( ) in MATLAB. Additionally, the pseudoinverse125
method was also implemented using the pinv( ) command in MATLAB for comparison purposes.126

Step 3 -Cable Lengths Computation127
In this final step, cable lengths are computed using the catenary equations, by numerically solving a system128

of equations. This system of equations is shown below:129
(6) (7) (8) where i = 1,2,3,4. For each cable this a system of three equations with three variables (T xi , T zi130

, and L i ). To solve this system of equations the fsolve() command in MATLAB is used, which is an iterative131
solver used to solve a system of nonlinear equations with real variables. Also, the number of iterations is recorded.132
Finally, this solver returns the components of the cable tensions along with the cable lengths.133

To summarize, the methodology consists of finding the initial variables and subsequent coordinate transfor-134
mation. An optimization routine is then performed to get a valid set of cable tensions {T }, such that the sum135
of cable tensions is minimized.136

Finally, these cable tensions are used in the catenary equations to obtain the cable lengths. The code combines137
all the three steps to solve the Inverse Position Kinematics and Statics Problem138

This problem is a standard linear programming problem in four variables, with the static equilibrium equations139
used as constraints and bounds on the cable tensions based on necessary conditions (Ti > 0). Bounds not only140
help in obtaining non-negative solutions (a negative solution for cable tension means a cable must push, which141
is unacceptable), but also restrict the solution to be within practical limitations, avoiding extremely high cable142
tensions, which might break the cable or which cannot be supported by the1 1 sinh sinh xi zi zi L i iend L x i x143
i T T T g L x g T T ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 2 2 1 ( ) iend xi zi xi zi L i L z T T144
T T g L g ? ? ? ? ? ? ? ? ? ? ? 2 2 i x i z i T T T ? ? ( i T ? )145

as the 3-sphere intersection algorithm presented in [14], which is valid only for the straight-line model. When146
cable sag is considered, FPK suffers the same hindrances that the IPK problem faces, i.e. the kinematics and147
statics problems are coupled, highly nonlinear, and have to be solved iteratively. The methodology here involves148
finding components of cable tensions using cable lengths and tensions and subsequently finding the position of149
the robot.150

comprehensively, such that when the user enters a valid position, the program returns the cable tensions and151
lengths.152

7 d) Forward Position Kinematics (FPK) And Statics153

The FPK problem consists of finding the position of the robot when the cable lengths are given. There are154
analytical methods to solve this problem such . The five positions are graphically shown in Figure 6 and stated155
numerically in Table ??.156

Step 1 -Computation of Initial Values Similar to the IPK problem, in this step all the necessary input values157
and coordinate transformations are entered. The active cable lengths and their respective tensions, dimensional158
details of the robot footprint, and the geometrical and material properties of the cables are entered.159

Step 2 -Calculation of Position In this step, the static displacement equations of the catenary (6-8) along with160
the static equilibrium equations (3) are solved numerically along with necessary transformations of coordinate161
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10 B) TRAJECTORY EXAMPLE

system. This system of equations is also solved using the fsolve() command in MATLAB and its solution yields162
the XYZ position of the robot. In summary, the method consists of finding the initial values and necessary163
transformations. This is followed by solving a system of nonlinear equations whose solution gives the position.164
A major difference in this FPK problem, when compared to the inverse position problem, is the absence of165
optimization step, thus making it considerably faster to solve. However, both problems must be solved numerically166
(i.e. iteratively), when the effect of cable sag has to be considered.167

8 III.168

9 Results and Discussion169

Based on the methods described in the previous section, simulations were performed. This included simulating170
snapshot examples, a trajectory, and parameter variations. The results obtained and their interpretations are171
discussed in this section. The simulation results presented here use the values in Table 2. When the code for the172
inverse problem is executed with these snapshot points as inputs, the program calculates the cable lengths and173
tensions. Table ??: Cartesian coordinates of snapshot points First, the circular check is performed to verify and174
partly validate the results obtained. To serve this purpose, both the inverse and forward problems were solved175
for all the five snapshot points. The results are summarized in Table 4 and the circular check is verified (the176
highlighted columns have equal corresponding values). The cable length difference between the cable sag and177
straight model is calculated, followed by cable length error computation: (9) (10) The results of difference in178
cable lengths and their percentage error are plotted in Figure 7 and 8. i e i D L L ? ? 100% i e i i i L L ER L ?179
? ?180

Along with computation of cable lengths, the cable tensions were also calculated using two methods; Linear181
Programming (LP) and Pseudoinverse Method (PI). These two methods give different values for cable tensions182
as the objective functions in both cases are different. The resulting graph is shown in Figure 9. From the graphs,183
it can be observed that the difference in cable lengths obtained from the straight-line model and cable sag model184
ranges from 0 -2600 mm, which appears to be significantly high. However, when the relative error is computed,185
the range is 0-3 %. The current cable-suspended Robot System, unlike the FAST [1] or LCM [4], is not meant186
for accurate positioning of the end-effector, hence from the snapshot examples the effects of cable sag appears187
to be tolerable. But the five examples are a small sample size of random points; this necessitates running the188
program to simulate a trajectory.189

10 b) Trajectory Example190

A pick-and-place robot trajectory was simulated with a step size of 0.5 m as shown in Figure ??0. The ideal191
Cartesian coordinates and straight-line cable lengths for this trajectory are shown in Figures 11 and 12. Similar to192
the snapshot example, the cable length differences between the cable sag and straight-line models are calculated,193
followed by cable length error computatio. This is shown in Figure 13 and 14. As observed from the graphs,194
the difference in cable lengths obtained from the straight-line model and cable sag model ranges from 0-800 mm195
and the relative error ranges from 0-1.4%. These values further indicate that, although cable sag contributes to196
erroneous cable length computation, the error is low enough for purposes where high accuracy is not a prime197
requirement. The cable tensions were calculated for all the steps in the trajectory by both methods. This was198
followed by finding the difference between the summation of cable tensions obtained from linear programming199
(LP) and pseudoinverse (PI) methods From Figures 9, 15, and 16, a straightforward observation is that the two200
methods (LP and PI) give different solutions for cable tensions except when the cable lengths are equal. Except201
for this case, the linear programming method gives a solution such that the overall cable tensions are less, when202
compared to the corresponding pseudoinverse solution.203

Another major advantage of using linear programming is that we can restrict the solution space by using the204
bounds (Tmin and Tmax). For example, in this simulation Tmin was set to be equal to the weight of end-effector,205
which can be increased if the cable tensions are found to be insufficient to keep it taut and decreased if feasible.206
A similar argument can be made for Tmax. In this simulation, Tmax was set to be +? to get an idea of the207
maximum tension that a particular configuration reaches.208

The pseudoinverse method on the other hand does not give this flexibility. But a major merit of the209
pseudoinverse approach is that it has a closed-form analytical solution, unlike the iterative linear programming210
method.211

There are a few issues associated with the use of the LP method that require attention. The LP approach212
at times gives an abrupt increase or decrease in the tension solutions, thus not resulting in smooth curves for213
trajectories (see Figure 15). Another issue is that the LP solution at times tends to give a solution that is the214
lower bounds or upper bounds (T min or T max ) for one of the cables. Regardless, a valid solution can be215
obtained by this method and research is being done in this field to get smoother results with less iterations.216
Borgstrom et al. [15] show that linear programming can be suitably modified and, with the assistance of suitable217
control systems, make it more efficient and computationally less expensive. Considering all of these factors, use218
of linear programming for cable tension calculation is advisable. A summary of this discussion is provided in the219
form of a comparison chart in Table ??.220
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11 Linear Programming (LP)221

Moore Penrose Pseudoinverse (PI) Minimize the sum of the cable tensions; Min From the effects of cable sag, it222
is evident that if the cable weight increases, then cable sag increases, which in turn increases the error or cable223
length difference between the cable sag and straight-line models. Increasing cable diameter and / or cable material224
density increases cable weight. Based on the nature of the catenary equations, we expect a nonlinear increase225
in the difference in cable lengths when cable diameter and density is increased, as verified by the simulations226
of Figures 17 and 18. The trends for increasing cable density are very similar to increasing cable diameter and227
hence are not shown [16].228

Another important parameter is the end-effector mass. This is of special importance since it may vary during229
the operation of a cable-suspended robot. The variation of difference in cable length between the cable sag and230
straight-line models with an increase in end-effector mass is shown in Figures 19 and 20.231

Figure 19: Difference in cable length vs. end-effector mass for nominal position For this case there is an inverse232
relationship, i.e. the cable lengths differences decrease as the end-effector mass increases. This makes sense since,233
for a given cable size, larger end-effector mass will dominate more and more relative to the cable mass, meaning234
the straight-line model becomes more and more accurate.235

12 d) Effects of Footprint Dimensions236

As the size of the robot footprint increases, the cable length and its overall weight increases, thus increasing the237
cable sag and increasing the difference in cable length. Keeping the ratio of footprint length to width constant238
(L/W = constant), the area was increased in steps from 1 to 6 acres and the difference in cable lengths was239
computed. As expected, the cable length difference increases with an increase in area as shown in Figure 21.240
Complimentary to the previous case, we next study the effects of variation of length to width (L/W) ratio,241
keeping the area constant. For the nominal position, at a constant tower height, the variation of the Euclidean242
norm length depends on the footprint length L and width W. By the Pythagorean Theorem, this is dependent243
on the term . Also, the point where the length and width interchange their values, we expect the difference in244
cable lengths to remain the same. All these facts are verified by simulation results as shown in Figure 22. The245
straight-line model has been used in most cable-suspended robot systems when compared to the cable sag model.246
One of the main reasons for this is its simplicity and an analytical model which is easy to use, manipulate, and247
implement in control systems.248

The cable sag model which uses the catenary equations describes the profile of the cable more accurately249
when compared to the straight-line model. However, the methods required to handle this are highly complicated.250
Ultimately, any model has to be implemented in a real-time control system to manipulate the cable-suspended251
robot system. Hence, understanding the computational complexities involved is important.252

The catenary equations by themselves are highly nonlinear and are implicit. These equations have to be solved253
simultaneously with other equations by the accuracy of the solution, such approximations have to be made with254
more terms in a series expansion, hence requiring more data storage and ultimately increasing the computational255
cost.256

To investigate this issue, during the computation of cable lengths the number of iterations for both snapshot257
points and trajectory was recorded for the cable sag model. This information is presented in Figures 23 and 24.258
For comparison, the straight-line model requires no iteration, so the number of iterations for that case is always259
1.260

13 L W ?261

L / W numerical methods iteratively, which is not only time consuming, but may also involve iteration errors.262
This is a major drawback to the cable sag model. Another major impediment in using iterative methods is263
the truncation errors involved. These are especially dominant when exponential and hyperbolic terms are264
approximated using truncated infinite series, thus reducing the accuracy of the solution. To improve There265
is no definitive prediction that can be made on the number of iterations for a different trajectory or snapshot266
example, but the examples shown above are representative. They show that even for the simplest trajectories or267
snapshot points, each cable length computation requires a considerable number of iterations, ranging from 10-40.268
Thus, the cable sag model, despite being an accurate model, suffers from increased computational requirement.269
A relative comparison between the straight-line model and cable sag model is shown in Table 6.270

14 Iterative errors, truncation errors271

Solving the cable tension and length problems independently in separate steps (i.e. using the straight-line model)272
offers significant practical benefits. Firstly, it offers easy control system implementation, since ensuring positive273
cable tension is a necessary condition and cable sag computation can be circumvented if the corresponding error is274
within limits. Secondly, solving the steps separately greatly reduces the computational time. Additionally, if the275
steps are combined (i.e. using the cable-sag model) the problem becomes a constrained non-linear optimization276
problem (instead of a robust linear programming problem) which needs more sophisticated optimization routines277
and is not practical to implement in simple, cost-effective, real-time control system architectures.278
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17 CONTROL SYSTEM APPLICATION STRAIGHT-FORWARD DIFFICULT

15 IV. Conclusion and Recommendations279

The current research was conducted primarily with an intention of studying and understanding the qualitative280
and quantitative effects of cable sag on the calculation of cable lengths in cable-suspended robots. The research281
also involved studying the effects of cable density, cable diameter, robot footprint size, and computational282
requirements.283

16 H284

kinematics and statics including cable sag for large cable-suspended robots285

17 Control system application Straight-forward Difficult286

Based on the results of the snapshot and trajectory examples (for a 1-acre footprint robot), the relative error in287
cable lengths does not exceed 3%. The cable sag model suffers from computational complexities. On the other288
hand, the straight-line model is simple to manipulate, control, and implement practically. Considering all these289
factors and quantitative comparison results presented earlier, the straight-line model is preferred over the cable290
sag model at this particular scale (1-acre footprint, 4047 m2). In cases where the cable sag and errors are greater,291
the use of a Cartesian servo controller based on GPS sensing of the end-effector location is recommended.292

Cable tension distribution is an important aspect of cable-suspended robots and, based on the results of this293
research, linear programming serves as an efficient tool for computing and ensuring appropriate cable tensions in294
cables (the pseudoinverse-based method is much more common). An additional benefit of the LP method is to295
help in finding if a given cable tension range is acceptable for motion control of a cable-suspended robot system296
and is within the torque limitations of a winch / motor. Conversely, the simulation results could be used for297
appropriate choices in winch / motor design. 1 2 3 4 5 6

2

Figure 1: Figure 2 :
298
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2© 2017 Global Journals Inc. (US)
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55 2 T ? © 2017 Global Journals Inc. (US)
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Figure 2: Figure 3 :

Figure 3:
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Figure 4: Figure 4 :
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Figure 6: 1 ?Figure 5 :
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Figure 7: Figure 6 :

7

Figure 8: Figure 7 :
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Figure 9: Figure 8 :
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Figure 10:
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Figure 11: Figure 9 :
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Figure 12: Figure 10 :Figure 11 :
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Figure 13: Figure 13 :Figure 14 :
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Figure 14: Figure 15 :Figure 16 :
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Figure 15: Table 5 :
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Figure 16: Figure 17 :

Figure 17: H
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Figure 18: Figure 18 :
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Figure 19: Figure 20 :
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Figure 20: Figure 21 :
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Figure 21: Figure 22 :
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Figure 22: Figure 23 :
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Figure 23: Figure 24 :

Figure 24:
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Figure 25:
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Figure 26:
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Figure 27:

2

Variable Value Notes
Length (L) 50 m 1 acre footprint
Width (W) 80.9 m
Pole Height (h) 7.6 m All poles are same height
End-effector mass (m) 258.6 kg -
Cable Diameter (d) 20 mm -
Density of the Cable (?) 7860 kg/m 3 Density of a steel cable
External Force ( A F) {0} 0 xyz vector
Tension Lower Limit (T min ) 2537 N -
Tension Higher Limit (T max ) + ? To find the maximum

force
? 0 0 0 ?

Figure 28: Table 2 :
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4

Point No. X End-effector position (m) Y Z
1 0 0 0
2 -29.4 10.2 1.5
3 -33.0 -

18.8
2.0

4 28.5 -
18.0

3.1

5 35.0 22.0 5.0
Inverse Position Solution Forward Position Solution

No.Input Output Input Output
Point L 1 L

2
L 3 L 4 L 1 L 2 L

3
L
4

Point

0, 0,
1 0, 56.70 56.70 56.70 56.70 56.70 56.70 56.70 56.70 0,

0 0
-29.4, -29.4,

2 10.2, 45.25 27.72 81.38 87.87 45.25 27.72 81.38 87.87 10.2,
1.5 1.5
-33, -33,

3 -18.8, 19.14 52.46 96.41 83.22 19.14 52.46 96.41 83.22 -18.8,
2 2
28.5, 28.5,

4 -18, 77.75 90.26 53.11 22.75 77.75 90.26 53.11 22.75 -18,
3.1 3.1
35, 35,

5 22, 97.64 84.7 14.93 54.92 97.64 84.7 14.93 54.92 22,
5 5

[Note: Global Journal of Researches in Engineering ( ) Volume XVII Issue I Version I]

Figure 29: Table 4 :
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6

Criteria Straight-line model Cable sag model
Governing
equations

Euclidean norm between Catenary equations

two points
Type of model Approximate model Accurate model
Kinematics and
Statics

Analytical solution for Both problems are coupled

both; problems solved and there is no analytical
independently. solution.

Nature of solutions Analytical Numerical
Mass of the cable Neglected Included
Areas of applica-
tion

Small scale robots and Any cable-suspended

where accuracy is not a robot system, especially
prime concern. large outdoor systems.

Errors involved Cable length computation
errors

Figure 30: Table 6 :
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