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Abstract-

 

In this work, the most common problem of the 
modern power system named optimal power flow (OPF) is 
optimized using the novel hybrid meta-heuristic optimization 
algorithm Particle Swarm Optimization-Moth Flame Optimizer 
(HPSO-MFO) method. Hybrid PSO-MFO is a combination of 
PSO used for exploitation phase and MFO for exploration 
phase in an uncertain environment. Position and Speed of 
particle are reorganized according to Moth and flame location 
in each iteration. The hybrid PSO-MFO method

 

has a fast 
convergence rate due to the use of roulette wheel selection 
method. For the OPF solution, standard IEEE-30 bus test 
system is used. The hybrid PSO-MFO method

 

is implemented 
to solve the proposed problem. The problems considered in 
the OPF are fuel cost reduction, Voltage profile improvement, 
Voltage stability enhancement, Active power loss minimization 
and Reactive power loss minimization. The results obtained 
with hybrid PSO-MFO method

 

is compared with other 
techniques such as Particle Swarm Optimization

 

(PSO) and 
Moth Flame Optimizer

 

(MFO). Results show that hybrid PSO-
MFO gives better optimization values as compared with PSO 
and MFO which verifies the effectiveness of the suggested 
algorithm.

 

Keywords:

 

optimal power flow; voltage stability; power 
system; hybrid PSO-MFO; constraints.

 

I.

 

Introduction

 

t the present time, The Optimal power flow (OPF) 
is a very significant problem and most focused 
objective for power system planning and 

operation [1]. The OPF is the elementary tool which 
permits the utilities to identify the economic operational 
and secure states in the system [2]. The OPF problem is 
one of the utmost operating desires of the electrical 
power system [3]. The prior function of OPF problem is 
to evaluate the optimum operational state for

 

Bus 
system by minimizing each objective function within the 
limits of the operational constraints like equality 
constraints and inequality constraints [4]. Hence, the 
optimal power flow problem can be defined as an 
extremely non-linear and non-convex multimodal 
optimization problem [5].

 

From the past few years too many optimization 
techniques were used for the solution of the Optimal 
Power Flow (OPF) problem. Some traditional methods 

used to solve the proposed problem have some 
limitations like converging at local optima and so they 
are not suitable for binary or integer problems or to deal 
with the lack of convexity, differentiability, and continuity 
[6]. Hence, these techniques are not suitable for the 
actual OPF situation. All these limitations are overcome 
by metaheuristic optimization methods. Some of these 
methods are [7-10]: genetic algorithm (GA) [11], hybrid 
genetic algorithm (HGA) [12], enhanced genetic 
algorithm (EGA) [13-14], differential evolution algorithm 
(DEA) [15-16], artificial neural network (ANN) [17], 
particle swarm optimization algorithm (PSO) [18], tabu 
search algorithm (TSA) [19], gravitational search 
algorithm (GSA) [20], biogeography based optimization 
(BBO) [21], harmony search algorithm (HSA) [22], krill 
herd algorithm (KHA) [23], cuckoo search algorithm 
(CSA) [24], ant colony algorithm (ACO) [25], bat 
optimization algorithm (BOA) [26], Ant-lion optimizer 
(ALO) [27-28] and Multi-Verse optimizer (MVO) [29]. 

In the present work, a newly introduced hybrid 
meta-heuristic optimization technique named Hybrid 
Particle Swarm Optimization-Moth Flame Optimizer 
(HPSO-MFO) is applied to solve the Optimal Power Flow 
problem. HPSO-MFO comprises of best characteristic 
of both Particle Swarm Optimization [30] and Moth-
Flame Optimizer [31-32] algorithm. The capabilities of 
HPSO-MFO are finding the global solution, fast 
convergence rate due to the use of roulette wheel 
selection, can handle continuous and discrete 
optimization problems. 

According to No Free Lunch Theorem 
[27,29,30], particular meta-heuristic algorithm is not best 
for every problem. So, we considered HPSO-MFO for 
continues optimal power flow problem based on No 
Free Lunch Theorem. In this work, the HPSO-MFO is 
presented to standard IEEE-30 bus test system [33] to 
solve the OPF [34-37] problem. There are five objective 
cases considered in this paper that have to be optimize 
using HPSO-MFO technique are Fuel Cost Reduction, 
Voltage Stability Improvement, Voltage Deviation 
Minimization, Active Power Loss Minimization and 
Reactive Power Loss Minimization. The results show the 
optimal adjustments of control variables in accordance 
with their limits. The results obtained using HPSO-MFO 
technique has been compared with Particle Swarm 
Optimisation (PSO) and Moth Flame Optimizer (MFO) 
techniques. The results show that HPSO-MFO gives 
better optimization values as compared to other 
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methods which prove the effectiveness of the proposed 
algorithm. 

This paper is summarized as follow: After the 
first section of the introduction, the second section 
concentrates on concepts and key steps of standard 
PSO and MFO techniques and the proposed Hybrid 
PSO-MFO technique. The third section presents the 
formulation of Optimal Power Flow problem. Next, we 
apply HPSO-MFO to solve OPF problem on IEEE-30 
bus system in order to optimize the operating conditions 
of the power system. Finally, the results and conclusion 
are drawn in the last section. 

II. Standard PSO and Standard MFO 

a) Particle Swarm Optimization 
The particle swarm optimization algorithm 

(PSO) was discovered by James Kennedy and Russell 
C. Eberhart in 1995 [30]. This algorithm is inspired by 
the simulation of social psychological expression of 
birds and fishes. PSO includes two terms 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
and  𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . Position and velocity are updated over the 
course of iteration from these mathematical equations: 

1
1 1 2 2( ) ( )t t t t t t

ij ijv wv c R Pbest X c R Gbest X+ = + − + −     
(1)

       
                                                             

 

1 1t t tX X v+ += + ( )i 1,  2...NP=
 
And ( )j 1,  2...NG=

   
 (2) 

Where 

           

max min
max ( )*

max
w w iterationw w

iteration
−

= − , 
     

(3)
 

wmax=0.4 and wmin =0.9. 
t
ijv , 

1t
ijv +

is the velocity of ajth member of anith particle at 
iteration number (t) and (t+1). (Usually C1=C2=2), r1 
and r2 Random number (0, 1). 

b) Moth-Flame Optimizer 
A novel nature–inspired Moth-Flame 

optimization algorithm [31] based on the transverse 
orientation of Moths in space.  Transverse orientation for 
navigation uses a constant angle by Moths with respect 
to Moon to fly in straight direction in night. In MFO 
algorithm that Moths fly around flames in a Logarithmic 
spiral way and finally converges towards the flame. 
Spiral way expresses the exploration area and it 
guarantees to exploit the optimum solution [31]: 

Moth-Flame optimizer is first introduced by 
Seyedali Mirjalili in 2015 [31]. MFO is a population -
based algorithm; we represent the set of moths in a 
matrix: 

1,1 1,2 1,

2,1, 2,2 2,

,1 ,2 ,

, , ,
, , 

, ,

d

d

n n n d

m m m
m m m

M

m m m

… 
 … 
 =
 
 
 … 

 

 

 
(4)

 

Where n represents a number of moths and d 
represents a number of variables (dimension). 

For all the moths, we also assume that there is 
an array for storing the corresponding fitness values as 
follows: 

1

2

.

.
n

OM
OM

OM

OM

 
 
 
 =
 
 
  

��                                                            (5) 

Where n is the number of moths. 

Note that the fitness value is the return value of 
the fitness (objective) function for each moth. The 
position vector (first row in the matrix M for instance) of 
each moth is passed to the fitness function and the 
output of the fitness function is assigned to the 
corresponding moth as its fitness function (OM1in the 
matrix OM for instance).

 

Other key components in the proposed 
algorithm are flames. We consider a matrix similar to the 
moth matrix [31]:

 

             

1, 1 1, 2 1,

2, 1 2, 2 2,

, 1 , 2 ,

. .

. .
. . . . .
. . . . .

. .

d

d

n n n d

FL FL FL
FL FL FL

F

FL FL FL

 
 
 
 =
 
 
  

          
 
(6)

 

Where n

 

shows a number of moths and d

 

represents a number of variables (dimension).

 

We know that the dimension of M and F arrays 
are equal. For the flames, we also assume that there is 
an array for storing the corresponding fitness values 
[31]:

 

                          

1

2

.

.
n

OFL
OFL

OF

OFL

 
 
 
 =
 
 
                                  

 

(7)

 

Where n

 

is the number of moths.

 

Here, it must be noted that moths and flames 
both are solutions. The variance

 

among them is the 
manner we treat and update them, in the iteration. The 
moths are genuine search agents that move all over the 
search space

 

while flames are the finest

 

location of 
moths that achieves so far. Therefore, every moth 
searches around a flame and updates it in the case of 
discovering an

 

enhanced solution. With this mechanism, 
a moth never loses its best solution.
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The MFO algorithm is three rows that 
approximate the global solution of the problems defined 
like as follows [31]: 

                             
( )MFO  I,  P,  T=                         (8) 

I is the function that yields an uncertain 
population of moths and corresponding fitness values. 
The methodical model of this function is as follows: 

                          
{ }: ,I M OMφ →                             (9) 

The P function, which is the main function, 
expresses the moths all over the search space. This 
function receives the matrix of M and takes back its 
updated one at every time with each iteration. 

                                :P M M→                               (10) 

The T returns true and false according to the 
termination Criterion satisfaction: 

                       
{ }: ,T M true false→

                     
 (11) 

In order to mathematical model this behavior, 
we change the location of each Moth regarding a flame 
with the following equation: 

                           
  ( , )i i jM S M F=                         (12) 

Where   indicate the moth,  indicates 
the flame and S is the spiral function. 

In this equation flame FLn,d(search agent * 
dimension) of equation (6) modifies the moth matrix of 
equation (12). 

Considering these points, we define a log 
(logarithmic scale) spiral for the MFO algorithm as 
follows [31]: 

           ( ) ( ), * cos 2bt
i j i jS M F D e t Fπ= +           (13) 

Where: iD expresses the distance of the moth 

for thejth flame, b is a constant for expressing the shape 
of the log (logarithmic) spiral, and t is a random value in 
[-1, 1]. 

                                
i j iD F M= −

                       
   (14) 

Where: iM  represent the ith moth, Fj represents 
the jth flame, and where iD expresses the path length of 
the ithmoth for the jth flame. 

The no. of flames are adaptively reduced with 
the iterations. We use the following formulation: 

          

1 * Nflameno round N l
T
− = − 

 
             (15) 

Where l is the present number of iteration, N is 
the maximum number of flames, and Tshows the 
maximum number of iterations. 

Fig. 1: A conceptual model of position updating of a moth around a flame
 

We utilize Quick
 
sort

 
algorithm,

 
the

 
sorting

 
is

 
in

 

the
 

( log )o n n  best
 

and 2( )o n  worst
 

condition,
 respectively.

 
Considering

 
the P function,

 
so,

 
total

 

computational
 
complexity

 
is

 
defined

 
as

 
follows:

 

iM thi jF
thj
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( ) ( ) ( )( )( )O MFO   O t O Quick sort  O position update= +
2 2( ) ( ( * )) ( )O MFO O t n n d O tn tnd= + = +        (16)

Where n shows a number of moths, t represents 
maximum no. of iterations, and d represents no. of 
variables. 

c) The Hybrid PSO-MFO Algorithm 
The drawback of PSO is the limitation to cover 

small search space while solving higher order or 
complex design problem due to constant inertia weight. 
This problem can be tackled with Hybrid PSO-MFO as it 
extracts the quality characteristics of both PSO and 
MFO. Moth-Flame Optimizer is used for exploration 
phase as it uses logarithmic spiral function so it covers a 
broader area in uncertain search space. Because both 
of the algorithms are randomization techniques so we 
use term uncertain search space during the 
computation over the course of iteration from starting to 
maximum iteration limit. Exploration phase means the 
capability of an algorithm to try out a large number of 
possible solutions. The position of particle that is 

responsible for finding the optimum solution to the 
complex non-linear problem is replaced with the position 
of Moths that is equivalent to the position of the particle 
but highly efficient to move solution towards optimal 
one.  MFO directs the particles faster towards optimal 
value, reduces computational time. As we know that that 
PSO is a well-known algorithm that exploits the best 
possible solution for its unknown search space. So the 
combination of best characteristic (exploration with MFO 
and exploitation with PSO) guarantees to obtain the best 
possible optimal solution of the problem that also avoids 
local stagnation or local optima of the problem. 

A set of Hybrid PSO-MFO is the combination of 
separate PSO and MFO. Hybrid PSO-MFO merges the 
best strength of both PSO in exploitation and MFO in 
exploration phase towards the targeted optimum 
solution.  

                                          
1

1 1 2 2( _ ) ( )t t t t t t
ij ijv wv c R Moth Pos X c R Gbest X+ = + − + −

                                  
(17) 

III.
 

Optimal
 
Power

 
Flow

 
Problem

 

Formulation
 

As specified before, OPF is
 

the optimized 
problem of power flow that provides the optimum values 

of independent variables by optimizing a predefined 
objective function with respect to the operating bounds 
of the system [1]. The OPF problem can be

 

mathematically expressed as a non-linear constrained 
optimization problem as follows [1]:

 

Minimize                                                                                  f(a,b)                                                                             (18)
 

Subject to                                                                             s(a,b)=0                                                                          (19)
 

And                                                                                       h(a,b)≤0                                                                          (20)
 

Where, a=vector of state variables, b=vector of control variables, f(a,b)=objective function, s(a,b)=different equality 
constraints set, h(a,b)=different inequality constraints set.

 

The evaluation function for the OPF problem is given as follows:
 

Evaluation Function = Search Agents * Maximum Iterations = 40*500= 20000
 

a)

 
Variables

 

i.

 
Control variables

 

The control variables should be adjusted to 
fulfill the power flow equations. For the OPF problem, 
the set for control variables can be formulated as [1], 
[4]:

 

2 1 1 1[ ], , , NTrNGen NGen NCom

T
G G G G C CP P V V Qb Q T T= … … … … (21)

 

Where,

 

GP = Real power output at the PV(Generator)

 

buses 

excluding at the slack (Reference) bus.

 

GV = Magnitude of Voltage at PV (Generator) buses.

 

CQ = shunt VAR

 

compensation.

 

T = tap settings of the transformer.

 

NGen, NTr, NCom= No. of generator units, No. of tap 
changing transformers and No. of shunt VAR

 

compensation devices, respectively.

 

The control variables are the decision variables 
of the power system which could be adjusted as per the 
requirement.

 

ii.

 
State variables

 

There is a need of variables for all OPF 
formulations for the characterization of the Electrical 
Power Engineering state of the system. So, the state 
variables can be formulated as [1], [4]:

 

11 1 1
][ , , ,

NLB NGen

T
l lL LG G G Nline

P V V Q Q S Sa = … … …
 
(22)

 

Where, 

 

1GP = Real power generation at reference bus.
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LV = Magnitude of Voltage at Loadbuses.  

GQ =  Reactive power generation of all generators. 

lS = Transmission line loading. 

NLB, Nline= No. of PQ buses and the No. of 
transmission lines, respectively. 

b) Constraints 
There are two OPF constraints named inequality 

and equality constraints. These constraints are 
explained in the sections given below. 

i. Equality constraints  
The physical condition of the power system is 

described by the equality constraints of the system. 
These equality constraints are basically the power flow 
equations which can be explained as follows [1], [4].  

a. Real power constraints 
The real power constraints can be formulated as follows: 

[ ( ) ( )] 0
NB

i j ij ij ijDiGi
J i

ijP P V V G Cos B Sinδ δ
=

− − + =∑ (23)
 

b.     Reactive power constraints 

 

[ ( ) ( )] 0
NB

i j ij ij ij ijDiGi
J i

Q Q V V G Cos B Sinδ δ
=

− − + =∑ (24)

 

Where, jij iδδ δ= −
 

is the phase angle of 

voltage between buses i and j.NB= total No. of buses, 

GP = real power output, GQ = reactive power output, 

DP = active power load demand, DQ = reactive power 

load demand, ijB and ijG = elements of the 

admittance matrix ( )ij ij ijY G jB= +  shows the 
susceptance and conductance between bus i and j, 
respectively, ijY  is the mutual admittance between 

buses I and j.
 

ii. Inequality constraints  
The boundaries of power system devices 

together with the bounds created to surety system 
security are given by inequality constraints of the OPF 
[4], [5]. 

a. Generator constraints  
For all generating units including the reference 

bus: voltage magnitude, real power and reactive power 

outputs should be constrained within its minimum and 
maximum bounds as given below [27]: 

               
,

i i i

upperl er
G

o
G G

wV V V≤ ≤ i=1,…, NGen    (25) 

           i i i

upperlower
G G GP P P≤ ≤   , i=1,…, NGen       (26) 

         i i i

upperlower
G G GQ Q Q≤ ≤  , i=1,…, NGen        (27) 

b. Transformer constraints 
Tap settings of transformer should be 

constrained inside their stated minimum and maximum 
bounds as follows [27]: 

       i i i

upperlower
G G GT T T≤ ≤ ,   i=1,…,NGen             (28) 

c. Shunt VAR compensator constraints  
Shunt VAR compensation devices need to be 

constrained within its minimum and maximum bounds 
as given below [27]: 

       i i i

upperlower
C GC CQ Q Q≤ ≤ ,   i=1,…,NGen        (29) 

d. Security constraints  
These comprise the limits of a magnitude of the 

voltage at PQ buses and loadings on the transmission 
line. Voltage for every PQ bus should be limited by their 
minimum and maximum operational bounds. Line flow 
over each line should not exceed its maximum loading 
limit. So, these limitations can be mathematically 
expressed as follows [27]: 

            i i i

lower upper
L L LV V V≤ ≤ ,   i=1,…,NGen          (30) 

                        i i

upper
l lS S≤ ,   i=1,…,Nline                 (31) 

The control variables are self-constraint. The 
inequality constrained of state variables comprises the 
magnitude of PQ bus voltage, active power production 
at reference bus, reactive power production and 
loadings on line may be encompassed into an objective 
function in terms of quadratic penalty terms. In which, 
the penalty factor is multiplied by the square of the 
indifference value of state variables and is included in 
the objective function and any impractical result 
achieved is declined [27]. 

Penalty function may be mathematically 
formulated as follows:  

                  
( )1 1

2
2 2

1 1 0
( ) ( )

i i i i

NLB NGen Nline

aug P V L LG G Q S l l
i i i

lim lim maxJ J P P V V S S
= = =

= +∂ − +∂ − +∂ +∂ −∑ ∑ ∑
          

(32)

Where, , ,
 

,P V Q S =∂ ∂ ∂ ∂
 
penalty factors 

 

limU = Boundary value of the state variable U. 
 

If U is greater than the maximum limit, limU
takings the value of this one, if U

 
is lesser than the 

© 2017    Global Journals Inc.  (US)

      

G
lo
ba

l 
J o

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
X
V
II
 I
ss
ue

 V
 V

er
si
on

 I
  

  
  
 

  

19

Y
e
a
r

20
17

F

Optimal Power Flow using a hybrid Particle Swarm Optimizer with Moth Flame Optimizer

The reactive power constraints can be 
formulated as follows:



minimum limit limU takings the value of that limit. This 

can be shown as follows [27]: 

               

 ;
 ; 

upper upper
lim

lower lower

U U
U U

U
U

U
=  >


<                  

(33) 

IV. Application and Results 

The PSO-MFO technique has been 
implemented for the OPF solution for standard IEEE 30-
bus test system and for a number of cases with 
dissimilar objective functions. The used software 
program is written in MATLAB R2014b computing 
surroundings and used on a 2.60 GHz i5 PC with 4 GB 
RAM. In this work the HPSO-MFO population size is 
selected to be 40. 

a) IEEE 30-bus test system 
With the purpose of elucidating the strength of 

the suggested HPSO-MFO technique, it has been 
verified on the standard IEEE 30-bus test system as 
displays in fig. 2. The standard IEEE 30-bus test system 
selected in this work has the following features[6], [33]:  
NGen = No. of generators = 6 at buses 1,2,5,8,11 and 
13, NTr = No. of regulating transformers having off-
nominal tap ratio = 4 between buses 4-12, 6-9, 6-10 
and 28-27, NCom = No. of shunt VAR Compensators = 
9 at buses 10,12,15,17,20,21,23,24 and 29 and NLB = 
No. of load buses = 24. 

In addition, generator cost coefficient data, the 
line data, bus data, and the upper and lower bounds for 
the control variables are specified in [33]. 

In given test system, five diverse cases have 
been considered for various purposes and all the 
acquired outcomes are given in Tables 3, 5, 7, 9, 11. 
The very first column of this tables denotes the optimal 
values of control variables found where: 

- PG1 through PG6 and VG1 through VG6 signifies the 
power and voltages of generator 1 to generator 6. 

- T4-12, T6-9, T6-10 and T28-27 are the transformer tap 
settings comprised between buses 4-12, 6-9, 6-10 
and 28-27. 

- QC10, QC12, QC15, QC17, QC20, QC21, QC23, QC24 and QC29 
denote the shunt VAR compensators coupled at 
buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. 

Further, fuel cost ($/hr), real power losses (MW), 
reactive power losses (MVAR), voltage deviation and 
Lmax represent the total generation fuel cost of the 
system, the total real power losses, the total reactive 
power losses, the load voltages deviation from 1 and the 
stability index, respectively. Other particulars for these 
outcomes will be specified in the next sections.   

The control parameters for HPSO-MFO, MFO, 
PSO used in this problem are given in table 1. 

In table 1, no. of variables (dim) shows the six 
no. of generators used in the 30 bus system. It gives the 
optimization values for different cases as they depends 
on the decision variables. In all 5 cases, results are the 
average value obtained after 10 number of runs. 

 

Table 1: Control parameters used in PSO-MFO, MFO and PSO 

Sr. No. Parameters Value 

1 Population (No. of Search agents) (N) 40 

2 Maximum iterations count (t) 500 

3 No. of Variables (dim) 25 

4 Random Number [0,1] 

5 source acceleration coefficient (𝑐𝑐_1, 𝑐𝑐_2) 2 

6 weighting function (w) 0.65 
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Fig. 2: Single line diagram of IEEE 30-bus test system  

Case 1: Minimization of generation fuel cost. 
The very common OPF objective that is 

generation fuel cost reduction is considered in the case 
1. Therefore, the objective function Y indicates the 
complete fuel cost of total generating units and it is 
calculated by following equation [1]: 

                             1
($ / )

NGen

i
i

Y f hr
=

= ∑
                        

(34) 

Where, if is the total fuel cost of thi generator. 

if , may be formulated as follow: 

                   
2 ($ / )i i i Gi i Gif u v P w P hr= + +                (35) 

Where, iu , iv and iw are the simple, the linear 
and the quadratic cost coefficients of the thi generator, 
respectively. The cost coefficients values are specified in 
[33]. 

The variation of the total fuel cost with different 
algorithms over iterations is presented in fig. 2. It 

demonstrates that the suggested method has 
outstanding convergence characteristics. The 
comparison of fuel cost obtained with different methods 
is shown in table 2 which displays that the results 
obtained by PSO-MFO are better than the other 
methods. The optimal values of control variables 
obtained by different algorithms for case 1 are specified 
in Table 3. By means of the same settings i.e. control 
variables boundaries, initial conditions and system data, 
the results achieved in case 1 with the PSO-MFO 
technique are compared to some other methods and it 
display that the total fuel cost is greatly reduced 
compared to the initial case [6]. Quantitatively, it is 
reduced from 901.951$/hr to 799.056$/hr. 
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Fig. 3:
 
Fuel cost variations with different algorithms

 
Table 2:

 
Comparison of fuel cost obtained with different algorithms

 
Method Fuel Cost ($/hr) Method Description 

HPSO-MFO
 

799.056
 

Hybrid Particle Swarm Optimization-Moth Flame Optimizer
 

MFO
 

799.072
 

Moth Flame Optimizer
 

PSO
 

799.704
 

Particle Swarm Optimization
 

DE
 

799.289
 

Differential Evolution [15]
 

BHBO
 

799.921
 

Black Hole-Based  Optimization [6]
 

Table 3: Optimal values of control variables for case 1 with different algorithms 

Control Variable Min  Max  Initial  HPSO-MFO  MFO  PSO  
PG1 50  200  99.2230  178.133  177.055  177.105  
PG2 20  80  80  48.956  48.698  48.748  
PG5 15  50  50  21.385  21.304  21.318  

PG8 10  35  20  21.706  21.084  20.986  

PG11 10  30  20  10.000  11.883  12.049  

PG13 12  40  20  12.000  12.000  12.000  

VG1 0.95  1.1  1.05  1.100  1.100  1.100  

VG2 0.95  1.1  1.04  1.088  1.088  1.088  

VG5 0.95  1.1  1.01  1.062  1.062  1.061  

VG8 0.95  1.1  1.01  1.070  1.069  1.070  

VG11 0.95  1.1  1.05  1.100  1.100  1.100  

VG13 0.95  1.1  1.05  1.100  1.100  1.100  

T4-12 0  1.1  1.078  0.939  1.044  0.976  

T6-9 0  1.1  1.069  1.100  0.900  0.975  
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T6-10 0 1.1 1.032 1.021 0.985 1.015 

T28-27 0 1.1 1.068 0.978 0.965 0.966 
QC10 0 5 0 5.000 5.000 2.353 
QC12 0 5 0 5.000 5.000 5.000 

QC15 0 5 0 5.000 5.000 0.000 

QC17 0 5 0 5.000 5.000 0.689 

QC20 0 5 0 5.000 5.000 0.003 

QC21 0 5 0 5.000 5.000 5.000 

QC23 0 5 0 5.000 4.999 0.000 

QC24 0 5 0 0.000 5.000 0.000 

QC29 0 5 0 3.033 2.725 0.000 

Fuel Cost($/hr) - - 901.951 799.056 799.072 799.704 

Case 2: Voltage profile improvement 
Bus voltage is considered as most essential 

and important security and service excellence indices 
[6]. Here the goal is to reduce the fuel cost and increase 
voltage profile simultaneously by reducing the voltage 
deviation of PQ (load) buses from the unity 1.0 p.u. 

Hence, the objective function may be 
formulated by following equation [4]: 

                   cost voltage deviationY Y wY −= +
                 

(36) 

Where, w is an appropriate weighting factor, to 
be chosen by the user to offer a weight or importance to 
each one of the two terms of the objective function. 

costY and voltage deviationY − are specified as follows [4]: 

                            
cos

1

NGen

t i
i

Y f
=

= ∑    (37) 

                  
_

1
| 1.0 |

NGen

voltage deviation i
i

Y V
=

= −∑
             

(38) 

The variation of voltage deviation with different 
algorithms over iterations is sketched in fig. 3. It 
demonstrates that the suggested method has good 
convergence characteristics. The statistical values of 
voltage deviation obtained with different methods are 
shown in table 4 which display that the results obtained 
by PSO-MFO are better than the other methods 
excluding GSA method. The optimal values of control 
variables obtained by different algorithms for case 2 are 
specified in Table 5. By means of the same settings the 
results achieved in case 2 with the PSO-MFO technique 
are compared to some other methods and it display that 
the voltage deviation is greatly reduced compared to the 
initial case [6]. It has been made known that the voltage 
deviation is reduced from 1.1496 p.u. to 0.1056p.u. 
using PSO-MFO technique.GSA [2] gives better result 
than the HPSO-MFO method only in case of voltage 
deviation among five cases. Due to No Free Lunch 
(NFL) theorem proves that no one can propose an 
algorithm for solving all optimization problems. This 

means that the success of an algorithm in solving a 
specific set of problems does not guarantee solving all 
optimization problems with different type and nature. 
NFL makes this field of study highly active which results 
in enhancing current approaches and proposing new 
meta-heuristics every year. This also motivates our 
attempts to develop a new Hybrid meta-heuristic for 
solving OPF Problem. 
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Fig. 4: Voltage deviation minimization with different algorithms 

Table 4: Comparison of voltage deviations obtained with different algorithms 

Method Voltage Deviation (p.u) Method Description 

HPSO-MFO 0.1056 Hybrid Particle Swarm Optimization-Moth Flame Optimizer 

MFO 0.1065 Moth Flame Optimizer 

PSO 0.1506 Particle Swarm Optimization 

GSA 0.0932 Gravitational Search Algorithm [2] 

DE 0.1357 Differential Evolution [15] 

BHBO 0.1262 Black Hole- Based  Optimization [6] 

Table 5: Optimal values of control variables for case 2 with different algorithms 

Control Variable Min  Max  Initial  HPSO-MFO  MFO  PSO  

PG1
 50

 
200

 
99.2230

 
177.650

 
180.212

 
175.922

 

PG2
 

20
 

80
 

80
 

49.092
 

49.584
 

46.389
 

PG5
 

15
 

50
 

50
 

15.000
 

15.000
 

21.597
 

PG8
 

10
 

35
 

20
 

10.000
 

24.349
 

19.396
 

PG11
 

10
 

30
 

20
 

30.000
 

12.657
 

17.656
 

PG13
 

12
 

40
 

20
 

12.000
 

12.000
 

12.000
 

VG1
 

0.95
 

1.1
 

1.05
 

1.033
 

1.033
 

1.047
 

VG2
 

0.95
 

1.1
 

1.04
 

1.017
 

1.017
 

1.034
 

VG5
 

0.95
 

1.1
 

1.01
 

1.015
 

1.005
 

0.999
 

VG8
 

0.95
 

1.1
 

1.01
 

0.997
 

0.999
 

1.005
 

VG11
 

0.95
 

1.1
 

1.05
 

1.047
 

1.071
 

0.999
 

VG13
 

0.95
 

1.1
 

1.05
 

1.016
 

1.052
 

1.018
 

T4-12
 

0
 

1.1
 

1.078
 

1.065
 

1.100
 

0.954
 

T6-9
 

0
 

1.1
 

1.069
 

0.914
 

0.900
 

0.969
 

T6-10
 

0
 

1.1
 

1.032
 

0.973
 

1.072
 

0.989
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T28-27
 

0
 

1.1
 

1.068
 

0.960
 

0.960
 

0.960
 

QC10
 

0
 

5
 

0 4.080
 

5.000
 

3.948
 

QC12
 

0
 

5
 

0 0.165
 

0.000
 

1.765
 

QC15
 

0
 

5
 

0 5.000
 

5.000
 

4.844
 

QC17
 

0
 

5
 

0 5.000
 

0.000
 

3.075
 

QC20
 

0
 

5
 

0 5.000
 

5.000
 

4.687
 

QC21
 

0
 

5
 

0 5.000
 

5.000
 

4.948
 

QC23
 

0
 

5
 

0 0.000
 

5.000
 

1.623
 

QC24
 

0
 

5
 

0 5.000
 

5.000
 

3.559
 

QC29
 

0
 

5
 

0 2.248
 

1.315
 

2.034
 

Vd
 

-
 

-
 

1.1496
 

0.1056
 

0.1065
 

0.1506
 

Case 3: Voltage stability enhancement  

Presently, the transmission systems are 
enforced to work nearby their safety bounds, because of 
cost-effective and environmental causes. One of the 
significant characteristics of the system is its capability 
to retain continuously tolerable bus voltages to each 
node beneath standard operational environments, next 
to the rise in load, as soon as the system is being 
affected by disturbance. The unoptimized control 
variables may cause increasing and unmanageable 
voltage drop causing a tremendous voltage collapse 
[6]. Hence, voltage stability is inviting ever more 
attention. By using various techniques to evaluate the 
margin of voltage stability, Glavitch and Kessel have 
introduced a voltage stability index called L-index 
depends on the viability of load flow equations for every 
node [34]. The L-index of a bus shows the probability of 
voltage collapse circumstance for that particular bus. It 
differs between 0 and 1 equivalent to zero load and 
voltage collapse, respectively. 

For the given system with NB, N Gen and NLB 

buses signifying the total no. of buses, the total no. of 
generator buses and the total no. of load buses, 
respectively. The buses can be distinct as PV (generator) 

buses at the head and PQ (load) buses at the tail as 
follows [4]: 

           
[ ]L L LL LG L

bus
G G GL GG G

I V Y Y V
Y

I V Y Y V
= =

       
       
       

 
  (39)

 

Where, LLY , LGY , GLY
 
and GGY are co-matrix of 

busY . The subsequent hybrid system of equations can 

be expressed as:
 

          
[ ]L L LL LG L

G G GL GG G

H
I V V
V I H H I

H H
= =

       
       
       

         (40)
 

Where matrix H

 

is produced by the partially 
inverting of busY , LLH , LGH , GLH and GGH are the co- 

matrix of H, GV , GI , LV
 
and

 

LI are voltage and current 
vector of Generator buses and load buses, respectively.

 
 

The matrix H is given by: 

   

[ ] 1LL LL LG
LL LL

GL LL GG GL LL LG

Z Z Y
H Z Y

Y Z Y Y Z Y
−− 

= = − 
  (41) 

Hence, the L-index denoted by jL of bus j is 

represented as follows: 

              
1

1 i
j LG

i j
ji

NGen vL H
v=

= − ∑ j=1,2…,NL         (42) 

Hence, the stability of the whole system is 
described by a global indicator maxL  which is given by 

[6], 

           max max( )jL L=                 j=1,2…,NL         (43) 

The system is more stable as the value of maxL  

is lower. 

The voltage stability can be enhanced by 
reducing the value of voltage stability indicator L-index at 
every bus of the system. [6]. 

Thus, the objective function may be given as follows: 

        cos _ _t voltage Stability EnhancementY Y wY= + (44) 

Where,                         cos
1

NGen

t i
i

Y f
=

= ∑       (45)         

max_ _voltage stability enhancementY L=
                    

(46) 

The variation of the Lmax index with different 
algorithms over iterations is presented in fig. 4. The 
statistical results obtained with different methods are 
shown in table 6 which display that PSO-MFO method 
gives better results than the other methods. The optimal 
values of control variables obtained by different 
algorithms for case 3 are given in Table 7. After applying 
the PSO-MFO technique, it appears from Table 7 that 
the value of Lmax is considerably decreased in this case 
compared to initial [6] from 0.1723 to 0.1126. Thus, the 
distance from breakdown point is improved. 
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Fig. 5: Lmax variations with different algorithms 

Table 6: Comparison of Lmax index obtained with different algorithms 

Method Lmax Method Description 
HPSO-MFO 0.1126 Hybrid Particle Swarm Optimization-Moth Flame Optimizer 

MFO 0.1138 Moth Flame Optimizer 

PSO 0.1180 Particle Swarm Optimization 

GSA 0.1162 Gravitational Search Algorithm [2] 

DE 0.1219 Differential Evolution [15] 

BHBO 0.1167 Black Hole- Based  Optimization [6] 

Table 7: Optimal values of control variables for case 3 with different algorithms 

Control Variable Min Max Initial HPSO-MFO MFO PSO 
PG1 50 200 99.2230 182.308 177.299 158.331 
PG2 20 80 80 45.360 48.792 49.050 

PG5 15 50 50 21.109 21.316 18.956 

PG8 10 35 20 21.557 20.351 31.224 
PG11 10 30 20 10.000 12.370 15.906 
PG13 12 40 20 12.000 12.012 17.801 

VG1 0.95 1.1 1.05 1.100 1.100 1.098 
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VG2 0.95 1.1 1.04 1.086 1.089 1.090 
VG5 0.95 1.1 1.01 1.063 1.063 1.043 

VG8 0.95 1.1 1.01 1.077 1.055 1.058 
VG11 0.95 1.1 1.05 1.100 1.100 1.081 
VG13 0.95 1.1 1.05 1.098 1.100 1.100 

T4-12 0 1.1 1.078 1.034 0.996 0.900 
T6-9 0 1.1 1.069 0.900 0.900 1.007 
T6-10 0 1.1 1.032 0.973 0.964 1.071 

T28-27 0 1.1 1.068 0.968 0.955 0.933 
QC10 0 5 0 5.000 5.000 3.286 
QC12 0 5 0 5.000 5.000 1.221 

QC15 0 5 0 5.000 5.000 4.601 

QC17 0 5 0 5.000 5.000 1.082 
QC20 0 5 0 5.000 5.000 0.444 
QC21 0 5 0 5.000 5.000 0.399 

QC23 0 5 0 5.000 5.000 2.446 
QC24 0 5 0 5.000 5.000 4.753 
QC29 0 5 0 5.000 4.984 3.887 

Lmax - - 0.1723 0.1126 0.1138 0.1180 

Case 4: Minimization of active power transmission losses 
In the case 4 the Optimal Power Flow objective 

is to reduce the active power transmission losses, which 
can be represented by power balance equation as 
follows [6]: 

              1 1 1
i Gi Di

NGen NGen NGen

i i i
J P P P

= = =
= = −∑ ∑ ∑  (47) 

Fig. 5 show the tendency for reducing the total 
real power losses objective function using the different 
techniques. The active power losses obtained with 

different techniques are shown in table 8 which made 
sense that the results obtained by PSO-MFO give better 
values than the other methods. The optimal values of 
control variables obtained by different algorithms for 
case 4 are displayed in Table 9. By means of the same 
settings the results achieved in case 4 with the PSO-
MFO technique are compared to some other methods 
and it display that the real power transmission losses 
are greatly reduced compared to the initial case [6] from 
5.821 MW to 2.831 MW.  

Fig. 6:
 
Minimization of active power losses with different algorithms
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Table 8: Comparison of active power transmission losses obtained with different algorithms 

Method Active Power Loss (MW) Method Description 
HPSO-MFO 2.831 Hybrid Particle Swarm Optimization-Moth Flame Optimizer 

MFO 2.853 Moth Flame Optimizer 
PSO 3.026 Particle Swarm Optimization 

BHBO 3.503 Black Hole- Based  Optimization [6] 

Table 9: Optimal values of control variables for case 4 with different algorithms 

Control Variable Min Max Initial HPSO-MFO MFO PSO 
PG1 50 200 99.2230 51.269 51.253 51.427 
PG2 20 80 80 80.000 80.000 80.000 
PG5 15 50 50 50.000 50.000 50.000 
PG8 10 35 20 35.000 35.000 35.000 
PG11 10 30 20 30.000 30.000 30.000 
PG13 12 40 20 40.000 40.000 40.000 
VG1 0.95 1.1 1.05 1.100 1.100 1.100 
VG2 0.95 1.1 1.04 1.100 1.098 1.100 
VG5 0.95 1.1 1.01 1.082 1.080 1.083 
VG8 0.95 1.1 1.01 1.086 1.087 1.090 
VG11 0.95 1.1 1.05 1.100 1.100 1.100 
VG13 0.95 1.1 1.05 1.100 1.100 1.100 
T4-12 0 1.1 1.078 1.044 1.056 0.977 
T6-9 0 1.1 1.069 0.901 0.900 1.100 
T6-10 0 1.1 1.032 0.993 0.982 1.100 
T28-27 0 1.1 1.068 0.987 0.973 0.998 
QC10 0 5 0 5.000 5.000 4.065 
QC12 0 5 0 4.570 5.000 0.000 
QC15 0 5 0 4.969 3.070 5.000 
QC17 0 5 0 4.942 5.000 5.000 
QC20 0 5 0 4.337 5.000 0.000 
QC21 0 5 0 5.000 5.000 5.000 
QC23 0 5 0 5.000 5.000 5.000 
QC24 0 5 0 5.000 5.000 0.000 
QC29 0 5 0 2.412 2.508 0.000 

PLoss (MW) - - 5.8219 2.831 2.853 3.026 

Case 5: Minimization of reactive power transmission 
losses 

The accessibility of reactive power is the main 
point for static system voltage stability margin to support 
the transmission of active power from the source to 
sinks [6]. 

Thus, the minimization of VAR losses are given 
by the following expression: 

              1 1 1
i Gi Di

NGen NGen NGen

i i i
J Q Q Q

= = =
= = −∑ ∑ ∑

            
(48) 

It is notable that the reactive power losses are 
not essentially positive. The variation of reactive power 
losses with different methods shown in fig. 6. It 
demonstrates that the suggested method has good 
convergence characteristics. The statistical values of 
reactive power losses obtained with different methods 
are shown in table 10 which display that the results 
obtained by hybrid PSO-MFO method are better than 
the other methods. The optimal values of control 
variables obtained by different algorithms for case 5 are 

given in Table 11. It is shown that the reactive power 
losses are greatly reduced compared to the initial case 
[6] from -4.6066 MVAR to -25.335MVAR using hybrid 
PSO-MFO method. 
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Fig. 7: Minimization of reactive power transmission losses with different algorithms 

Table 10: Comparison of reactive power losses obtained with different algorithms 

Method Reactive Power Loss (MVAR) Method Description 
HPSO-MFO -25.335 Hybrid Particle Swarm Optimization-Moth Flame Optimizer 

MFO -25.204 Moth Flame Optimizer 
PSO -23.407 Particle Swarm Optimization 

BHBO -20.152 Black Hole- Based  Optimization [6] 

Table 11: Optimal values of control variables for case 5 with different algorithms 

Control Variable Min Max Initial HPSO-MFO MFO PSO 
PG1 50 200 99.2230 51.318 51.356 51.644 
PG2 20 80 80 80.000 80.000 80.000 
PG5 15 50 50 50.000 50.000 50.000 
PG8 10 35 20 35.000 35.000 35.000 
PG11 10 30 20 30.000 30.000 30.000 
PG13 12 40 20 40.000 40.000 40.000 
VG1 0.95 1.1 1.05 1.100 1.100 1.100 
VG2 0.95 1.1 1.04 1.100 1.100 1.100 
VG5 0.95 1.1 1.01 1.092 1.092 1.100 
VG8 0.95 1.1 1.01 1.100 1.100 1.100 
VG11 0.95 1.1 1.05 1.100 1.100 1.100 
VG13 0.95 1.1 1.05 1.100 1.100 1.100 
T4-12 0 1.1 1.078 1.002 0.974 0.962 
T6-9 0 1.1 1.069 0.965 1.100 1.100 
T6-10 0 1.1 1.032 0.987 0.984 0.961 
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T28-27
 0 1.1 1.068 0.986 0.981 0.964 

QC10
 0 5 0 5.000 5.000 5.000 

QC12
 0 5 0 0.000 5.000 0.000 

QC15
 0 5 0 5.000 5.000 0.000 

QC17
 0 5 0 5.000 5.000 0.000 

QC20
 0 5 0 5.000 5.000 0.000 

QC21
 0 5 0 5.000 5.000 0.000 

QC23
 0 5 0 5.000 5.000 0.000 

QC24
 0 5 0 5.000 5.000 5.000 

QC29
 0 5 0 3.393 3.407 0.000 

QLoss (MVAR) - - -4.6066 -25.335 -25.204 -23.407 

Table 12 show
 
the comparison of elapsed time 

taken by the different methods to optimize the different 
objective cases. The comparison shows that the time 

taken by all three algorithms is not same which indicates 
the different evaluation strategy of different methods.

 

Table 12:
 
Comparison of Elapsed time in seconds for MFO,

 
PSO and HPSO-MFO for all cases

 

Case No.
 

Elapsed Time (Seconds)
 

 
MFO

 
PSO

 
HPSO-MFO

 

1
 

166.2097
 

250.2674
 

211.7915
 

2
 

191.8238
 

266.5375
 

229.6873
 

3
 

196.6275
 

270.3358
 

243.2919
 

4
 

161.6395
 

248.8739
 

259.9731
 

5
 

173.5987
 

253.3971
 

209.4387
 

V.

 

Robustness Test

 

In order to check the robustness of the HPSO-
MFO for solving continues Optimal Power Flow 
problems, 10 times trials with various search agents for 
cases Case 1, Case 2, Case 3, Case 4 and Case 5. 
Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, 
Table 8, Table 9, Table 10 and Table 11 presents the 
statistical results achieved by the HPSO-MFO, MFO and 
PSO algorithms for OPF problems for various cases. 
From these tables, it is clear that the optimum objective 
function values obtained by HPSO-MFO are

 

near to 
every trial and minimum compare to MFO and PSO 
algorithms. It proves the robustness of hybrid PSO-MFO 
algorithm (HPSO-MFO) to solve OPF problem.

 

VI.

 

Conclusion 

Particle Swarm Optimization-Moth Flame 
Optimizer (PSO-MFO), Moth Flame Optimizer

 

and 
Particle Swarm Optimization Algorithm are successfully 
applied to standard IEEE 30-bus test systems to solve 
the optimal power flow problem for the various types of 
cases. The results give the optimal settings of control 
variables with different methods which demonstrate the 
effectiveness of the different techniques.

 

The solutions 
obtained from the hybrid PSO-MFO method

 

approach 
has good convergence characteristics and gives the 
better results compared to MFO and PSO methods 
which confirm the effectiveness of proposed algorithm.

 
 
 
 

VII.
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