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Abstract7

This paper presents a novel approach population based metaheuristics algorithm known as8

Quasi Oppositional Passing Vehicle Search (QOPVS) algorithm for solve the Unit9

commitment problem (UCP) of thermal units in an electrical power system. Passing vehicle10

search (PVS) algorithm is a population based algorithm which mechanism is inspired by11

passing vehicles on two-lane rural highways. As algorithms are population based so enables to12

provide improved solution with integration of powerful techniques. In this article, such a13

powerful technique named Opposite based learning techniques (OBLT) is integrated with14

proposed PVS algorithm. OBLT provides enough strength to proposed PVS algorithm to gain15

a better approximation for both current and opposite population at the same time, as it16

provide a solution which is more nearer solution from optimal based from starting by checking17

both solutions. Thermal unit scheduling problem is a nonlinear, non convex, discrete, complex18

and constrained optimisation problem. To verify the effectiveness of the proposed QOPVS19

algorithm is applied to some standard benchmark test function and various IEEE test systems20

with the number of thermal units 5-, 6-, 10-, 20-, and 40-unit in a 24-hour load scheduling21

horizon. The results show an improvement in the quality of solutions obtained compared with22

other methods results in the literature. The proposed algorithm is considerably fast and23

provides feasible nearoptimal solutions. Simulations results have proved the performance of24

the proposed QOPVS algorithm to solving large UC problems within a faster convergence and25

reasonable execution time.26

27

Index terms— unit commitment; quasi oppositional passing vehicle search algorithm; opposite based learning28
techniques; load scheduling; thermal unit scheduling; ec29
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algorithm.36
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in the quality of solutions obtained compared with other methods results in the literature. The proposed algorithm43
is considerably fast and provides feasible nearoptimal solutions. Simulations results have proved the performance44
of the proposed QOPVS algorithm to solving large UC problems within a faster convergence and reasonable45
execution time.46

Introduction n general, real world problems are complex and nonlinear so it is a very difficult task to find out its47
solution. Optimization stands with every person wants to maximize its outcomes with its least possible utilization48
of resources. World surround us is a lot of natural behaviors for performing various task. Although the target of49
all individuals is to be survive, helping each other and working in a group. Basic theme of every meta-heuristic50
algorithms is come from natural incidents happening around us. Now a day, engineering optimization is in its51
third generation of algorithms/techniques. In the first generation in early 1960s some mathematical techniques52
or deterministic techniques [1]- [3] are proposed like Linear programming (LPs), gradient based algorithm etc.53
to solve various engineering design problems. Advantages associated with deterministic technique is that they54
are less time consuming to find a solution, but disadvantage [4] is that they will not guarantees that a solution55
achieved with them is an optimal one. With first generation algorithms, there is high possibility to trap in local56
minima/maxima rather finding global optimal solution. Second generation of algorithms are problem specific57
algorithms and also their functionality depends on the initial guess of the solution, so these algorithms (simulated58
annealing) also need problem specific man power. These algorithms are also known as heuristic techniques.59

Third generation of algorithms are known as meta-heuristic, improved heuristic techniques or evolutionary60
algorithms. This type of stochastic algorithms are basically population based or fitness oriented. These algorithms61
are basically inspired from natural activities incidents around us. Some of the natural behaviors are herding,62
migration, hunting, defending, navigation etc. The strength of meta-heuristic algorithms is based strongly on63
randomly generated initial solutions. Meta-heuristics algorithm consists of many solutions at each stage according64
to their fitness. So, there is almost negligible probability of entrapping in the local solution and higher probability65
of getting global optimal solution. Meta-heuristic techniques are also called direction search towards global best66
solution. As after each iteration solution of all individual are processed through sorting from higher quality67
solution to lower quality solutions. So, this technique is more efficient than other techniques. Meta-heuristic68
techniques are also integrated with some ’intelligence’ or adaptive capability to converge towards global best69
solution. Other advantage of these type of algorithms is that they are not problem specific algorithms, having70
capability of solving many problems with negligible change in their structural computational model also no need71
to be an expertise in problem specific domain, so provides researchers a greater flexibility to apply them to72
number of problems. Only disadvantage associated with them is that they cannot provide global best solution in73
single run so researchers need to test their robustness by considering multiple runs for single problem to determine74
their performance or effectiveness to solve it.75

Sole objective optimization technique (SOOT) is to achieve ”the best” solution, which either may be76
minimization or maximization value of a sole objective function with respective to all different objectives into one77
in the environment of various equality or inequality bound of decision variable parameters. So, SOOT increases78
the burden of decision making significantly on the shoulders of the researcher. Population-based metaheuristic79
techniques acquires a collection of solutions, called a population, to learn or optimize the problem in a parallel80
way. Population is a main principle of the metaheuristic techniques. Successful metaheuristic techniques have to81
be cautiously modelled without caring of the starting point, so there is negligible probability to visit each and82
every possible problem domain to get the feasible region.83

The electric power demand is much higher during day time compare night time due to larger industrial84
loads, larger usage by residential-population during early-morning & evening. The unit commitment problem85
has been approached by many techniques but only acceptably solved by two techniques: dynamic programming86
and Lagrangian relaxation. The problem of thermal unit scheduling is due to the integer nature of the problem87
that a unit can either be off-line or on-line. The modeling of thermal power plants, for accurate scheduling, is88
complicated.89

In the past, many optimization algorithms based on a gradient search for solving the linear and non-linear90
equation but in gradient search method value of objective function and constraint unstable and multiple peaks if91
problem having more than one local optimum. Population-based nature-inspiredis a meta-heuristic optimization92
algorithm have an ability to avoid local optima and get a globally optimal solution that makes it appropriate93
for practical applications without structural modifications in the algorithm for used in different constrained or94
unconstraint optimisation problems. In Fig. 1 over view of the proposed UC-ELD Problem is shown.95

In their article, the total fuel cost obtained through the Quasi Oppositional Passing vehicle search (QOPVS)96
algorithm is similar to the cost obtained through Passing vehicle search (PVS) algorithm. In this work, the97
QOPVS algorithm is used to solve the UC with more focus towards the tuning of algorithmic control parameters,98
thus producing an optimal solution in terms of minimum generation cost and less execution time. In all the99
literatures reported, either the Unit Commitment or the Economic Load Dispatch problem is solved individually.100
In this work meta heuristics techniques is proposed to dispatch the committed units thus minimizing the fuel cost101
and making the application more suitable for practical generating systems. For experiment analysis, the outcome102
of the experimental results is compared in terms of optimal solution, robustness, computational efficiency and103
algorithmic efficiency.104

In the following sections, we discuss the Unit Commitment problem, Problem formulation in single area105
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Unit Commitment problem with different constraints, PVS algorithm, passing vehicles mechanism on two-lane106
rural highway, opposite based learning techniques (OBLT), quasi oppositional passing vehicle search (QOPVS)107
algorithm, numerical results of benchmark objective function and case study, and finally conclusion of our work.108

1 II. Literature Survey Of Unit Commitment Problem109

The most talked-about optimization techniques for the solution of the unit commitment problem (UCP)are:110
(i) Priority-list schemes, (ii) Dynamicprogramming (DP), & (iii) Lagrange algorithm (LA). Unit Commitment111
problem can be formulated as [5]- [25]: minimize generating cost and subject to many constrained such as112
(a) Minimum up and new down time constraints (b) Crew-constraints (c) Ramp-rate limits (d) Maximum and113
Minimum Power Limits (Generation limit constraints) (e) Generation ramp limit constraints (f) On/off line114
minimum level constraints (g) Transmission line constraints (g) Environmental constraints (h) Fuel limitation115
constraints (i) Unit hourly fuel mixing ratio constraints (j) Spinning reserve constraint (k) Power balance116
constraint (l) Deration of units (m) Unit status. Dynamic Programming Approach for Unit Commitment [5],117
A Unit Commitment Expert System [6], Fuzzy Dynamic Programming: An Application to Unit Commitment118
[7], Branch-and-Bound Scheduling for Thermal Generating Units [8], Unit Commitment Literature Synopsis [9]119
[10], A genetic algorithm based approach to thermal unit commitment of electric power systems describe in ref.120
[11]. A disadvantage of the GAs is that, since they are stochastic optimization algorithms, the optimality of121
the solution they provide cannot be guaranteed. Evolutionary Programming Based Economic Dispatch Units122
with Non-Smooth Fuel Cost Functions [12], Large scale unit commitment using a hybrid genetic algorithm [13],123
A Fuzzy Logic Approach to Unit Commitment [14], A Simulated Annealing Algorithm for Unit Commitment124
[15], A Genetic Algorithm for Solving the Unit Commitment Problem (UCP) of a Hydro-Thermal Power System125
[16], Unit Commitment with Transmission Security and Voltage Constraints [17], in ref., [18]- [29] UC and ELD126
problems with constraints are solved by different optimization techniques in power system.127

During 2002, a fast solution technique for large scale Unit Commitment Problem using Genetic Algorithm is128
presented [30]. To reduce search space, unit integration technique is used and an intelligent mutation is performed129
using local hill-climbing optimization technique. A Genetic Algorithm Solution to the Unit Commitment Problem130
Based on Real-Coded Chromosomes and Fuzzy Optimization is implemented in [31]. They have reported that131
the fuzzy optimization had an impact on guiding the GA search and therefore assured finding a better fuel cost.132
A Particle Swarm Optimization approach to solve the economic dispatch considering the generator constraints is133
presented in [32]. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating134
zone, and non-smooth cost functions are considered in their method for practical generator operations. In ref.135
[33] attempted to explore the application of Economic Load Dispatch using Bacterial Foraging Technique with136
Particle Swarm Optimization based evolution. They showed that their technique had better information sharing137
and conveying mechanisms than other evolutionary methods including PSO, Bacterial Foraging (BF) and GA.138
In ref [34] [35] for ELD and UC problem by adding the regenerating population procedure in order to improve139
escaping from the local minimum. They employed a fuzzy decision theory to extract the best compromise solution.140

Some of the most popular algorithms in this field are: Particle Swarm Optimization (PSO) [36], Differential141
Evolution (DE) [37], Evolutionary Programming (EP) [38] [39], Genetic Algorithms (GA) [40], [41], Ant Colony142
Optimization (ACO) [42]. Although these metaheuristic techniques are highly capable to provide promising143
solution for various challenging and real world design problems, But No Free Lunch theorem (NFLT) [43]144
permits researchers to propose new algorithms or to use an existing algorithm to improve the results of an145
existing problems. In Accordance to NFLT, all algorithms are effectively solving all optimization problems. So,146
one technique can be more efficient in solving a set of problems merely ineffective on another set of problems.147
This is the main reason for researchers to do more works in optimization area with a great zeal. Now some148
of the recently proposed algorithms in this field are: mimicking the social behavior based for different species149
like Monarch butterfly optimization (MBO) [44], Cuckoo Search (CS) algorithm [45], [46], Artificial Bee Colony150
(ABC) algorithm [47], Grey Wolf Optimizer (GWO) [48], Firefly Algorithm (FA) [49], [50], Cuckoo Optimization151
Algorithm (COA) [51]. Some physics based algorithms are like Ray Optimization algorithm (ROA) [52], [53],152
Colliding Bodies Optimization (CBO) [54], [55] algorithm with frequency constraint and discrete variable for153
truss bar design, Gravitational Search Algorithm (GSA) [56], Dolphin Echolocation (DE) [57], [58], Charged154
System Search (CSS) [59], [60] etc.155

Further in the literature, we wish to add some recently proposed metaheuristic algorithms with different156
application in the well-recognized and reputed journals. Some of them are with various application like Trivedi,157
I. et al. with adaptive learning integrated with whale optimizer algorithm (AWOA) [61] in this article effectiveness158
of proposed work is tested on some standard test benchmark function. Well-recognized power system application159
that known as optimal power flow (OPF) problem is solved with different metaheuristic and hybrid metaheuristic160
technique [62], [63]. Another set of articles which consisting of popular power system application known as161
economic environment dispatch [64], [65], [66], and [67] considering problem such multi-objective as well as162
sole objective problem with and without renewable energy source involving various metaheuristic techniques163
comprising of different standard IEEE systems. This context also includes the improved version of popular krill164
herd technique like oppositional based krill herd [68], hybrid KH with quantum behaved PSO [69], improved KH165
[70] and stud krill herd algorithm [71].166
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5 B. SPINNING RESERVE CONSTRAINT

2 III.167

3 Unit Commitment Problem168

In the electrical power system, it is expected to have power instantaneously and continuously available etc. meet169
customers’ demands. The economic operation depends upon following function such as a load forecasting, unit170
commitment, economic dispatch, security analysis etc. [72]. An overall solution of these problems is providing171
a continuous and reliable supply of electricity while maintaining the optimal cost of production and operation172
for the system. Unit Commitment is the most importance problems in operational scheduling of electrical power173
generation. in this start up and shut down (ON/OFF) operation are also involved to meet load demand for a174
short time. The objective is to minimize total production to meet system demand and reserve requirements. The175
main aim of this research paper is the solution of the Unit Commitment problems. The recent time installing176
of large thermal units, complexity of power network and other environmental pollution has again need to find177
better solution or approach for determination of economicemission unit commitment schedule [73], [74]. In fig.178
2(i) simple ”peak-valley” load pattern is shown but fig. 2 (ii) Unit commitment schedule using shut-down rule is179
shown.180

Based on the power requirements, the generating units are scheduled on an hourly basis for the next day’s181
dispatch for the successive operating day. The system operators are able to schedule the On/Off status and182
the real power outputs of the thermal generating units to meet the total demand over a time horizon. There183
may exist large variations in the day to day load patterns, thus enough power has to be generated to meet the184
maximum load demand. In addition, it is not economical to run all the units every time. Hence it is necessary185
to determine the units of a particular system that are required to operate for given loads. The Economic Load186
Dispatch allocates power to the committed units thus minimizing the total generating/fuel cost. Constrained187
Economic Load Dispatch Problem is defined as the ”The operation of generation facilities to produce energy at188
the lowest cost to reliably serve consumers, recognizing any operational limits of generation and transmission189
facilities”. The two major factors to be considered while dispatching power to generating units are the cost of190
generation and the quantity of power supplied. The relation between the cost of generation and the power levels191
is approximated by a quadratic polynomial. To determine the economic distribution of load between the various192
generating units Year 2017 F in a power plant, the quadratic polynomial in terms of the power output is treated as193
an optimization problem with total cost minimization as the objective function, considering various constraints.194
The unit commitment problem can be solved by assigning priority for the generating units such that the most195
efficient unit is loaded first and then other units are loaded according to their efficiency. The security constraint196
unit commitment determines the generating unit schedules in a utility for minimizing the operating cost and197
satisfying the prevailing constraints such as a load balance, system spinning reserve, ramp rate limits, fuel cost198
constraints etc. The unit commitment problem is related to the class of complex combinational optimization199
problem. Unit Commitment can solve by finding the possible combination of the units and then select that200
combination which has the least operating cost between them but it required/consume a lot of time [75] [76].201
Time-dependent start-up costs is shown in fig. 3.202

4 Time of Day Time of Day203

X-Unit Y-Unit Y-Unit Z-Unit Z- Unit 1200 MW (i) (ii) ? ?? ??=1 ?? ?? (???? ?? ) = ? ?? ??=1 [?? ?? (????204
?? ) 2 + ?? ?? (???? ?? ) + ?? ?? ], ?? = 1,2, ? ,??(1)205

The total fuel cost over the given time horizon ’H’ is?????? = ?????? ? ????? ?? ? , ?? ?? ? ? ???? ??=1 =206
? ? ??? ?? ??? ?? ? ? 2 + ?? ?? ??? ?? ? ? + ?? ?? + ?????? ?? ? * ?1 ? ?? ?? ??1 ?? * ?? ?? ? ???? ??=1207
?? ??=1 , ?? = 1,2, ? ,????(2)208

Startup cost can be expressed as mathematically:?????? ?? ? = ? ?????? ?? ; ?????? ?????? ?? ? ?????? ??209
???? ? (?????? ?? + ?????? ?? ) ?????? ?? ; ?????? ?????? ?? ???? > (?????? ?? + ?????? ?? ) , ?? = 1,2, ?210
,N?? & ? = 1,2, ? ,??(3)?????? ?? ? = ? ? ? ? ? ?? ?? + ?? ?? ? ? ? 1 ? ?? ??? ??,???? ? ?1 ?? ?? ? ? ? ?211
? ? ? ? ? , ?? = 1,2, ? ????(4)212

a) Equality and Inequality Constraint a. Equality Constraint (Power Balance Constraint) For the power213
balance sum of generation of unit in h th hours is equal to total demand at h th hours and it is given by following214
equation.?? ???????? ? + ? ?? ?? ? ???? ??=1 * ?? ?? ? = 0(5)215

5 b. Spinning Reserve Constraint216

Due to the failure of the units or sudden change in load there is some reserve capacity of the plant or running217
plant run at the spinning capacity is known as spinning reserve capacity of the plant and it constraint is given218
by the following equation.?? ???????? ? + ?? ? ? ? ?? ?? ?????? ???? ??=1 * ?? ?? ? ? 0(6)219

c. Thermal Constraint In the Thermal generation unit temperature is not constant, it is depending upon the220
load demand. So, it is take some time to return to online or in running condition. Maintenance of Thermal plant221
is manually controlled so maintenance needs at certain time limit. There are various thermal constraints as per222
follow. d. Minimum up and new down time constraints?? ?? ?? = ? 1 ; ???? ?? ??,???? ??1 < ?? ?? ???? 0 ;223
???? ?? ??,?????? ??1 < ?? ?? ???????? 0 ???? 1 ; ?????????????????(7)224
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? Minimum Up Time If the units have been already shut down, then for restarting some time is required it is225
called Up Time and given by following equation.?? ?? ???? (?) ? ?????? ??(8)226

? Minimum Down Time Times required for the shutdown of plant is called down time and it is given by227
following equation.?? ?? ?????? (?) ? ?????? ??(9)228

e. Crew Constraint If a plant consists more than two units, they cannot be turned on at the same time229
because there are not enough crew members to attend both unit at same time while starting up. f. Maximum230
and Minimum Power Limits (Generation limit constraints) Every plant consists their maximum and minimum231
power generation limits and it is given by following equation.?? ?? ?????? * ?? ?? ? ? ?? ?? ? ? ?? ?? ??????232
* ?? ?? ? , ?? = 1,2 ? ????.(10)233

g. On/off line minimum level constraints?? ?? ? = ?? ?? ?????? , ???? ?? ?? ??1 = 0 &?? ?? ? = 1,(11)234
?????? ?? ?? ? = 1 &?? ?? ?+1 = 0.235

6 h. Generation ramp limit constraints236

?? ??,???????? ? * ?? ?? ? ? ?? ?? ? ? ?? ??,?????????? ? * ?? ?? ? (12)?? ??,?????????? ? =237
????????????????? ?? ?????? , ?? ?? ??1 + (????????????) ?? * 60?, ???? ?? ?? ? = ?? ?? ??1 = 1 (13) ??238
??,???????? ? = ????????????????? ?? ?????? , ?? ?? ??1 ? (????????????????) ?? * 60?, ???? ?? ?? ? = ??239
?? ??1 = 1 (14)240

Where, NG is total number of generating units,?? ?? ? is the total power, U is the total units generated and241
?? ???????? ? is the total demand.242

V.243

7 PVS Algorithm244

Passing vehicle search (PVS) algorithm [77] is a meta-heuristics population based algorithm which mechanism is245
inspired by passing vehicles on two-lane rural high ways that was first described by Poonam Savsani, & Vimal246
Savsani in 2016.The passing maneuver on two-lane rural highways is one of the most significant yet complex247
and important driving tasks. This process, though, is relatively difficult to quantify, primarily because of the248
many stages involved and the lengthy section of road that typically is needed to complete the maneuver. Road249
capacity, safety, and level of service are all affected by the passing ability of faster vehicles, particularly on two-250
lane highways. The ability to pass is influenced by a variety of parameters including the volumes of through and251
opposing traffic; the speed differential between the passing and passed vehicles; the highway geometry, particularly252
available sight distance; and human factors such as driver-reaction times and gap acceptance characteristics. The253
goal is to provide reliable input information for the design process of two lane highways, which involves the need254
for passing sight distances. The existing passing model, used by the AASHTO policy, was developed some four255
decades ago; it assumes a single passing vehicle and a single passed vehicle, both passenger cars. In reality, as256
many as 25 percent or more of the passing maneuvers may be classified as multiple passing, in which more than one257
vehicle is overtaken. In addition, because trucks generally have lower speeds than cars, a considerable number258
of passing maneuvers occur when passenger cars overtake trucks. In this study, single and multiple passing’s259
are analyzed and the necessary sight distances for adequate design of twolane rural highways are evaluated.260
The research is based on analysis of data collected by videotaping five tangent two-lane highway sections from261
high vantage points and one additional location where a helicopter hovered overhead. The components of the262
passing sight distance were evaluated on the basis of the measured distances that were necessary to complete the263
maneuvers safely [78].264

The flow characteristics of a road cross-section are identified by time headway (TH) and vehicle speed (VS)265
distributions over time. Knowledge of both headway and speed distributions plays a significant role in several266
fields of traffic flow analysis and simulation [79]. In particular, we refer to operative analysis of road facilities in267
interrupted and uninterrupted flow conditions.268

Studies on VS modeling have been published for many years (Gerlough and Huber (1976) [80]; Luttinen (1996)269
[81]; Luttinen (2001) [82]; Dey et al. (2006) [83]; Zou and Zhang (2011) [84]; Zou et al. (2012) [85]). Year 2017270
F Fig. ??: Three vehicles passing mechanism on a two-lane-highways. Paul Warnshu is (1967) constructed a271
computer simulation that modeled each individual vehicle’s behavior directly. This simulation was intended to272
serve as a tool helping develop a theoretical description of the interaction between the two lanes and how that273
interaction influences the traffic flow in each lane. The simulation was coded in Fortran IV, and it assumed that274
the two-lane road extends infinitely in both directions by using a two-lane circular track and does not have any275
restrictions on speed and passing. The inputs, the flow rate in each lane, the distribution of the desired speed,276
the initial ordering of vehicles, and the initial spacing of vehicles could be specified by users. Each vehicle, based277
on other assumptions, travels at a fixed desired speed except for the following or passing condition. Passing278
maneuvers in the simulation were governed by the rules specified in the paper [86]. A car that intends to pass279
another car may do so only if its leader has a relatively lower desired speed, the oncoming vehicle is far enough280
for the vehicle to complete pass and the gap in front of the passed vehicle is sufficient for the vehicle to return281
to the normal lane after passing. Several other constraints were also made, such as the determination of the safe282
distance ahead of the passed vehicle and to the first oncoming vehicle when the passing is completed, that a283
vehicle may pass only one vehicle at a time, and that a vehicle may be passed by only one vehicle at a time.Y-V284
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11 A) QUASI-OBLT (Q-OBLT)

X-V A 1 a Z-V A 2 A 3 b X-V Y-V XV c1 a 1 Z-V b 1 Y-V Z-V X-V a 1 b 1 X-V Y-V Z-V XV c2 b 1 X-V Y-V285
Z-V XV c2 XV c3 a 1 =infinite Condition-2 Initial- Condition Condition-1 V 1 V 2 V 3 ©2017286

The mathematical model for three vehicles passing mechanism on a two-lane-high ways is shown in Step287
2:Initialize the random generated populations and evaluate them for, i = 1, FE = 0, g = 1.288

Step 3: Store the elite best solution and Select any two random populations k & l, k # l # i.289
Step 4: Calculate distances (D10, D20, and D30) and velocities (V10, V20, and V30) of search agent X-V,290

Y-V, and Z-V respectively and Calculate velocity.291
Step 5: Calculate distances a, b, A 1 , A 2 , and A 3 using following equation:?? ???? ? = ?? ???? +292

????????( ) * (?? ???? ? ?? ???? ), ?? ???? ? = ?? ???? + ????????( ) * ?? ?????? * (?? ???? ? ?? ???? ) and293
Step 6: Update the result if it is better than the previous result.294
Step 7: Maintain diversity in the population by removing the duplicates as follows.295
for k= 1 : 2: N (Population size)if A k = A k+1 i = rand*(design variables)296
A k+1,I = lb i + rand*(ub i -lb i )297

8 end if end for298

Step 8: Repeat the mechanism until the termination condition are satisfied.299

9 Stop.300

A 1 , A 2 , A 3 -Distance from reference line V 1 , V 2 , V 3 -X-V, Y-V and Z-V vehicle velocities respectively.301
A step wise procedure to implement PVS for the optimization of a given function is described in this section302

and PVS is explained with the aid of the Pseudo code in Fig. ??.303

10 VI. Opposite Based Learning Techniques (OBLT)304

Now a day, meta-heuristic algorithms are much popular as they are able to provide optimal solution to all305
most all types (nonlinear, non convex, discrete etc.) of engineering problems. As algorithms are population306
based so enables to provide improved solution with integration of powerful techniques. In this article, such a307
powerful technique named OBLT (Opposite based learning techniques) is integrated with existing proposed PVS308
algorithm. As the effectiveness of the solution of optimization algorithm is basically depends on the population309
initialization, as it can affect the quality solution as well as the convergence speed. As most of the optimization310
algorithms uses random guess to produce an initial population in the absence of primary information about the311
global best solution. However, such type of purely random guess based solutions have higher probability to312
visiting or revising unproductive areas of unknown search space that adversely affects the quality solution and313
convergence speed. To overcome such a difficulty OBLT is proposed [87] to ameliorate individual solution by314
taking into account the current population as well as its opposite population simultaneously.315

In most of the population based algorithms uses these initial population as current best and then directional316
search towards optimal one that’s really a more time-consuming method, but OBLT provides enough strength to317
proposed PVS algorithm to gain a better approximation for both current and opposite population at the same318
time, as it provide a solution which is more nearer solution from optimal based from starting by checking both319
solutions. This approach is not only used only for initial solution but also used for each solution in current320
population. (P i ) = (? 1 , ? 2 , ? 3 ,?. ? t ) be t-dimensional vector, where ? i ? (X i , Y i ) & i=1, 2, 3?, t.321
So, opposite point is: ? i = (? 1 , ? 2 , ? 3 ??? t ) where ? i= X i + Y i -? i322

After opposite point definition, oppositional based optimization is expressed as: Assume (P i ) = (? 1 , ? 2 ,323
? 3 ,?. ? t )? i = (? 1 , ? 2 , ? 3 ??? t ) is opposite of P i = (? 1 , ? 2 , ? 3 , ?. ? t )324

. So now working of OBLT is changed as ? (P i ) ? ? ( ? i ) then point P i is replaced by ? i . Similar325
approach is applied over each evaluated point simultaneously in order to move the search in a more closer to326
global best solution.327

A step wise procedure to implement purposed Opposition based PVS algorithm is explained with the aid of328
the Flowchart inFig.6.329

11 a) Quasi-OBLT (Q-OBLT)330

Q-OBLT is primarily proposed by Rahnamayan et al. [88] to produce much better candidate solution by taking331
into account the current population as well as its quasi-opposite population simultaneously.332

Assume ? ? [X, Y] where ? ? R (Real number) then its opposite number (?) and its quassioppositional333
number (? qo ) are expressed as :? qo = rand*[(X+Y)/2, (X+Y-?)] Assume point (P) = (? 1 , ? 2 , ? 3 , ?.? t334
) be t- dimensional vector, where ? i ? (X i , Y i ) & i=1, 2, 3?, t. So opposite point is: ? = (? 1 , ? 2 , ? 3 ???335
t ) where ? 1= X i + Y i -? i then quasi-opposite336

Solution is given by: ? qoi = rand*[(X i +Y i )/2, (X i +Y i -? i )] where P qoi = (? qo1 , ? qo2 , ? qo3 ,?.337
? qot ) (17) b) Quasi-opposite based optimization (Q-OBO) Assume P i = (? 1 , ? 2 , ? 3 , ?.? t ) be a point in338
t-P qoi = (? qo1 , ? qo2 , ? qo3 ,?. ? qot ) is quasi-opposite of P i = (? 1 , ? 2 , ? 3 , ?.? t ).339

So now working of Q-OBO is changed as ? (Pi) ? ? (P qoi ) then point P i is replaced by P qoi . Similar340
approach is applied over each evaluated point simultaneously in order to move the search in a more closer to341
global best solution. ( ) ( )342
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12 VII. Numerical Results And Case Study343

1 1 * n n i i i i f x x x R x = = = + ? ? 10 [ -10, 10] F3 Schwefel 1.2 ( ) ( ) 2 1 1 * n i j i j f x x R x = ? ? ? = ?344
? ? ? ? ? 10 [ -100, 100] F4 Schwefel 2.21 ( ) { } max ,1 i i f x x i n = ? ? 10 [ -100, 100] F5 Quartic Function (345
) [ ) ( ) 4 1 0,1 * n i i f x ix random R x = = + ? 10 [ -1.28, 1.28] F6 Rastrigin Function ( ) ( ) ( ) 2 1 10 2 10 *346
? = ? ? = ? + ? ? ? n i i i f x x cos x R x 10 [-5.12, 5.12] F7 Ackley’s Function ( ) 2 1 1 20 0.2 = ? ? = ? ? ?347
? ? ? ? ? ? ? n i i f x exp x n ( ) ( ) 1 1 2 20 * n i i exp cos x e R x n ? = ? ? + + ? ? ? ? ? 10 [-32, 32]348

13 F8349

De Joung (Shekel’s Foxholes) ( ) ( ) For 10 generating unit system, 24-hour load demands are given in fig. 15 and350
for 5-unit, and 6-unit system 24hour load demands are given in fig. 16. The 10 generating unit system data and351
load demands are taken from [89]. The spinning reserve (SR) for all test units is considered 10% of the hourly load352
demand but for 10-unit system also considered 5% of the hourly load demand. The initial control parameters of353
proposed QOPVS method such as population size (no. of search agent), number of iterations, total trial runs etc.354
are given in Table 1. For the 20-unit, and 40-unit test system the initial 10-units were duplicated and the demand355
was multiplied by 2 and 4 respectively. A PVS algorithm with Year 2017 F complete state enumeration was also356
developed and used to solve the 10-unit problem. The solutions of the PVS and the QOPVS, for the 10-unit357
problem, are identical. In other test runs not reported here, the QOPVS provided solutions even better than the358
PVS with complete state enumeration. For the larger problem sets the QOPVS solutions were compared with359
the solutions produced by the PVS algorithm, as the time and capacity requirements of the PVS algorithm with360
complete state enumeration are prohibitive for problems of this scale. In order to avoid misleading results due to361
the heuristic nature of the PVS, 10 runs were made for each problem set, with each run starting with different362
random populations. For a specific problem set, the generation limit increasing with the number of units. A run363
was considered successful if it converged on a solution equal to or better than that of the PVS algorithm.1 25 6364
2 1 1 1 1 500 ? = = ? ? ? ? ? ? = + ? ? + ? ? ? ? ? ? ? j i ij i f x j x ai i i i i i i x b b x f x a b b x x = ? ?365
+ ? ? = ? + + ? ? ? ? ? 4 [-5,5] 0.00030366

The population size was 30 in all runs for 10-unit test system and 60 for 20-unit & 40-unit test system. In367
general, when the population size increases, the number of generations required by the PVS to converge to the368
optimum solution decreases. On the other. hand, the CPU time required for the evaluation of a generation369
increases almost proportional with the population size. The population of 30 search agents was chosen, after370
several tests runs concerning populations of 10-100 search agents, because it was slightly more efficient (i.e. it371
was faster in reaching the same solution with equal probability).372

Optimal UC schedule of the 5-unit and 6-unit test system on 24-h scheduling horizon with one-hour interval373
considering 10% spinning reserve is shown in Table 4 and Table 6. The test results are shown in Table 5 and374
Table 7, for the QOPVS, all the Best, Average, Median, Worst and standard Deviation solutions produced are375
reported together with their difference as a percentage of the best solution. The optimized solution in terms of376
generation cost and time, the purposed QOPVS method give better result compare PVS method. Fig. 17and377
Fig. 18 shows the best fitness, worst fitness, average fitness of all vehicles, median fitness, statically and time378
curves of the proposed QOPVS method for 5unit and 6-unit system UC problem respectively. Optimal UC379
schedule of the 10-unit test system on 24-h scheduling horizon with one-hour interval considering 5% spinning380
reserve is shown in Table 8. For the 10-unit test system, all the best, average, median, worst and standard381
deviation solutions produced are reported in Table 9. Fig. 19 shows the best fitness, worst fitness, average fitness382
of all vehicles, median fitness, statically and time curves of the proposed QOPVS method for 10unit system UC383
problem. Optimal UC schedule of the 10-, 20-, and 40unit test system on 24-h scheduling horizon with onehour384
interval considering 10% spinning reserve is shown in Table 10, Table 12 and Table 13 respectively. For the 10-,385
20-, and 40-unit test system, all the best, average, median, worst and standard deviation solutions produced are386
reported together in Table 11 and Table 14 respectively. As shown in Table 14, for large systems (more than387
10 units), the QOPVS constantly outperforms the PVS unit commitment. The QOPVS best, average and worst388
time reported concerns CPU time on PC with Intel Core i3 of 4 GB RAM. The scaling of the QOPVS execution389
time is less compare other methods [72], [74]. Analysis of the results presented in Table 14 shows that the QOPVS390
execution time and generation cost increases in a quadratic way with the number of units to be committed. Fig.391
20 to Fig. 22 shows the best fitness, worst fitness, average fitness of all vehicles, median fitness, statically and392
time curves of the proposed VIII.393

14 Conclusion394

In this article, QOPVS Algorithm solution to the single area Unit Commitment problem has been presented. It395
was necessary to enhance a standard PVS implementation with the addition of problem specific operators and396
the varying quality function technique in order to obtain satisfactory unit commitment solutions. The results397
show an improvement in the quality of solutions obtained compared with other methods result.398

A basic advantage of the QOPVS solution is the flexibility it provides in modelling both time-dependent399
and coupling constraints. Another advantage is that QOPVS can be very easily converted to work on parallel400
computers. However, our results indicate that the difference between the worst and the best QOPVSprovided401
solution is very small. Another advantage of QOPVS-UC algorithms is their less execution time. The proposed402
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14 CONCLUSION

QOPVS optimization technique is applied for simulated on various test systems with the number of units 5-403
unit, 6-unit, 10-unit, 20-unit, and 40-unit are considered for 24-hour load scheduling horizon. It is observed that404
performance of proposed QOPVS algorithm is much better than compare to standard PVS and other conventional405
and heuristics algorithm. Convergence of proposed QOPVS is faster than standard PVS. 1 2

1

Figure 1: Fig. 1 :
406

1© 2017 Global Journals Inc. (US)
2Year 2017 F © 2017 Global Journals Inc. (US)

8



2

Figure 2: Fig. 2 :

3

Figure 3: Fig. 3 :

9



14 CONCLUSION

Figure 4:

20175

Figure 5: 2017 FFig. 5 :

10



41

Figure 6: Fig. 4 . 1 :

6

Figure 7: Fig. 6 :FE=FE+1

11



14 CONCLUSION

Figure 8:

8

Figure 9: Fig. 8 :

910

Figure 10: Fig. 9 :Fig. 10 :

12



1112

Figure 11: Fig. 11 :Fig. 12 :

13

Figure 12: Fig. 13 :

13



14 CONCLUSION

14

Figure 13: Fig. 14 :

14

Figure 14: Fig. 14 :

14



15

Figure 15: Fig. 15 :

2017

Figure 16: Global 2017 F

15



14 CONCLUSION

Scheduling ON/OFF status for each generating unit Differential Evolution (DE) for solving ELD problems with specialized constraint handling mechanisms. A Comparative Study on Heuristic Optimization Techniques with an Improved Coordinated Aggregation- Allocation of power to be shared by each scheduled unit
Based PSO
Input characteristics
of generator
Input load profile
(24-hour demand)

Optimal
ON/OFF
Schedule,

Year 2017 1. Passing Vehicle Search Algorithm 2. Grey Wolf Algorithm Optimal
Dispatch
of Power,
Optimal
Generation
Cost,

52 3. Monarch Butterfly Optimization Total Power
Loss,

4. Moth Flame
Optimizer

Global Journal of Researches in Engineering
F ( ) Volume XVII Issue IV Version I

5. Krill Heard Algorithm 6. Cuckoo Search (CS) algorithm Total Power
and Total
Computa-
tional Time

Figure 17: Unit Commitment Problem (UCP) Economic Load Dispatch (ELD) Optimized
Solution Nature Inspired Population based Meta-Heuristics Algorithm

dimensional space. Assume ? (*) is fitness function
used to measure candidate fitness. So as define in
definition for opposition point

Figure 18:

2

Rastrigin Function, Ackley’s Function, De Joung
(Shekel’s Foxholes), Kowalik’s Function to verify the
robustness and effectiveness. The objective function,
dimension, range, and minimum value of objective
function of all benchmark test functions are given in
Firstly, The Proposed QOPVS optimization
technique is applied on various standard un-constraints
benchmark test functions such as Sphere, Schwefel
2.22, Schwefel 1.2, Schwefel 2.21, Quartic Function,

Figure 19: Table 2 .
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1

Test System Population Size
(Search Agent
No.)

Maximum No.
of Iterations

Total Trial
Runs

F1-F10 20 500 20
5-Unit System 30 50 10
6-Unit System 60 50 10
10-Unit System 30 50 10
20-Unit System 60 50 10
40-Unit System 60 50 10

Figure 20: Table 1 :

2

No. Function Dim Range Fmin
n

F1 Name Sphere ( ) f x ( ) x R x 2 * i = ? 1
i =

10 [ -100, 100]

F2 Schwefel 2.22

Figure 21: Table 2 :

3

Year 2017
63
Global Journal of Researches in Engineering ( ) Volume XVII Issue IV Version I
F

[Note: Fig. 7: Best fitness, worst fitness, average fitness of all vehicles, median fitness, statically and time
curves for Function F1 (Sphere).F-7 1.0263e-08 2.1774e-08 3.3162e-08 6.5296e-09 1.0323 5.4294e-12 1.4009e-10
4.4921e-10 9.]

Figure 22: Table 3 :

4

Figure 23: Table 4 :

5

Generation Cost Time
Optimization Techniques Best Average Median Worst SD Best Average Worst
QOPVS [Proposed Technique] 11925.1 274 11935.7 714 11942.

8673
11942
.8673

8.69
07

51.5 53.0266 54.25

PVS [Proposed
Technique]

11928.1
654

11939.7 714 11940.
8673

11948
.6528

8.69
07

50.8 52.8215 55.5

Figure 24: Table 5 :
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6

F

Figure 25: Table 6 :

7

Generation Cost Time
Optimization
Techniques

Best Average Median Worst SD Best Aver-
age Worst

QOPVS [Proposed
Technique]

11925.1
274

11935.7 714 11942.
8673

11942
.8673

8.6907 51.5 53.0266 54.25

PVS [Proposed Tech-
nique]

11928.1
654

11939.7 714 11940.
8673

11948
.6528

8.69 07 50.8
52.8215
55.5

Figure 26: Table 7 :

8

Figure 27: Table 8 :

9

Generation Cost Time
Optimization
Techniques

Best Average Median Worst SD Best Average Worst
QOPVS [Proposed Technique] 557680 .714 558388 .3938 55838

7.4718
5590
08.914

368.
1285

66.84 38 76.0141
84.93 75

PVS [Proposed Tech-
nique]

557843
.339

558391 .0417 55845
7.4866

5588
11.059

262.
768

87. 875 94.5922
106.0
938

[Note: Fig. 19: Best fitness, worst fitness, average fitness of all vehicles, median fitness, statically and time curves
of the proposed QOPVS method for 10-unit system considering 5% spinning reserve. © 2017 Global Journals Inc.
(US)]

Figure 28: Table 9 :
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10

Hour U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 SR
1 455 245 0 0 0 0 0 0 0 0 70
2 455 295 0 0 0 0 0 0 0 0 75
3 455 370 0 0 0 0 25 0 0 0 85
4 455 450 0 0 0 20 25 0 0 0 95
5 455 370 0 130 0 20 25 0 0 0 100
6 455 455 0 130 40 20 0 0 0 0 110
7 455 410 130 130 25 0 0 0 0 0 115
8 455 455 130 130 30 0 0 0 0 0 120
9 455 455 130 130 95 0 25 10 0 0 130
10 455 455 130 130 162 33 25 10 0 0 140
11 455 455 130 130 162 73 25 10 10 0 145
12 455 455 130 130 162 80 25 43 10 10 150
13 455 455 130 130 162 33 25 10 0 0 140
14 455 455 130 130 85 20 25 0 0 0 130
15 455 455 130 130 30 0 0 0 0 0 120
16 455 310 130 130 25 0 0 0 0 0 105
17 455 260 130 130 25 0 0 0 0 0 100
18 455 360 130 130 25 0 0 0 0 0 110
19 455 455 130 130 30 0 0 0 0 0 120
20 455 455 130 130 162 33 25 10 0 0 140
21 455 455 130 130 85 20 25 0 0 0 130
22 455 455 0 0 145 20 25 0 0 0 110
23 455 420 0 0 25 0 0 0 0 0 90
24 455 345 0 0 0 0 0 0 0 0 80

U = Generating Unit

Figure 29: Table 10 :

11

S. No. Optimization Techniques Best Generation Cost Average Median Worst SD Time Best Average Worst
1 QOPVS [Proposed Technique] 563712.

108
564135. 8193 563887

.333
56506
6.888

466.
4197

7.8 969 8.831710.00
94

2 PVS
[Pro-
posed
Tech-
nique]

563730.
418

564415. 2063 564475
.5893

56506
9.753

464.
6139

9.0 047 10.465811.00
63

[Note: 20:Best fitness, worst fitness, average fitness of all vehicles, median fitness, statically and time curves of
the proposed QOPVS method for 10-unit system considering 10% spinning reserve. Year 2017]

Figure 30: Table 11 :
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14

No. of Optimization Generation Cost Time
Units Techniques Best AverageMedian WorstSD

Best
Av-
er-
age
Worst

10-Unit
System

QOPVS method 1099001.745 1102777.5224 1102842.70 1105124.19 1559.2 8.3281 9.8477 11.423

PVS method 1101678.778 1103797.554 1104266.18 1105512.67 1220.5 13.432 14.2259 15.715
20-Unit
System

QOPVS method 563712.108 564135.8193 563887.333 565066.888 466.41 7.8969 8.8317 10.009

PVS method 563730.418 564415.2063 564475.5893 565069.753 464.61 9.0047 10.4658 11.006
40-Unit
System

QOPVS method 2213498.258 2218934

Figure 31: Table 14 :
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