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8

Abstract9

This novel article presents the multi-objective version of the recently proposed the Whale10

Optimization Algorithm (WOA) known as Non-Dominated Sorting Whale Optimization11

Algorithm (NSWOA). This proposed NSWOA algorithm works in such a manner that it first12

collects all non-dominated Pareto optimal solutions in achieve till the evolution of last13

iteration limit. The best solutions are then chosen from the collection of all Pareto optimal14

solutions using a crowding distance mechanism based on the coverage of solutions and15

bubble-net hunting strategy to guide humpback whales towards the dominated regions of16

multi-objective search spaces. For validate the efficiency and effectiveness of proposed17

NSWOA algorithm is applied to a set of standard unconstrained, constrained and engineering18

design problems. The results are verified by comparing NSWOA algorithm against Multi19

objective Colliding Bodies Optimizer (MOCBO), Multi objective Particle Swarm Optimizer20

(MOPSO), non-dominated sorting genetic algorithm II (NSGA-II) and Multi objective21

Symbiotic Organism Search (MOSOS). The results of proposed NSWOA algorithm validates22

its efficiency in terms of Execution Time (ET) and effectiveness in terms of Generalized23

Distance (GD), Diversity Metric (DM) on standard unconstraint, constraint and engineering24

design problem in terms of high coverage and faster convergence.25

26

Index terms— non-dominated; crowing distance; nswoa algorithm; multi-objective algorithm;economic27
constrained emission dispatch.28

1 Introduction29

ptimization is a work of achieving the best result under given limitation or constraints. Now a day, optimization30
is used in all the fields like construction, manufacturing, controlling, decision making, prediction etc. The31
final target is always to get feasible solution with minimum use of resources. In this field computers make a32
revolutionary impact on every field as it provides the facility of virtual testing of all parameters that are involved33
in a particular design with less involvement of human efforts, benefits in less time consuming, human efforts and34
wealth as well.35

Today we use computer-aided design where a designer designs a virtual system on computer and gives only36
command to test all parameters involved in that design without even the need for a single prototype.37

A designer only to design and simulate a system and set all the parameter limitation for the computer.38
Computer-aided design technique becomes more effective with the additional feature of autogeneration of39

solutions after it’s mathematically formulation of any system or design problem. Auto generation of solution,40
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3 LITERATURE REVIEW

this feature is come into nature with the development of algorithms. In past years, real world designing problems41
are solved by gradient descent optimization algorithms. In gradient descent optimization algorithm, the solution42
of mathematically formulated problem is achieved by obtaining its derivative. This technique is suffered from43
local minima stagnation [1,2] more time consuming and their solution is highly dependent on their initial solution.44

The next stage of development of optimization algorithms is population basedstochastic algorithms.These45
algorithms had number of solutions at a time so embedded with a unique feature of local minima avoidance.46
Later population based algorithms are developed to solve single objective at a time either it may be maximization47
or minimization on accordance the problems objective function. Some popular algorithms for single objective48
problems are Moth-Flame optimizer (MFO) [3], Bat algorithm (BA) [4], Particle swarm optimization (PSO) [5],49
Ant colony optimization (ACO) [6], Genetic algorithm (GA) [7], Cuckoo search (CS) [8], Mine blast algorithm50
(MBA) [9], Krill Herd (KH) [10], Interior search algorithm (ISA) [11] etc. These algorithms have capabilities51
to handle uncertainties [12], local minima [13], misleading global solutions [14], better constraints handling [15]52
etc. To overcome these difficulties different algorithms are enabled with different powerful operators. As mention53
above here is only objective then it is easy to measure the performance in terms of speed, accuracy, efficiency54
etc. with the simple operational operators.55

In general, real world problems are nonlinear and multi-objective in nature.In multi-objective problem there56
may be some objectives are consisting of maximization function while some are minimization function. So now57
a day, multi-objective algorithms are in firm attention.58

Let’s take an example of buying a car, so we have many objectives in mind like speed, cost, comfort level,59
space for number of people riding, average fuel consumption, pick up time required to gain particular speed,60
type of fuel requirement either it is diesel driven, petrol driven or both etc. To simply understand multiobjective61
problem, from Fig. 1, we considertwo objectives, first cost and second comfort level. So we go for sole objective62
of minimum cost possible then we have to deny comfort level objective and vice-versa. It means real word63
problems are with conflicting objectives. So as, we are disabled to find an optimal solution like single objective64
problems. About multiobjective algorithm and its working is detailed described in next portion of the article.65
The No free launch [16] theorem that logically proves that none of the only algorithm exists equally efficient for66
all engineering problem. This is the main reason that it allows all researcher either to propose new algorithm or67
improve the existing ones. This paper proposed the multi-objective version of the well-known whale optimization68
algorithm(WOA) [17]. In this paper non-sorted WOA (NSWOA) is tested on the standard unconstraint and69
constrainttest function along with some well-known engineering design problem, their results are also compared70
with contemporary multi-objective algorithms Multi objective Colliding Bodies Optimizer (MOCBO) [18], Multi71
objective Particle Swarm Optimizer (MOPSO) [19][20], Non-dominated Sorting Genetic Algorithm (NSGA)72
[21][22][23], non-dominated sorting genetic algorithm II (NSGA-II) [24] and Multi objective Symbiotic Organism73
Search (MOSOS) [25] that are widely accepted due to their ability to solve real world problem.74

The structure of the paper can be given as follows: -Section 2 consists of literature; Section 3 includes the75
proposed novel NSWOAalgorithm; Section 4 consists of competitive results analysis of standard test functions76
as well as engineering design problem and section 5 includes real world application, finally conclusion based on77
results and future scope of work is drawn.78

2 II.79

3 Literature Review80

As the name describes, multi-objective optimization handlessimultaneously multiple objectives. Mathematically81
minimize/maximize optimization problem can be written as follows: / : ( ?) = { ( ?),(82

? ? , = 1,2, . . . ,83
Where q is the number of inequality constraints, r is the number of equality constraints,k is the number of84

variables, is the i th inequality constraints, no is the number of objective functions, indicates the i th equality85
constraints, and ?? , ] are the boundaries of i th variable.86

Obviously, relational operators are ineffective in comparing solutions with respect to multiple objectives. The87
most common operator in the literate is Pareto optimal dominances, which is defined as follows for minimization88
problems:89

where ? = ( , , ? , ) and ? = ( , , ? , ). For maximization problems, Pareto optimal dominance is defined as90
follows:91

where ? = ( , , ? , ) and ? = ( , , ? , ).92
These equationsshow that a solution is better than another in a multi-objective search space if it is equal in93

all objective and better in at least one of the objectives. Pareto optimal dominance is denoted with ? and ?.94
With these two operator’s solutions can be easily compared and differentiated.95

Population based multi-objective algorithm’s solution consists of multiple solution. But with multiobjective96
algorithm we cannot exactly determine the optimal solution because each solution is bounded by other objectives97
or we can say there is always conflict between other objectives. So the main function of stochastic/population98
based multi-objective algorithm is to find out best trade-offs between the objectives, so called Pareto optimally99
set [26][27][28].100

The principle of working for an ideal multiobjective optimization algorithm is as shown in Fig. ??.101
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Step No. -1 Find maximum number of nondominated solution according to objective, it expresses the number102
of Pareto optimal set so as shows higher coverage103

Step No. -2 Choose one of the Pareto optimal solution using crowding distance mechanism that fulfills the104
objectives.105

4 F106

Now a day recently proposed sole objective algorithms are equipped with powerful operators to provide them107
a capability to solve multi-objective problems as well. In the same manner we proposed NSWOA algorithm108
in a hope that it will perform efficiently for multi-objective problems. These are: Multi-objective GWO109
[29], Multi-objective Bat Algorithm [30], Multiobjective Bee Algorithm [31],Pareto Archived Evolution Strategy110
(PAES) [32], Pareto-frontier Differential Evolution (PDE) [33], Multi-Objective Evolutionary Algorithm based111
on Decomposition (MOEA/D) [34], Strength-Pareto Evolutionary Algorithm (SPEA) [35,36]andMulti-objective112
water cycle algorithm with unconstraint and constraint standard test functions [37] [38].Performance measurement113
for approximate robustness to Pareto front of multi-objective optimization algorithms in terms of coverage,114
convergence and success metrics.115

The computational complexity of NSWOA algorithm is order of ( )where N is the number of individuals in the116
population and M is the number of objectives. The complexity for other good algorithms in this field: NSGA-II,117
MOPSO, SPEA2 and PAES are (118

). However, the computational complexity is much better than some of the algorithms such as NSGA and119
SPEA which are of ( ).120

5 III.121

Non-Dominated Sorting Whale Optimization Algorithm (nswoa) The Whale Optimization Algorithm (WOA)122
with sole objective was proposed by Mirjalili Seyedali and Andrew Lewis in 2016 [17]. It is basically a stochastic123
population based, nature inspired algorithm. In this algorithm the basic strategy based on special hunting nature124
of humpback whales.Some fact about humpback whales that they are: fancy creatures, biggest mammals in the125
world and have power of think, learn, judge, communicate, being emotional etc. They are also considered as126
predators as they never sleep, only half of the brain sleeps, as they have to breathe from surface of the ocean.127
One more interesting fact about whales is their hunting or foraging behavior to hunt small fishes. Such type of128
foraging behavior is known as bubble-net feeding strategy where whales went down in water approximate 10-15129
meter and then after start to produce bubbles in a spiral shape encircles prey and then follows the bubbles and130
moves upward the surface. This foraging behavior is done by making distinct bubbles along with a circle or131
’9-shaped path’ represented in Fig. 3 . *( ) ( ) D C X t X t ? ? ?? ?? ? (1) ( 1) *( ) . X t X t A D ? ? ? ?? ?132
?? ? ?? ?? (2)2 * A a r a ? ? ?? ? ? (3) 2* C r ? ?? (4)133

Where: ? is a variable linearly decrease from 2 to 0 over the course of iteration and r is a random number [0,134
1].135

6 b) Bubble-net attacking method136

In order to mathematical equation for bubblenet behaviour of humpback whales, two methods are modelled as:137

7 i. Shrinking Encircling Mechanism138

This technique is employed by decreasing linearly the value of a ? from 2 to 0. Random value for vector ? in139
rang between [-1, 1].140

8 ii. Spiral Updating Position141

Mathematical spiral equation for position update between humpback whale and prey that was helix-shaped142
movement given as follows:143

( ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ?? ?? ?? ? ??? ?? ?(6)144
Where: p expresses random number between [0, 1].145
iii. Search for prey146

9 A147

10 ??148

Vector can be used for exploration to search for prey;149
vector A ?? also takes the values greater than one or less than -1. Exploration follows two conditions. rand150

D C X X ? ? ?? ?? ?????? ?? ? (7)( 1)151
.rand X t X A D ? ? ? ?? ? ?????? ?? ??(8)152
Finally follows these conditions: ? Position of whales are updated as a spiral or helix shaped movement153

function and so as value of next position of whales is decided ? The value of absolute distance is achieved which154
is basically a distance between the current best solution (whales current position) to the final (prey position)155
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13 ?P?_I=C??RANK?_I

optimal solution ? We assume that there is 50-50% probability that whale either follow the shrinking encircling156
or logarithmic path during optimizationmuch needed to update their position towards optimal one ? Stage 3 ?157
Termination counter in integrated to limit/forcefully stop the search in uncertain search space (max. iteration158
counter to forcefully converge the search to optimal one) ? Size of the position vector matrix is continuously159
reduced over the course of iteration due to directed search to find global best solution ? Continuously position160
of the whalesis updated towards the optimal one viaeither follow the shrinking encircling or logarithmic path161
during optimizationequation for each iteration ? Likewise, multi-objective optimization the NSWOA algorithm162
is made to capable to store the pareto? 1 A ? ??163

11 ? Stage4164

Note: We assume that there is 50-50% probability that whale either follow the shrinking encircling or logarithmic165
path during optimization. Mathematically we modelled as follows:166

Global Journal of Researches in Engineering ( ) Volume XVII Issue IV Version I optimal solutions in a167
collectionset and make it as flexible to change solution over the course of iteration ? Solution is assigned a rank168
according to their ability as if a solution is not dominated by other solution is assigned rank1, dominated by only169
solution assigned rank 2 and so on & if collection set is full (archive size) over predefined size then some solutions170
that are less non-dominated (according to fitness value) in natureare directed to be out from the collection set171
according to the crowding distance mechanism. This collection set is similar to the term achieve used in MOSOS172
and NSGA-II. It is a repository to store the best non-dominated solutions obtained so far. The search mechanism173
in NSWOA is very similar to that of WOA algorithm, in which solutions are improved using position vectors.174
Due to the existence of multiple best solutions, however, the best whales position should be chosen from the175
collection set.176

In order to select solutions from the archive to establish tunnels between solutions, we employ a leader selection177
mechanism. In this approach, the crowding distance between each solution in the archive is first selection and178
the number of solutions in the neighbourhood is counted as the measure of coverage or diversity. We require the179
NSWOAalgorithm to select solutions from the less populated regions of the archive using the following equation180
to improve the distribution of solutions in the archive across all objectives.181

This section proposes multi-objective version of the WOA algorithm called NSWOA algorithm. The182
nondominated sorting has been of the most popular and efficient techniques in the literature of multi-objective183
optimization. As its name implies, non-dominated sorting sort Pareto optimal solutions based on the domination184
level and give them a rank. This means that the solutions that are not dominated by any solutions is assigned185
with rank 1, the solutions that are dominated by only one solution are assigned rank 2, the solutions that are186
dominated by only two solutions are assigned rank 3, and so on. Afterwards, solutions are chosen to improve the187
quality of the population base on their rank. The better rank, the higher probability to be chosen. The main188
drawback of non-dominated sorting is its computational cost, which has been resolved in NSGA-II.189

The success of the NSGA-II algorithm is an evidence of the merits of non-dominated sorting in the field of190
multi-objective optimization. This motivated our attempts to employ this outstanding operator to design another191
multi-objective version of the WOA algorithm. In the NSWOA algorithm, solutions are updated with the same192
equations presented in equation 3.9. In every This mechanism allows better solutions to contribute in improving193
the solutions in the population. It should be noted that non-dominated sorting gives a probability to dominated194
solutions to be selected as well, which improves the exploration of the NSWOA algorithm. Flow chart of NSWOA195
algorithm is represented as Fig. 4.196

12 Constraint Handling Approach197

With the extended literature survey we find that the population based algorithms are the common way to solve198
the multi-objective problems as they are more commonly provides the global solution and capable of handling199
both continuous and combinational optimization problem with a very high coverage and convergence. Multi-200
objective problems are subjected to various type of constraints like linear, non-linear, equality, inequality etc.201
So with these problems embedded it is very difficult to find simple and good strategy to achieve considerable202
solutions in the acceptable criterion. So in this paper NSWOA algorithm uses a very simple approach to get203
feasible solutions. In this mechanism, after generating number of solutions at each generation, all the desirable204
constraint checked and then some solution that fulfills the criterion of acceptable solution are selected and205
collected them in achieve. Afterward non dominated solutions added in archive as we find more suitable solution206
to get acceptable solution. So as if achieve is full then less dominated solutions are removed. Finally, according207
to crowing distance mechanism all these solutions (more suitable position of the whales) from archive is selected208
to get desired solution.209

13 ?P?_i=c??Rank?_i210

(3.9)211
iteration, however, the solutions to have optimal position of whalesare chosen using the following equation:212
where c is a constant and should be greater than 1 and ???????? ?? is the rank number of solutions after213

doing the non-dominated sorting.214
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14 Results Analysis On Test Functions215

For determine the performance of proposed NSWOA algorithm is applied to: ? A set of unconstraint and216
constraint standard multiobjective test functions ? Tested on well-known engineering design problems ? Non-217
linear, highly complex practical application known as economic constrained emission dispatch (ECED)218

? With and Without stochastic integration of wind power (WP) in the next section ? A simple six-operating219
generational unit with power demand 1200 MW. (Engineering multiobjective design problem) with distinct220
characteristics like non-linear, non-convex, discrete pareto fronts and convex etc. are selected to measure the221
performance of proposed NSWOA algorithm. To deal with real world engineering design problem is really a typical222
task with unknown search space, in this article we include four different engineering problems are considered and223
performance is compared with various well known algorithms like MOWCA, NSGA-II, MOPSO, PAES and ?-GA224
multi-objective algorithms. Each algorithm is separately runs fifteen times and numeric results are listed in tables225
below. To measure the quality of obtained results we match their coverage of obtained true pare to front with226
respect to their original or true pare to fronts.227

15 Initialize the no. of whales, no. of variable, maximum228

iterations229

For numeric as well as qualitative performance of purposed NSWOA algorithm on various case studies we consider230
Generational Distance (GD) given by Veldhuizen in 1998 [39]for measuring the deviation of the distance between231
true pare to front and obtained pare to front, Diversity matric (Î?”) also known as matrix of spread to measure232
the uniformly distribution of nondominated solution given by Deb [24]and Metric of spacing (S) to represent233
the distribution of nondominated distribution of obtained solutions by purposed algorithm given by Schott [40].234
where235

shows the Euclidean distance (calculated in the objective space) between the Pareto optimal solution achieved236
and the nearest true Pareto optimal solution in the reference set, is the total number of achieved Pareto optimal237
solutions.Î?” = ? | | ( )238

where, , are Euclidean distances between extreme solutions in true pareto front and obtained pareto front.239
shows the Euclidean distance between each point in true pare to front and obtained pare to front.240
and ’d’ are the total number of achieved Pareto optimal solutions and averaged distance of all solutions.241

16 = ? ( ? ) a) Results on unconstrained test problems242

Like as above mentioned, the first set of test problems consist of unconstrained standard test functions. All the243
standard unconstrained test functions mathematical formulation is shown in Appendix A. Later, the numeric244
results are represented in Table 1 and best optimal pare to front is shown in Fig. 5.245

All the statistical results are shown Table 1 suggests that the NSWOA algorithm effectively outperforms with246
most of the unconstraint test functions compare to the MOSOS, MOCBO, MOPSO and NSGA-II algorithm.247
The effectiveness of proposed nondominated version of WOA (NSWOA algorithm) can be seen in the Table 1,248
represents a greater robustness and accuracy of NSWOA algorithm in terms of mean and standard deviation249
with the help of GD, diversity matrix along with computational time. However, proposed NSWOA algorithm250
shows very competitive results in comparison with the MOPSO, MOCBO and MOSOS algorithms and in some251
cases these algorithms perform better than proposed one. Pare to front obtained by proposed NSWOA algorithm252
shows almost complete coverage with respect to true pare to front. Year 2017253

17 F254

The mathematical representation of these performance indicating metric are as follows:255
where ”d” is the average of all ?? ?? , ?? ?????? is the total number of achieved Pareto optimal solutions,256

and?? ?? = min ?? ?|ð�??”ð�??” 1 ?? (?? ?) ? ð�??”ð�??” 1 ?? (?? ?)| + |ð�??”ð�??” 2 ?? (?? ?) ? ð�??”ð�??” 2257
?? (?? ?)?258

for all i,j=1,2,?,n. Smallest value of ”S” metric gives the global best non-dominated solutions are uniformly259
distributed, thus if numeric value of ?? ?? and ?? are same then value of ”S” metric is equal to zero.260

with wind power (ECEDWP). These can be classified into four groups given below: The next set of standard261
test functions consisting of constrained functions. For constrained test function it should be necessary that262
NSWOA algorithm has a capability of handling constraints so algorithm is equipped with a death penalty function263
to search that violate any of the constraints at any level [41]. For comparing the results of different algorithms,264
we have utilized GD and Î?” metrics. has a capability of handling constraints so algorithm is equipped with a265
death penalty function to search agents that violate any of the constraints at any level [41]. For comparing the266
results of different algorithms, we have267

18 i. Four-bar truss design problem268

The statistical results of four bar truss design problem [42] in given in Table 3 and best optimal front is given in269
Fig. The statistical results of four bar truss design problem [42] in given in Table 3 and best optimal front is given270
in Fig. 7. It consists of two minimization objectives displacement and volume with four design control variable271
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23 ECONOMIC CONSTRAINED EMISSION ) WITH INTEGRATION OF
WIND POWER FORMULATION OF WIND POWER

mathematically given in Appendix C. Year 2017 F CONST function consists of concave front with linear front,272
OSY is similar to CONST but consists of many linear regions with different slops while TNK almost similar to273
wave shaped. These also suggests that NSWOA algorithm has a capability to solve various type of constraint274
problem. All the constraint test functions are mathematically given in Appendix B.275

19 Speed-reducer design problem276

The statistical results of speed reducer design problem [43] is given in Table 4 and best optimal front is given in277
Fig. 8 Pareto optimal front obtained by the NSWOA Algorithm for ”Four -bus truss design problem”278

The statistical results of speed reducer design problem [43] is given in iii.279

20 Welded-beam design problem280

The statistical results of welded beam design problem [44] is given in Table ?? and best optimal front is given281
in Fig. The statistical results of welded beam design problem [44] is given in Table ?? and Table ??: Results of282
the multi-objective NSWOA algorithms on welded-beam design problem in terms mean and standard deviation283

21 Disk brake design problem284

The statistical results of welded beam design problem [44] is given in Table 6 and best optimal front is given in285
Fig. 10. It is a well-known mechanical design Fig. 10: Paretooptimal front obtained by the NSWOA Algorithm286
for ”Disk brake design problem” Due to high complexity of engineering design problem it is really hard to gain287
results alike true pare front but we can clearly see that optimal pare obtained by NSWOA algorithm is covers288
almost whole solutions that are the actual/true solutions of an engineering design problem. From all above289
tested function we can conclude that problem either it consists of constraints or unconstraint problem NSWOA290
algorithm shows its capability to solve any kind of linear, non-linear and complex real problem. next section291
we attached a highly non-linear complex real problem to show its effectiveness regarding the real world complex292
application with many objectives.293

The statistical welded beam design problem [44] is given in Table 6 and best optimal front is known mechanical294
design problem consists of two minimization objectives stopping time and mass of brake of a disk brake four design295
control variable mathematically given in Appendix C.296

optimal front obtained by the NSWOA Algorithm for ”Disk brake design problem”297
Due to high complexity of engineering design problem it is really hard to gain results alike true pare to optimal298

pare to obtained by NSWOA algorithm is covers almost whole solutions that are the actual/true solutions of299
an engineering design problem. From all above tested function we can conclude that problem either it consists300
problem NSWOA algorithm shows its capability to solve any kind of linear, linear and complex real world problem.301
So in the linear complex real problem to show its effectiveness regarding the real ication with many objectives.302

22 d) Formulation Of Economic Constrained Emission Dispatch303

(ECED) With Integration Of (WP) i. Mathematical Formu-304

lation Of Wind Power305

In case of wind power generation, the output power of wind generator is calculated with the help of a stochastic306
variable wind speed ? (meter/seconds). Wind speed is a variable function so their probability distribution plays307
a very important role. Wind sp mathematically formulated as two distribution function, probability density308
function (PDF) and cumulative distribution function (CDF) as follows:( ) = ( ) ? ( ) ? * exp ? ( ( ) = 1 ? exp309
? ( ) ?310

, ? 0 objectives stopping time and mass of brake of a disk brake with four design control variable mathematically311
given in optimal front obtained by the NSWOA Algorithm for ”Disk brake design problem”312

23 Economic Constrained Emission ) With Integration Of Wind313

Power Formulation Of Wind Power314

In case of wind power generation, the output power of wind generator is calculated with the help of a315
(meter/seconds). Wind speed is a variable function so their probability distribution plays a very important316
role. Wind speed mathematically formulated as two-parametric Weibull distribution function, probability density317
function (PDF) and cumulative distribution function (CDF) as follows: where, S(v) and s(v) are CDF and PDF318
respectively. Shape factor and scale factor are k and c respectively. The wind speed and output wind power are319
related as:) ? , ? 0 (4.1) (4.2)= 0, < ? ? < ? < (4.3)320

where, and are the rated speed of wind and rated power output. and are cut-out and cut-in speed of wind321
respectively. The CDF of in the boundary of [0, ] on an accordance with the speed range of wind can be formulated322
as:( ) = 1 ? ? 1 + * } + exp [? ( ) ? ], 0 ? < (4.4)323

Above equation is very meaningful to calculate the ECED problems with speculative wind power with variable324
speed.325
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24 ii. Modeling of ECEDWP problem326

As power is formulated as system constraint, so the objective function of economic emission dispatch problem327
(EEDP) stays on unchanged as classical EEDP:328

Fuel cost objective is given by:( ) = ? ( + + ) (4.5)329
where, the thermal power generators cost coefficients are , , for i-th generator, Sum of the total fuel cost of330

the system and N is the total number of generators. Total Emission is calculated by:( ) = ? [{( + + ) * 10 } +331
* exp ( * )] (4.6)332

where, , , , and are emission coefficients with valve point effect taking into consideration i-th thermal generator.333

25 iii. System Constraints334

As wind power generation is considered as system constraint with the summation of stochastic variables the335
classical power balance constraint changes to fulfill the predefined confidence level.? ( + ? + ) ? (4.7)336

where, is confidence level that a power system must follow the load demand and so as it is selected nearer to337
unity as values lesser than unity represents high operational risk.338

represents system losses can be calculated by B-coefficient method given below:= ? ? + ? + (4.8)339
So as to change above described power balance constrained equation into deterministic form can be solved340

as:{ < + ? ? = ( + ? ? ) ? 1 ? (4.9) + ? ? ? + * ? * (4.10)341
iv. Reserve capacity system constraint So as to reduce the impact of stochastic wind power on system, up342

and down spinning reserve needs to be maintained [22]. Such reserve constraints formulated as [15] and [16]343
respectively:{? ( ? ) ? + * } ? (4.11) ? ? ? * ( ? ) ? (4.12)344

where, represents the reserve demand of conventional thermal power plant system and it generally keeps the345
maximum value of thermal unit, and are maximum and minimum output level of operational generators of i-th346
unit, and are predefined down and upper confidence level parameter respectively, and are the demand coefficients347
of up and down spinning reserves.348

26 v. Generational capacity constraint349

The real output power is bounded by each generators upper and lower bounds given as: ? ? (4.13)350
V.351
Test System For Economic Emission Dispatch Problem a) 40-Operational Thermal Generating Unit352

27 i. Case Study I-40 Thermal-Generator Lossless System353

Without Wind Power354

In this case forty operational generating unit is consider without integration of wind power means all the355
generating units are coal fired. Input parameters like generators operating limit, fuel cost coefficients and emission356
coefficients are given in Appendix D and in Table 11. extracted from [45]. System is considered lossless and357
its solution is compared with three well known multi-objective algorithms like SMODE [45], NSGA-II [45]and358
MBFA [46] in terms of various objectives such as best cost, best emission and best compromise between both359
objectives. Best compromise solution is then obtained by the fuzzy based method [47]. Total power demand for360
this system is 10500 MW. Results obtained by NSWOA algorithm is added to table 7 and best pare to front361
obtained by NSWOA algorithm is represented in Fig. 12.362

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization Algo-363
rithm for Solving Engineering Design Problems364

ii. Case study lossless system with wind power All the conditions are remaining same as case study I like input365
parameters and power demand. While366

28 generator lossless system367

All the conditions are remaining same as case y I like input parameters and power demand. While integrating with368
wind power plant, the total rated output power of wind farm is set to 1000 MW [45,47].Statistical results obtained369
by NSWOA algorithm is reported in Table ?? and best optimal front is represented in Fig. 13. integrating with370
wind power plant, the total rated output power of wind farm is set to 1000 MW [45,47].Statistical results371
obtained by NSWOA algorithm is reported in sented in Fig. 13. Fig. 13: Pareto optimal front obtained by372
the NSWOA Algorithm for ”40 thermal-generator lossless system with wind power” b) Test system with six373
operational generating unit This test system consists of six operational generating unit with simply a quadratic374
fuel and emission objective function for a power demand of 1200 MW. Input data for operational generating unit375
loading limits and loss parameters are given in Table 12 of Appendix D extracted from [52, ??3].376

29 Be st emission377

It is represented in Table 10 that with the objective of least cost objective minimum fuel cost is 6.4197e+04 $378
and emission value is 1345.9 lb. But fuel cost increases to 6.992e+04 $ and emission value reduced to a numeric379
value 1242.7 lb with the objective of emission minimization. Compromise point or true operating point obtained380
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33 KUR:

by NSWOA algorithm for multi-objective combined economic emission dispatch (MOCEED) problem is as fuel381
cost is 6.4830e+04 $ that is higher than minimum fuel cost 6.4197e+04$ and lower than 6.992e+04 $ obtained382
during least cost and emission value objectives respectively. So as with emission value for true operating point383
is 1285 lb that is lower than 1345.9 lb and higher than 1242.7 lb obtained during least cost and emission value384
objectives respectively. Statistical value obtained for compromise point is compared with other techniques solves385
same MOCEED problem like SPEA2, NSGA-II and PDE in Table 10. Fig. 14 shows 100 non-dominated solutions386
as true pare to front for 6-opertaional generating for PD=1200 MW.387

30 Result Discussion388

In almost all the cases that we consider in this article where NSWOA algorithm proves its effectiveness in both389
prospective quantitative and qualitative. From plots also evident that NSWOA algorithm follows the exact pare to390
front similar to the true pare to front for all constrained, unconstrained and complex engineering design problem.391
So as for real world application of economic emission dispatch problem and its integration with stochastic wind392
power generation. So for this application Wilcox on test (statistical test)is performed.393

In Table 9 the signed rank test is presented in third row of each results whereas the calculation time is394
represented in forth row. For this test null hypothesis cannot be rejected at 5% level for numeric value ’0’ while395
null hypothesis is rejected at 5% level with the value of ’1’. Where NSWOA algorithm performs superior to other396
algorithms that are considered for comparative purpose.397

NSWOA algorithm shows good performance in both coverage and convergence as main mechanism that398
guarantee convergence in WOA and NSWO Aalgorithms are continuously shrink its virtual limitation using399
helix shaped or 9-shaped path strategy in the movement of whales for their random walk. Both mechanism400
emphasizes convergence and exploitation proportional to maximum number of generation (iteration). Since this401
complex task might degrade its performance compare to without limitation or free movement should be a concern.402
However, the numerical results expresses that NSWOA algorithm has a little effect of slow convergence at all.403
NSWOA algorithm has an advantage of high coverage, which is the result of the selection of position of whales404
and archive selection procedure. All the position is updated according to their fitness value that enable the405
algorithm to direct the search space in right direction to find the best solution without trapped in local solution.406
Archive selection criteria follow all the rules of the entrance and exhaust of any value in it for each iteration and407
updated when its size full. Solutions of higher fitness in archive have higher probability to thrown away first to408
improve the coverage of the pare to optimal front obtained during the optimization process.409

31 VII.410

32 Conclusion411

In this paper the non-dominated sorting whale optimization algorithm-multi-objective version of recently proposed412
whale optimizationalgorithm (WOA) is proposed known as NSWOA algorithm. This paper also utilizes the413
bubble-net swarming strategy for exploration purpose used in its parent WOA version. The NSWOA algorithm414
is developed with equipping whale optimization algorithm with crowding distance criterion, an archive and whales415
position (accordance to ranking) selection method based on Pareto optimal dominance nature. The NSWOA416
algorithm is first applied on 17 standard test functions (including eight unconstraint, five constraint and four417
engineering design multi-objective problems) to prove its capability in terms of qualities and quantities showing418
numerical as well as convergence and coverage of pare to optimal front with respect to true pare to front.419
Then after NSWOA algorithm is applied to real world complex ECEDWP problem where algorithm proves its420
dominance over other well recognized contemporary algorithms. The numeric results are stored and represented421
in performance indices: GD, metric of diversity, metric of spacing and computational time. The qualitative results422
are reported as convergence and coverage in best pare to optimal front found in 15 independent runs. To check423
effectiveness of proposed version of algorithm the results are verified with SMODE, MOSOS, MOCBO, MOPSO,424
NSGA-II and other well recognize algorithms in the field of multi-objective algorithms. We can also conclude425
from the standard test functions results that NSWOA algorithm is able to find pare to optimal front of any426
kind of shape. Finally, the result of complex real world ECEDWP problem validates that NSWOA algorithm is427
capable of solving any kind of non-linear and complex problem with many constraint and unknown search space.428
Therefore, we conclude that proposed non-dominated version of WOA algorithm has various merits among the429
contemporary multi-objective algorithms as well as provides an alternative for solving multi or many objective430
problems.431

For future works, it is suggested to test NSWOA algorithm on other real world complex problems. Also, it is432
worth to investigate and find the best constrained handling technique for this algorithm.433

Appendix A: Unconstrained multi-objective test problems utilized in this work.434

33 KUR:435

Minimize:ð�??”ð�??” 1 (??) = ? ?? 10exp (?0.2??? ?? 2 + ?? ??+1 2 ) ? 2 ??=1 ð�??”ð�??” 2 (??) = ? [|?? ?? |436
0.8 + 5??????(?? ?? 3 )] 2 ??=1437
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5 51 3 i x i ? ? ? ? ? FON: 2 1 1 2 2 1 1 ( ) 1 exp ( ) min 1 ( ) 1 exp ( ) n i i n i i f x x n imize f x x n = = ?438
? ? = ? ? ? ? ? ? ? ? ? = ? ? ? ? = ? ? + ? ? ? ? ? ? ? ? 4 4 1 i x i n ? ? ? ? ? ZDT1: ZDT2: Minimise:439
?? ?? (??) = ?? ?? Minimise: ð�??”ð�??” 2 (??) = ð�??”ð�??”(??) × ??ð�??”ð�??” 1 (??), ð�??”ð�??”(??)? ??(??)440
= 1 + 9 ?? ? 1 ? ?? ?? ?? ??=2 ??ð�??”ð�??” 1 (??), ð�??”ð�??”(??)? = 1 ? ? ð�??”ð�??” 1 (??) ð�??”ð�??”(??) 0441
? ?? ?? ? 1, 1 ? ?? ?30442

Where:443
Minimise:ð�??”ð�??” 1 (??) = ?? 1444
Minimise: ð�??”ð�??” 2 (??) = ð�??”ð�??”(??) × ??ð�??”ð�??” 1 (??), ð�??”ð�??”(??)?445
Where: SCHN-1 :??(??) = 1 + 9 ???1 ? ?? ?? ?? ??=2 ??ð�??”ð�??” 1 (??), ð�??”ð�??”(??)? = 1 ? ? ð�??”ð�??”446

1 (??) ð�??”ð�??”(??) ? 2 0 ? ?? ?? ? 1,Minimize: ð�??”ð�??” 1 (??) = ?? ?? 2 ð�??”ð�??” 2 (??) = (?? ? 2) 2 A447
x A ? ? ?448

Where: value of can be from 10 to 10^5.449

34 SCHN-2 :450

Minimize:451
( ) Where:1 2 2 x, 1 x 2, 1 3 ( ) 4 x, 3 4 x 4,4( ) 5 if x if x f x if x if x f x x ? ? ? ? ? ? ? < ? ? ? = ? ? ? <452

? ? ? ? ? ? > ? ? ? = ? ?ð�??”ð�??” 1 (??) = ??? 1 2 ? ?? 2 2 + 1 + 0.1??????(16???????????? ? ?? 1 ?? 2 ?)453
ð�??”ð�??” 2 (??) = 0.5 ? (?? 1 ? 0.5) 2 ? (?? 2 ? 0.5) 2 0.1 ? ?? 1 ? ??, 0 ? ?? 2 ? ?? BNH:454

This problem was first proposed by Binh and Korn [48]:Minimise: ?? ?? (??) = ???? ?? ?? + ???? ?? ??455
Minimise: ð�??”ð�??” 2 (??) = (?? 1 ? 5) 2 + (?? 2 ? 5) 2 ð�??”ð�??” 1 (??) = (?? 1 ? 5) 2 + ?? 2 2 ? 25456
ð�??”ð�??” 2 (??) = 7.7 ? (?? 1 ? 8) 2 ? (?? 2 + 3) 2 0 ? ?? 1 ? 5,0 ? ?? 2 ? 3457

35 OSY:458

The OSY test problem has five separated regions proposed by Osyczka and Kundu [49]. Also, there are six459
constraints and six design variables.460

36 Minimise:461

ð�??”ð�??” 1 (??) = ?? Where:ð�??”ð�??” 1 (??) = 2 ? ?? 1 ? ?? 2 ð�??”ð�??” 2 (??) = ?6 + ?? 1 + ?? 2462
ð�??”ð�??” 3 (??) = ?2 ? ?? 1 + ?? 2 ð�??”ð�??” 4 (??) = ?2 + ?? 1 ? 3?? 2 ð�??”ð�??” 5 (??) = ?4 + ?? 4 +463
(?? 3 ? 3) 2 ð�??”ð�??” 6 (??) = 4 ? ?? 6 ? (?? 5 ? 3) 2 0 ? ?? 1 ? 10,0 ? ?? 2 ? 10,1 ? ?? 3 ? 5,0 ? ?? 4 ? 6,1464
? ?? 5 ? 5,0 ? ?? 6 ? 10 SRN:465

The third problem has a continuous Pareto optimal front proposed by Srinivas and Deb [50].466
Minimise:ð�??”ð�??” 1 (??) = 2 + (?? 1 ? 2) 2 + (?? 2 ? 1) 2 Minimise: ð�??”ð�??” 2 (??) = 9?? 1 ? (?? 2 ?467

1)2468
Where:ð�??”ð�??” 1 (??) = ?? 1 2 + ?? 2 2 ? 255 ð�??”ð�??” 2 (??) = ?? 1 ? 3?? 2 + 10 ?20 ? ?? 1 ? 20, ?20469

? ?? 2 ?20470

37 CONSTR:471

This problem has a convex Pareto front, and there are two constraints and two design variables.472
Minimise:ð�??”ð�??” 1 (??) = ?? 1 Minimise: ð�??”ð�??” 2 (??) = (1 + ?? 2 )/(?? 1 )473
Where:ð�??”ð�??” 1 (??) = 6 ? (?? 2 + 9?? 1 ), ð�??”ð�??” 2 (??) = 1 + ?? 2 ? 9?? 1 0.1 ? ?? 1 ? 1,0 ? ?? 2474

? 5475
Appendix C: Constrained multi-objective engineering problems used in this work.476

38 Four-bar truss design problem:477

The 4-bar truss design problem is a well-known problem in the structural optimisation field [42], in which478
structural volume (f1) and displacement (f2) of a 4-bar truss should be minimized. As can be seen in the479
following equations, there are four design variables (x1-x4) related to cross sectional area of members 1, 2, 3, and480
4.481

39 Minimise:482

?? ?? (??) = ?????? * (?? * ??(??) + ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”(?? * ??(??)) +483
ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”(??(??)) + ??(??))Minimise: ð�??”ð�??” 2 (??) = 0.01 * (? 2 ??(1) ?484
+ ? 2 * ???????? (2) ??(2) ? ? ((2 * ????????(2))/??(3)) + (2/??(1))) 1 ? ?? 1 ? 3,1.4142 ? ?? 2 ? 3,1.4142 ?485
?? 3 ? 3,1 ? ?? 4 ? 3486

40 Speed reducer design problem:487

The speed reducer design problem is a well-known problem in the area of mechanical engineering [43], in which488
the weight (f1) and stress (f2) of a speed reducer should be minimized. There are seven design variables: gear489
face width (x1), teeth module (x2), number of teeth of pinion (x3 integer variable), distance between bearings 1490
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41 MINIMISE:

(x4), distance between bearings 2 (x5), diameter of shaft 1 (x6), and diameter of shaft 2 (x7) as well as eleven491
constraints.492

41 Minimise:493

ð�??”ð�??” The disk brake design problem has mixed constraints and was proposed by Ray and Liew [44]. The494
objectives to be minimized are: stopping time (f1) and mass of a brake (f2) of a disk brake. As can be seen in495
following equations, there are four design variables: the inner radius of the disk (x1), the outer radius of the disk496
(x2), the engaging force (x3), and the number of friction surfaces (x4) as well as five constraints.

1

Figure 1: Fig. 1 :

3

Figure 2: 3 )
497

1 2498

1© 2017 Global Journals Inc. (US)
2Year 2017 F © 2017 Global Journals Inc. (US)
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Figure 3: ?n?{1, 2 ,Fig. 2 :

Figure 4:
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41 MINIMISE:

3

Figure 5: Fig. 3 :

Figure 6:
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Figure 7: Fig. 4 :

Figure 8:
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41 MINIMISE:

5

Figure 9: Fig. 5 :

6

Figure 10: FFig. 6 :
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Figure 11: 7 .

7

Figure 12: Fig. 7 :
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41 MINIMISE:

Figure 13:

8

Figure 14: Fig. 8 :
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Figure 15: 9 .Fig. 9 :

Figure 16:
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41 MINIMISE:

12

Figure 17: Fig. 12 :
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Figure 18: Fig. 14 :
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Figure 19:
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Figure 20: 1 ( 1 ð�??”ð�??” 2 ( 1 ð�??”ð�??” 3 ( 1 ð�??”ð�??” 4 ( 1 ð�??”ð�??” 5 ( 1 ð�??”ð�??” 7 (
1 ð�??”ð�??” 8 ( 1 ð�??”ð�??” 9 ( 1 ð�??”ð�??” 10 ( 1 ð�??”ð�??” 11 ( 1 2. 6 ? 5
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41 MINIMISE:

1528

Figure 21: Minimise: ð�??”ð�??” 1 ( 5 Where? 28 ?

13034415

Figure 22: Minimise: ð�??”ð�??” 1 ( 30 ð�??”ð�??” 3 ( 4 ð�??”ð�??” 4 ( 1 ð�??”ð�??” 5 (
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1

Algorithm
?
Func-
tion
â??”

PFs NSWOA
MEAN±SD

MOSOS
MEAN±SD

MOCBO
MEAN±SD

MOPSO
MEAN±SD

NSGA -
MEAN±SD
II

GD 0.00722±0.00211 0.0075±0.0042 0.0083±0.0062 0.015±0.0075 0.0301±0.0043
KURÎ?” 0.02699±0.00025 0.0295±0.0122 0.0357±0.0236 0.0991±0.031 0.0362±0.0240

CT 7.55752±0.43359 10.7413±0.822 7.9531±0.5823 8.0532±0.621 20.4368±3.102
GD 0.00163±0.00022 0.0019±0.0002 0.0022±0.0003 0.0042±0.000 0.0026±0.0003

FON Î?”
CT
GD

0.28815±0.03648 09.6571±0.54537 0.36659±0.06618 0.3875±0.0062
11.4013±1.140
0.3325±0.0256

0.3955±0.0068
8.6606±0.8862
0.3337±0.0319

0.4158±0.008
8.732±0.9134
0.3348±0.035

0.3987±0.0082
22.0323±4.522
0.3352±0.038

Year
2017

ZDT-
1

Î?” 0.34579±0.00775 0.3803±0.0122 0.3825±0.0125 0.3876±0.024 0.3905±0.0220

CT 6.59899±0.00371 8.2351±0.0204 3.1435±0.0193 3.7533±0.006 11.2681±0.364
GD 0 .

07001±0.00066
0.0731±0.0010 0.0729±0.0005 0.0733±0.001 0.0725±0.0004

ZDT-
2

Î?” 0.04133±0.06577 0.4307±0.0007 0.4316±0.0007 0.4321±0.001 0.431±0.00075

CT 4.65825±0.02000 8.2345±0.0457 3.1502±0.0130 3.6113±0.014 11.2811±0.024
GD 0.07132±0.03917 0.1022±0.5187 0.0982±0.5007 0.1235±0.009 0.1147±0.0039

ZD
T-
3

Î?” 0.69774±0.23268 0.6537±0.0052 0.65325±0.002 0.8234±0.108 0.7386±0.0474

CT 8.77756±0.34789 13.4567±0.129 6.2846±0.1059 8.3764±0.231 14.3406±0.144
GD 0.49888±0.00022 0.5015±0.0006 0.5078±0.0013 0.5146±0.001 0.5204±0.0019

ZD
T-
4

Î?” 0.35779±0.01477 0.4585±0.0073 0.4795±0.0079 0.6543±0.024 0.7003±0.0089

CT 7.87855±0.12275 13.9022±0.121 6.6922±0.1440 8.8203±0.218 14.8102±0.170
GD 0.00999±0.00075 0.0028±0.0024 0.0031±0.0032 0.0032±0.003 0.0034±0.0042

SCHN-
1

Î?” 0.50066±0.01477 0.5295±0.1312 0.5302±0.1356 0.8582±0.164 0.5502±0.1360

CT 11.7600±1.23165 8.2135±1.121 5.4845±1.1320 5.5721±1.133 17.9121±2.162
GD 0.04977±0.00188 0.0705±0.0215 0.0932±0.0228 0.1497±0.022 0.3096±0.0217

SCHN-
2

Î?” 0.65698±0.02888 0.7821±0.0512 0.801±0.08326 0.8652±0.060 0.9562±0.0921

CT 5.79912±0.14008 8.7015±0.4532 5.9751±0.2821 6.0272±0.582 18.421±2.1802

[Note: F b) Results on constrained test problemsThe next set of standard test functions consisting of constrained
functions. For constrained test function it should be necessary that NSWOA algorithm]

Figure 23: Table 1 :
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41 MINIMISE:

2

Results of the multi-objective NSWOA algorithms on constrained test problems problems
Algorithm?NSWOA MOSOS MOCBO MOPSO NSGA-II

PFs
Function
â??”

MEAN±SD MEAN±SD MEAN±SD MEAN±SD MEAN±SD

GD 0.14566±0.00216 0.1508±0.00400.1528±0.00510.1576±0.00620.1 542±0.0072 0.1
542±0.0072

TNKÎ?” 0.09996±0.05027 0.1206±0.04230.1242±0.05120.1286±0.05220.1 26±0.06242
0.126±0.06242

CT 10.7775±0.04668 15.1286±0.06311.0104±0.05212.0212±0.05417. 4204±0.055
17.4204±0.055

GD 0.10004±0.00029 0.1196±0.00310.1210±0.00410.1282±0.00420.1 242±0.0043 0.1
242±0.0043

OSYÎ?”
CT

0.54798±0.06679
15.4470±0.02008

0.5354±0.0616
20.2124±0.032

0.5422±0.0712
12.2104±0.030

0.5931±0.0721
14.6420±0.042

0.5682±0.0751
24. 2204±0.039
0.5682±0.0751 24.
2204±0.039

Year
2017

GD 0.14447±0.00488 0.1436±0.00620.1498±0.00760.1644±0.00780.1 566±0.0042
0.1566±0.0042

BNHÎ?” 0.44477±0.03786 0.4288±0.06250.4798±0.07210.4975±0.06320.4892±0.0832
0.4892±0.0832

CT 07.5524±0.04587 16.2664±0.0549.1544±0.04209.7452±0.046419. 652±0.0511 19.
652±0.0511

GD 0.05881±0.01499 0.0988±0.00140.1018±0.00150.1125±0.00260.1 024±0.0032 0.1
024±0.0032

SRNÎ?” 0.20444±0.00098 0.2295±0.00170.2352±0.00190.2730±0.00230. 0.2 2468±0.0018
468±0.0018

CT 7.24456±0.00122 12.3254±0.0127.3251±0.00829.2134±0.008317. 0231±0.023 17.
0231±0.023

GD 0.42115±0.02998 0.5162±0.00210.5202±0.00340.5854±0.00360.5532±0.0041
532±0.0041

CONSTÎ?” 0.7865±0.000666 0.7122±0.00720.7235±0.00830.7344±0.00840.8126±0.0087
126±0.0087

CT 16.7555±0.00050 10.0112±0.0035.2252±0.00286.4766±0.003514. 0892±0.003 14.
0892±0.003

Figure 24: Table 2 :
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4

bus truss design problem”
problem consists of two minimization objectives stress
and weight with seven design control variable
mathematically given in Appendix C.
GD S
MEAN±SD
0.96469±0.41014800 1.778124±04.943415

1.778124±04.943415
0.98831±0.17894217 16. 68520±2.6969443 16.

68520±2.6969443
9.843702±7.0810303 02.7654494±3.534978

02.7654494±3.534978
3.117536±1.6781086 47.80098±32.8015157

47.80098±32.8015157
77.99834±4.2102608 16.20129±4.26842769

16.20129±4.26842769

[Note: and best optimal front is known mechanical design problem consists of two minimization objectives stress
and weight with seven design control var mathematically given in Appendix C. MEAN±SD © 2017 Global Journals
Inc. (US)]

Figure 25: Table 4

3

Figure 26: Table 3 :

4

Figure 27: Table 4 :

6

Year 2017
29
Journal of Researches in Engineering ( ) Volume XVII Issue IV Version I F
Global

Figure 28: Table 6 :

7

Figure 29: Table 7 :
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41 MINIMISE:

.

SMODE[45] NSGAII [45] MOEA/D[51] NSWOA
Case
Study-
II

Best emission Best cost Best
Com-
pro-
mise

Best
emis-
sion

Best
cost

Best
Com-
pro-
mise

Best emission Best cost Best
Com-
pro-
mise

Best
emis-
sion

Best
cost

Best
Com-
pro-
mise

-Point -Point -Point -Point
?P
G

10,245.7610,177.55 10,225.7110,241.7210,242.0910,241.6310,244.43 10,242.71 10,242.8 10,241.610,224.1810,236.58

P
W

254.24 322.45 274.29 258.28 257.91 258.37 255.568 257.294 257.156 255.321 276.81 263.75

Cost 153,830 116,430 123,590 132,410 122,610 126,240 154,0 0 0 115,770 120,950 145,636 118,789 123,449
54,055 385,770 68,855 73,894 121,850 78,860 55,754 440,240 79,485 56,508 179,098 68,804

Emission

Figure 30: Table . 8

9

NSWOA NSGAII[45] NSWOA NSGAII[45]
Case Best 119310 124,380 Case Best 118,789 122,610
Study
I

Worst 127555 147,760 Study
II

Worst 145,636 173,060

Cost Mean Wilcox 124831 131,710 Cost Mean 123,449 ?10 134,880
on 1/5.38e?10 Wilcox on test 1/5.65e
test (H/P) 14.98 (H/P) 19.876
Simulation Simulation
speed (s) speed (s)

Case
Study
I
Emis-
sion

Best Worst
Mean
Wilcoxon

87,123
408.020
189,284

93,002
194,830
141,800

Case
Study
II
Emis-
sion

Best Worst
Mean

56,508
179,098
104,185

73,894
158,250
102,120

test (H/P) 1/5.54e?10 Wilcox on 1/5.65e?10
Simulation
speed (s)

40.57 154.78 test (H/P)
speed (s)
Simulation

45.67 127.57

Figure 31: Table 9 9

10

NSWOA MODE[
Parameters

Figure 32: Table 10 :
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Economic
dispatch

Emission
dispatch

EED EED EED EED EED

P 1 (MW) 84.7275 125 107.9932 108.6284 107.3965 113.1259 104.1573
P 2 (MW) 93.4118 150 118.3631 115.9456 122.1418 116.4488 122.9807
P 3 (MW) 210 201.4824 210 206.7969 206.7536 217.4191 214.9553
P 4 (MW) 211.8607 198.8723 204.65 210.0000 203.7047 207.9492 203.1387
P 5 (MW) 315 288.5129 306.6592 301.8884 308.1045 304.6641 316.0302
P 6 (MW) 325 286.2913 303.8712 308.4127 303.3797 291.5969 289.9396
Cost ($) 64,197 65,992 64,830 64,843 64,920 64,962 64,884
Emission
(lb)

1345.9 1242.7 1285 1286.0 1281.0 1281.0 1285

Figure 33: 53] PDE [53] NSGAII[53] SPEA2[53]

dispatch 1269383. Where: ??(??) = 1 + problem. Cogent 9 29 ? ?? ?? ?? ??=2 ??ð�??”ð�??” 1 (??), ð�??”ð�??”(??)? = 1 ? ? Engineering, (1), ð�??”ð�??” 1 (??) ð�??”ð�??”(??) 55.
? ?

Watkins WA, Schevill
WE. Aerial observation
of feeding behavior in
four baleen whales:
Eubalaena ð�??”ð�??” 1
(??) ð�??”ð�??”(??) ?
sin?10??ð�??”ð�??” 1 (??)?
0 ? ?? ?? ? 1, 1 ? ?? ? 30

53. J .S. Dhillon , S.C. Parti and D P Kothari, ” Multi-https://doi.org/10.1080/23311916.2016.126933 ZDT4: glacialis, novaean-
gliae, and Balaenoptera
physalus. J Balaenoptera
borealis, Megaptera

objective optimal thermal power dispatch”, Electrical Minimise: ð�??”ð�??” 1 (??) = ?? 1 Mammal 1979: 155-63.
Power & Energy Systems, Volume 16, Number 6, 56. Goldbogen JA , Friedlaender AS , Calambokidis J ,
1994, pp. 383-389. Minimise: ð�??”ð�??” 2 (??) = ð�??”ð�??”(??) × ??ð�??”ð�??” 1 (??), ð�??”ð�??”(??)? Mckenna MF , Simon M ,

Nowacek DP . Integrative
54. Hof PR , Van Der Gucht E . Structure of the cerebral approaches to the study of

baleen whale diving be-
cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 2007;290:1-31 . ??ð�??”ð�??” 1 (??), ð�??”ð�??”(??)? = 1 ? ? ð�??”ð�??” 1 (??) g(x) = 91 + ?(?? ?? havior, feeding performance, and foraging ecology. BioScience 2013;63:90-100 . 10 2 ? 10 * cos (4???? ?? )) ð�??”ð�??”(??) ??=2

Year 2017
Journal of Researches in
Engineering ( ) Volume
XVII Issue IV Version I F
Global
1 ? ?? ? 30

ZDT3:
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Year
2017

Appendix
D:

Test system 1: 40-operational thermal generating unit
Unit Pmin Pmax a i b i c i ? i ? i ? i ? i ? i
1 36 114 0.00690 6.73 94.705 0.048 -2.22 60 1.31 0.0569
2 36 114 0.00690 6.73 94.705 0.048 -2.22 60 1.31 0.0569
3 60 120 0.02028 7.07 309.54 0.0762 -2.36 100 1.31 0.0569
4 80 190 0.00942 8.18 369.03 0.054 -3.14 120 0.9142 0.0454
5 47 97 0.01140 5.35 148.89 0.085 -1.89 50 0.9936 0.0406
6 68 140 0.01142 8.05 222.33 0.0854 -3.08 80 1.31 0.0569
7 110 300 0.00357 8.03 287.71 0.0242 -3.06 100 0.655 0.02846
8 135 300 0.00492 6.99 391.98 0.0335 -2.32 130 0.655 0.02846
9 135 300 0.00573 6.6 455.76 0.425 -2.11 150 0.655 0.02846
10 130 300 0.00605 12.9 722.82 0.0322 -4.34 280 0.655 0.02846
11 94 375 0.00515 12.9 635.20 0.0338 -4.34 220 0.655 0.02846
12 94 375 0.00569 12.8 654.69 0.0296 -4.28 225 0.655 0.02846
13
14

125
125

500
500

0000421
0.00752

12.5
8.84

913.40
1760.4

0.0512
0.0496

-4.18 -
3.34

300
520

0.5035
0.5035

0.02075
0.02075

F

15 125 500 0.00708 9.15 1728.3 0.0496 -3.55 510 0.5035 0.02075
16 125 500 0.00708 9.15 1728.3 0.0151 -3.55 510 0.5035 0.02075
17 220 500 0.00313 7.97 647.85 0.0151 -2.68 220 0.5035 0.02075
18 220 500 0.00313 7.95 649.69 0.0151 -2.66 222 0.5035 0.02075
19 242 550 0.00313 7.97 647.83 0.0151 -2.68 220 0.5035 0.02075
20 242 550 0.00313 7.97 647.81 0.0145 -2.68 220 0.5035 0.02075
21 254 550 0.00298 6.63 785.96 0.0145 -2.22 290 0.5035 0.02075
22 254 550 0.00298 6.63 785.96 0.0138 -2.22 285 0.5035 0.02075
23 254 550 0.00284 6.66 794.53 0.0138 -2.26 295 0.5035 0.02075
24 254 550 0.00284 6.66 794.53 0.0132 -2.26 295 0.5035 0.02075
25 254 550 0.00277 7.10 801.32 0.0132 -2.42 310 0.5035 0.02075
26 254 550 0.00277 7.10 801.32 1.842 -2.42 310 0.5035 0.02075
27 10 150 0.52124 3.33 1055.1 1.842 -1.11 360 0.9936 0.0406
28 10 150 0.52124 3.33 1055.1 1.842 -1.11 360 0.9936 0.0406
29 10 150 0.52124 3.33 1055.1 1.842 -1.11 360 0.9936 0.0406
30 47 97 0.01140 5.35 148.89 0.085 -1.89 50 0.9936 0.0406
31 60 190 0.00160 6.43 222.92 0.0121 -2.08 80 0.9142 0.0454
32 60 190 0.00160 6.43 222.92 0.0121 -2.08 80 0.9142 0.0454
33 60 190 0.00160 6.43 222.92 0.0121 -2.08 80 0.9142 0.0454
34 90 200 0.00010 8.95 107.87 0.0012 -3.48 65 0.655 0.02846
35 90 200 0.00010 8.62 116.58 0.0012 -3.24 70 0.655 0.02846
36 90 200 0.00010 8.62 116.58 0.0012 -3.24 70 0.655 0.02846
37 25 110 0.01610 5.88 307.45 0.095 -1.98 100 1.42 0.0677
38 25 110 0.01610 5.88 307.45 0.095 -1.98 100 1.42 0.0677

Figure 36: Table 12 :
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