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Abstract- This novel article presents the multi-objective version of the recently proposed the 
Whale Optimization Algorithm (WOA) known as Non-Dominated Sorting Whale Optimization 
Algorithm (NSWOA). This proposed NSWOA algorithm works in such a manner that it first 
collects all non-dominated Pareto optimal solutionsin achieve till the evolution of last iteration 
limit. The best solutions are then chosen from the collection of all Pareto optimal solutions using 
a crowding distance mechanism based on the coverage of solutions and bubble-net hunting 
strategy to guide humpback whales towards the dominated regions of multi-objective search 
spaces.For validate the efficiency and effectiveness of proposed NSWOA algorithm is applied to 
a set of standard unconstrained, constrained and engineering design problems. 
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Non-Dominated Sorting Whale Optimization 
Algorithm (NSWOA): A Multi-Objective 

Optimization Algorithm for Solving Engineering 
Design Problems 

Pradeep Jangir α & Narottam Jangir σ

Abstract- This novel article presents the multi-objective version 
of the recently proposed the Whale Optimization Algorithm 
(WOA) known as Non-Dominated Sorting Whale Optimization 
Algorithm (NSWOA). This proposed NSWOA algorithm works 
in such a manner that it first collects all non-dominated Pareto 
optimal solutionsin achieve till the evolution of last iteration 
limit. The best solutions are then chosen from the collection of 
all Pareto optimal solutions using a crowding distance 
mechanism based on the coverage of solutions and bubble-
net hunting strategy to guide humpback whales towards the 
dominated regions of multi-objective search spaces.For 
validate the efficiency and effectiveness of proposed NSWOA 
algorithm is applied to a set of standard unconstrained, 
constrained and engineering design problems. The results are 
verified by comparing NSWOA algorithm against Multi 
objective Colliding Bodies Optimizer (MOCBO), Multi objective 
Particle Swarm Optimizer (MOPSO), non-dominated sorting 
genetic algorithm II (NSGA-II) and Multi objective Symbiotic 
Organism Search (MOSOS).The results of proposed 
NSWOAalgorithm validates its efficiency in terms of Execution 
Time (ET) and effectiveness in terms of Generalized Distance 
(GD), Diversity Metric (DM) on standard unconstraint, 
constraint and engineering design problem in terms of high 
coverage andfaster convergence. 
Keyword: non-dominated; crowing distance; nswoa 
algorithm; multi-objective algorithm;economic 
constrained emission dispatch. 

I. Introduction 

ptimization is a work of achieving the best result 
under given limitation or constraints. Now a day, 
optimization is used in all the fields like 

construction, manufacturing, controlling, decision 
making, prediction etc. The final target is always to get 
feasible solution with  minimum  use of resources.  In this  
field computers make a revolutionary impact on every 
field as it provides the facility of virtual testing of all para- 
meters that  are involved  in a  particular design with less 
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involvement of human efforts, benefits in less time 
consuming, human efforts and wealth as well.  

Today we use computer-aided design where a 
designer designs a virtual system on computer and 
gives only command to test all parameters involved in 
that design without even the need for a single prototype. 

A designer only to design and simulate a 
system and set all the parameter limitation for the 
computer.  

Computer-aided design technique becomes 
more effective with the additional feature of auto-
generation of solutions after it’s mathematically 
formulation of any system or design problem. Auto 
generation of solution, this feature is come into nature 
with the development of algorithms. In past years, real 
world designing problems are solved by gradient 
descent optimization algorithms. In gradient descent 
optimization algorithm, the solution of mathematically 
formulated problem is achieved by obtaining its 
derivative. This technique is suffered from local minima 
stagnation[1, 2] more time consuming and their solution 
is highly dependent on their initial solution. 

The next stage of development of optimization 
algorithms is population basedstochastic 
algorithms.These algorithms had number of solutions at 
a time so embedded with a unique feature of local 
minima avoidance. Later population based algorithms 
are developed to solve single objective at a time either it 
may be maximization or minimization on accordance the 
problems objective function. Some popular algorithms 
for single objective problems are Moth-Flame optimizer 
(MFO) [3], Bat algorithm (BA) [4], Particle swarm 
optimization (PSO) [5], Ant colony optimization (ACO) 
[6], Genetic algorithm (GA) [7], Cuckoo search (CS)[8], 
Mine blast algorithm (MBA) [9], Krill Herd (KH) [10], 
Interior search algorithm (ISA) [11] etc. These algorithms 
have capabilities to handle uncertainties [12], local 
minima [13], misleading global solutions [14], better 
constraints handling [15] etc. To overcome these 
difficulties different algorithms are enabled with different 
powerful operators. As mention above here is only 
objective then it is easy to measure the performance in 

O
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terms of speed, accuracy, efficiency etc. with the simple 
operational operators.   

In general, real world problems are nonlinear 
and multi-objective in nature.In multi-objective problem 
there may be some objectives are consisting of 
maximization function while some are minimization 
function. So now a day, multi-objective algorithms are in 
firm attention.  

Let’s take an example of buying a car, so we 
have many objectives in mind like speed, cost, comfort 
level, space for number of people riding, average fuel 
consumption, pick up time required to gain particular 

speed, type of fuel requirement either it is diesel driven, 
petrol driven or both etc. To simply understand multi-
objective problem, from Fig. 1, we considertwo 
objectives, first cost and second comfort level. So we go 
for sole objective of minimum cost possible then we 
have to deny comfort level objective and vice-versa. It 
means real word problems are with conflicting 
objectives. So as, we are disabled to find an optimal 
solution like single objective problems. About multi-
objective algorithm and its working is detailed described 
in next portion of the article.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Car-buying decision-making problem (Hypothetical multi-objective problem solutions)

The No free launch [16] theorem that logically 
proves that none of the only algorithm exists equally 
efficient for all engineering problem. This is the main 
reason that it allows all researcher either to propose new 
algorithm or improve the existing ones. This paper 
proposed the multi-objective version of the well-known 
whale optimization algorithm(WOA) [17]. In this paper 
non-sorted WOA (NSWOA) is tested on the standard un-
constraint and constrainttest function along with some 
well-known engineering design problem, their results are 
also compared with contemporary multi-objective 
algorithms Multi objective Colliding Bodies Optimizer 
(MOCBO) [18], Multi objective Particle Swarm Optimizer 
(MOPSO)[19-20], Non-dominated Sorting Genetic 
Algorithm (NSGA) [21-23], non-dominated sorting 
genetic algorithm II (NSGA-II)[24] and Multi objective 
Symbiotic Organism Search (MOSOS)[25] that are 

widely accepted due to their ability to solve real world 
problem. 

The structure of the paper can be given as 
follows: - Section 2 consists of literature; Section 3 
includes the proposed novel NSWOAalgorithm; Section 
4 consists of competitive results analysis of standard 
test functions as well as engineering design problem 
and section 5 includes real world application, finally 
conclusion based on results and future scope of work is 
drawn. 

II. Literature Review 

As the name describes, multi-objective 
optimization handlessimultaneously multiple objectives. 
Mathematically minimize/maximize optimization problem 
can be written as follows: 

                                   ��������/��������:        �� (�⃗)  = {���(�⃗), ���(�⃗), … , ���(�⃗)}                                      (2.1) 
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                               � �
��  ≤ �� ≤  ��

��   , � = 1,2, . . . , �                                  (2.4) 

Where q is the number of inequality constraints, 
r is the number of equality constraints,k is the number of 
variables, ��  is the ith inequality constraints, no is the 
number of objective functions, �� indicates the ith equality 

constraints, and [��
��, ��

��] are the boundaries of  ith 
variable. 

Obviously, relational operators are ineffective in 
comparing solutions with respect to multiple objectives. 
The most common operator in the literate is Pareto 
optimal dominances, which is defined as follows for 
minimization problems:  

where �⃗ = (��, ��, … , ��) and  �⃗ = (��, ��, … , ��).

For maximization problems, Pareto optimal dominance is defined as follows:  

where �⃗ = (��, ��, … , ��) and  �⃗ = (��, ��, … , ��). 
These equationsshow that a solution is better 

than another in a multi-objective search space if it is 
equal in all objective and better in at least one of the 
objectives. Pareto optimal dominance is denoted with ≺ 
and ≻. With these two operator’s solutions can be easily 
compared and differentiated. 

Population based multi-objective algorithm’s 
solution consists of multiple solution. But with multi-
objective algorithm we cannot exactly determine the 
optimal solution because each solution is bounded by 
other objectives or we can say there is always conflict 
between other objectives. So the main function of 

stochastic/population based multi-objective algorithm is 
to find out best trade-offs between the objectives, so 
called Pareto optimally set [26-28]. 

The principle of working for an ideal multi-
objective optimization algorithm is as shown in Fig. 2.  

Step No. -1 Find maximum number of non-
dominated solution according to objective, it expresses 
the number of Pareto optimal set so as shows higher 
coverage 

Step No. -2 Choose one of the Pareto optimal 
solution using crowding distance mechanism that fulfills 
the objectives. 
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∀n∈{1,2,…,k}: f_n (x ⃗ )≤f_n (y ⃗ )    ∧  ∃n∈{1,2,…,k}:f_n (x ⃗ )<f_n (y ⃗ )                             (2.5)

  ∀n∈{1,2,…,k}: f_n (x ⃗ )≥f_n (y ⃗ )    ∧  ∃n∈{1,2,…,k}:f_n (x ⃗ )>f_n (y ⃗ )                             (2.6)

Ideal Multi-Objective Optimizer

Multi-Objective Optimization 
Problem

Minimize fn1(x)
Minimize fn2(x)

…
Minimize fn0(x)

Subject to Constraints pi(x) & ti(x)

Multiple trade-off solution found

Higher level 
information

Choose one solution

Step 1

Step 2

Fig. 2: Multi-objective optimization (Ideal) procedure
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Now a day recently proposed sole objective 
algorithms are equipped with powerful operators to 
provide them a capability to solve multi-objective 
problems as well. In the same manner we proposed 
NSWOA algorithm in a hope that it will perform efficiently 
for multi-objective problems. These are: Multi-objective 
GWO [29], Multi-objective Bat Algorithm [30], Multi-
objective Bee Algorithm [31],Pareto Archived Evolution 
Strategy (PAES) [32], Pareto-frontier Differential 
Evolution (PDE) [33], Multi-Objective Evolutionary 
Algorithm based on Decomposition (MOEA/D) [34], 
Strength-Pareto Evolutionary Algorithm (SPEA) [35, 
36]andMulti-objective water cycle algorithm with 
unconstraint and constraint standard test functions 
[37][38].Performance measurement for approximate 
robustness to Pareto front of multi-objective optimization 
algorithms in terms of coverage, convergence and 
success metrics. 

The computational complexity of NSWOA 
algorithm is order of � (���)where N is the number of 
individuals in the population and M is the number of 
objectives. The complexity for other good algorithms in 
this field: NSGA-II, MOPSO, SPEA2 and PAES 
are � (���). However, the computational complexity is 
much better than some of the algorithms such as NSGA 
and SPEA which are of � (���). 

III. Non-Dominated Sorting Whale 
Optimization Algorithm (nswoa) 

The Whale Optimization Algorithm (WOA) with 
sole objective was proposed by Mirjalili Seyedali and 
Andrew Lewis in 2016 [17]. It is basically a stochastic 
population based, nature inspired algorithm. In this 
algorithm the basic strategy based on special hunting 
nature of humpback whales.Some fact about humpback 
whales that they are: fancy creatures, biggest mammals 
in the world and have power of think, learn, judge, 
communicate, being emotional etc. They are also 
considered as predators as they never sleep, only half 
of the brain sleeps, as they have to breathe from surface 
of the ocean. One more interesting fact about whales is 
their hunting or foraging behavior to hunt small fishes. 
Such type of foraging behavior is known as bubble-net 
feeding strategy where whales went down in water 
approximate 10-15 meter and then after start to produce 
bubbles in a spiral shape encircles prey and then 
follows the bubbles and moves upward the surface. This 
foraging behavior is done by making distinct bubbles 
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along with a circle or ‘9-shaped path’ represented in Fig. 
3 and clearly explained in [54-56]. 

Fig. 3: Representation of foraging behavior or ‘9-shaped path’ of the humpback whales

Mathematical modelling of The Whale Optimization 
Algorithm: 

a) Encircling Prey Equation 

Humpback whale encircles the prey (small 

fishes) then updates its position towards the optimum 

solution over the course of increasing number of 
iteration from start to maximum number of iteration. 

                 

. *( ) ( )D C X t X t 
 

        (1) 

( 1) *( ) .X t X t A D  
   

                     
(2) 
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Where: A


, D


 are coefficient vectors, t is current 

iteration, *( )X t


 is position vector of optimum solution 

so far and ( )X t is position vector. 

Coefficient vectors A


, D


 are calculated as follows:    

                                       2 *A a r a 
  

        (3) 

                                    2*C r


         (4) 

Where: �⃗ is a variable linearly decrease from 2 to 0 over 
the course of iteration and r is a random number [0, 1]. 

b) Bubble-net attacking method 
In order to mathematical equation for bubble-

net behaviour of humpback whales, two methods are 
modelled as: 

i. Shrinking Encircling Mechanism 

This technique is employed by decreasing 

linearly the value of a


 from 2 to 0. Random value for 

vector �⃗in rang between [-1, 1]. 

ii. Spiral Updating Position 

Mathematical spiral equation for position 
update between humpback whale and prey that was 
helix-shaped movement given as follows: 

         ( 1) '* *cos(2 ) *( )btX t D e l X t  
  

       (5) 

Where: l is a random number [-1, 1], b is constant 

defines logarithmic shape, ' *( ) ( )D X t X t 
     

expresses the distance between i-th whale to the prey 
mean best solution so far. 
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*( ) .                                      0.5
( 1)

'. .cos(2 ) *( )                    0.5bl

X t A D if p
X t

D e l X t if p

   
   

   

  


 

                                

        (6)

                                       

Where:  p expresses random number between [0, 1]. 

iii. Search for prey 

A


 Vector can be used for exploration to search for prey; 

vector A


also takes the values greater than one or less 
than -1. Exploration follows two conditions 

                             

. randD C X X 
   

        (7) 

                          
( 1) .  randX t X A D  

   
                    (8) 

Finally follows these conditions: 

 1A 


 enforces exploration to WOA algorithm to 

find out global optimum avoid local optima 

 1A 


for updating the position of current search 

agent/best solution is selected    

Basic working of NSWOA algorithm is as follows: 

 Stage 1 

 First of all, initialize the population of the whales 
 Randomly generated sets of whales and prey and 

their position vectorsare represented in matrix for 
convenience to understand 

 Then fitness of each whale’s positionis calculated 
on an according as objective function 

 Stage 2 

 Position of whales are updated as a spiral or helix 
shaped movement function and so as value of next 
position of whales is decided 

 The value of absolute distance is achieved which is 
basically a distance between the current best 
solution (whales current position) to the final (prey 
position) optimal solution 

 We assume that there is 50-50% probability that 
whale either follow the shrinking encircling or 
logarithmic path during optimizationmuch needed to 
update their position towards optimal one 

 Stage 3 

 Termination counter in integrated to limit/forcefully 
stop the search in uncertain search space (max. 
iteration counter to forcefully converge the search to 
optimal one) 

 Size of the position vector matrix is continuously 
reduced over the course of iteration due to directed 
search to find global best solution  

 Continuously position of the whalesis updated 
towards the optimal one viaeither follow the 
shrinking encircling or logarithmic path during 
optimizationequation for each iteration 

 Likewise, multi-objective optimization the NSWOA 
algorithm is made to capable to store the pareto 

 Stage4

Note: We assume that there is 50-50% probability that 
whale either follow the shrinking encircling or logarithmic 
path during optimization. Mathematically we modelled 
as follows:
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optimal solutions in a collectionset and make it as 
flexible to change solution over the course of 
iteration 

 Solution is assigned a rank according to their ability 
as if a solution is not dominated by other solution is 
assigned rank1, dominated by only solution 
assigned rank 2 and so on & if collection set is full 
(archive size) over predefined size then some 
solutions that are less non-dominated (according to 
fitness value) in natureare directed to be out from 
the collection set according to the crowding 
distance mechanism. 

This collection set is similar to the term achieve 
used in MOSOS and NSGA-II. It is a repository to store 
the best non-dominated solutions obtained so far. The 
search mechanism in NSWOA is very similar to that of 
WOA algorithm, in which solutions are improved using 
position vectors. Due to the existence of multiple best 
solutions, however, the best whales position should be 
chosen from the collection set. 

In order to select solutions from the archive to 
establish tunnels between solutions, we employ a leader 
selection mechanism. In this approach, the crowding 
distance between each solution in the archive is first 
selection and the number of solutions in the 
neighbourhood is counted as the measure of coverage 
or diversity. We require the NSWOAalgorithm to select 
solutions from the less populated regions of the archive 
using the following equation to improve the distribution 
of solutions in the archive across all objectives. 

This section proposes multi-objective version of 
the WOA algorithm called NSWOA algorithm. The non-
dominated sorting has been of the most popular and 
efficient techniques in the literature of multi-objective 
optimization. As its name implies, non-dominated 
sorting sort Pareto optimal solutions based on the 
domination level and give them a rank. This means that 
the solutions that are not dominated by any solutions is 
assigned with rank 1, the solutions that are dominated 
by only one solution are assigned rank 2, the solutions 
that are dominated by only two solutions are assigned 
rank 3, and so on. Afterwards, solutions are chosen to 
improve the quality of the population base on their rank. 
The better rank, the higher probability to be chosen. The 
main drawback of non-dominated sorting is its 
computational cost, which has been resolved in NSGA-
II.  
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The success of the NSGA-II algorithm is an 
evidence of the merits of non-dominated sorting in the 
field of multi-objective optimization. This motivated our 
attempts to employ this outstanding operator to design 

another multi-objective version of the WOA algorithm. In 
the NSWOA algorithm, solutions are updated with the 
same equations presented in equation 3.9. In every 

This mechanism allows better solutions to 
contribute in improving the solutions in the population. It 
should be noted that non-dominated sorting gives a 
probability to dominated solutions to be selected as 
well, which improves the exploration of the NSWOA 
algorithm. Flow chart of NSWOA algorithm is 
represented as Fig. 4. 

Constraint Handling Approach 

With the extended literature survey we find that 
the population based algorithms are the common way to 
solve the multi-objective problems as they are more 
commonly provides the global solution and capable of 
handling both continuous and combinational 
optimization problem with a very high coverage and 
convergence. Multi-objective problems are subjected to 
various type of constraints like linear, non-linear, 
equality, inequality etc. So with these problems 
embedded it is very difficult to find simple and good 
strategy to achieve considerable solutions in the 
acceptable criterion. So in this paper NSWOA algorithm 
uses a very simple approach to get feasible solutions. In 
this mechanism, after generating number of solutions at 
each generation, all the desirable constraint checked 
and then some solution that fulfills the criterion of 
acceptable solution are selected and collected them in 
achieve. Afterward non dominated solutions added in 
archive as we find more suitable solution to get 
acceptable solution. So as if achieve is full then less 
dominated solutions are removed. Finally, according to 
crowing distance mechanism all these solutions (more 
suitable position of the whales) from archive is selected 
to get desired solution.   

 
 

〖P〗_i=c⁄〖Rank〗_i                     (3.9)

 
iteration, however, the solutions to have optimal position 
of whalesare chosen using the following equation:  

where c is a constant and should be greater than 1 and 
𝑅𝑅𝑚𝑚𝑀𝑀𝑘𝑘𝑀𝑀 is the rank number of solutions after doing the 
non-dominated sorting.
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Fig. 4: Flow chart of NSWOA algorithm 

iv. Results Analysis On Test Functions 

For determine the performance of proposed 
NSWOA algorithm is applied to: 

 A set of unconstraint and constraint standard multi-
objective test functions 

 Tested on well-known engineering design problems 
 Non-linear, highly complex practical application 

known as economic constrained emission dispatch 
(ECED) 

 With and Without stochastic integration of wind 
power (WP) in the next section  

 A simple six-operating generational unit with power 
demand 1200 MW. 

Initialize the no. of whales, no. of variable, maximum iterations A, D, l, a, b, t 

Generate random initial population & store them into matrices (3.1)-(3.4) 

Calculate the fitness of all the whales and preys & their position vectors eq. (3.5) & (3.8) 

Determine the non-dominated solutions in the initial population & save them in Pareto archive 

Calculate crowding distance for each Pareto archive member 

Select a position vector based on crowing distance value 

Now calculate the position vector and update the position of  whales using equations (3.5) to(3.8) 

Calculate the fitness values of all the updated positions of whales 

Determine the new non-dominated solutions in the population & save them in Pareto archive & eliminate 

any dominated solutions in the Pareto archive 

Calculate the crowing distance value for each Pareto archive member and remove as many as necessary 
according to archive size with the lowest crowing distance value 

Perform non-dominated sorting according to crowing distance mechanism & select the global best 
solution with rank 1, rank 2 and so on according eq. (3.9) 

Report the optimal Pareto solution 

Is iteration criteria 
satisfied? 

No 

Yes 

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization 
Algorithm for Solving Engineering Design Problems

© 2017    Global Journals Inc.  (US)

      

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
su

e 
 I
V
  

V
er
si
on

 I
  

  
  
 

  

21

Y
e
a
r

20
17

F

NSWOA algorithm is tested on seventeen 
different multi-objective case studies, including eight 
unconstrained test functions, five constrained test 
functions, and four real world engineering design 
problem, later algorithm is applied to the main 
application economic constrained emission dispatch 



 Standard multi-objective unconstrained test 
functions (KUR, FON, ZDT1, ZDT2, ZDT3, ZDT4, 
SCHN1, and SCHN2) 

 Standard multi-objective constrained test functions 
(TNK, OSY, BNH, SRN, and CONST) 

 Real world engineering multi-objective design 
problem (Four bar truss design, welded beam 
design, speed reducer and disk brake design 
problem) 

 Modeling of ECEDWP problem 

Mathematical representation of these standard 
test functions is given in Appendix 1. (Multi-objective 
unconstrained test functions), 2. (Multi-objective 
constrained test functions), 3. (Engineering multi-
objective design problem) with distinct characteristics 
like non-linear, non-convex, discrete pareto fronts and 
convex etc. are selected to measure the performance of 
proposed NSWOA algorithm. To deal with real world 

engineering design problem is really a typical task with 
unknown search space, in this article we include four 

different engineering problems are considered and 
performance is compared with various well known 
algorithms like MOWCA, NSGA-II, MOPSO, PAES and μ- 
GA multi-objective algorithms. Each algorithm is 
separately runs fifteen times and numeric results are 
listed in tables below. To measure the quality of 
obtained results we match their coverage of obtained 
true pare to front with respect to their original or true 
pare to fronts. 

For numeric as well as qualitative performance 
of purposed NSWOA algorithm on various case studies 
we consider Generational Distance (GD) given by 
Veldhuizen in 1998 [39]for measuring the deviation of 
the distance between true pare to front and obtained 
pare to front, Diversity matric (Δ) also known as matrix of 
spread to measure the uniformly distribution of non-
dominated solution given by Deb [24]and Metric of 
spacing (S) to represent the distribution of non-
dominated distribution of obtained solutions by 
purposed algorithm given by Schott [40]. 

                    (4.1) 

where �� shows the Euclidean distance (calculated in 
the objective space) between the ��� Pareto optimal 
solution achieved and the nearest true Pareto optimal 
solution in the reference set, ����  is the total number of 
achieved Pareto optimal solutions.  
 

                         Δ =
�������∫ |����|

����
�� � �

������(�� �)�
 

where,  �� , �� are Euclidean distances between 
extreme solutions in true pareto front and obtained 
pareto front. �� shows the Euclidean distance between 
each point in true pare to front and obtained pare to 
front. ����   and ‘d’ are the total number of achieved 
Pareto optimal solutions and averaged distance of all 
solutions. 
 

                           � = �
�

������
∫ (�� − �)�����

�� �
 

a) Results on unconstrained test problems 
Like as above mentioned, the first set of test 

problems consist of unconstrained standard test 

functions. All the standard unconstrained test functions 
mathematical formulation is shown in Appendix A. Later, 
the numeric results are represented in Table 1 and best 
optimal pare to front is shown in Fig. 5. 

All the statistical results are shown Table 1 
suggests that the NSWOA algorithm effectively 
outperforms with most of the unconstraint test functions 
compare to the MOSOS, MOCBO, MOPSO and NSGA-II 
algorithm. The effectiveness of proposed non-
dominated version of WOA (NSWOA algorithm) can be 
seen in the Table 1, represents a greater robustness 
and accuracy of NSWOA algorithm in terms of mean 
and standard deviation with the help of GD, diversity 
matrix along with computational time. However, 
proposed NSWOA algorithm shows very competitive 
results in comparison with the MOPSO, MOCBO and 
MOSOS algorithms and in some cases these algorithms 
perform better than proposed one. Pare to front 
obtained by proposed NSWOA algorithm shows almost 
complete coverage with respect to true pare to front.  

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization 
Algorithm for Solving Engineering Design Problems

GD=√(∫_(i=1)^(n_PFs)▒〖〖(d〗_i)〗^2 )/n

(4.2)

(4.3)
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The mathematical representation of these 
performance indicating metric are as follows: 

where “d” is the average of all 𝑑𝑑𝑀𝑀 , 𝑀𝑀𝑃𝑃𝐹𝐹𝑃𝑃 is the total 
number of achieved Pareto optimal solutions, and 
𝑑𝑑𝑀𝑀 = min𝑆𝑆 �|𝑓𝑓1

𝑀𝑀(𝑚⃗𝑚) − 𝑓𝑓1
𝑆𝑆 (𝑚⃗𝑚)| + |𝑓𝑓2

𝑀𝑀(𝑚⃗𝑚) − 𝑓𝑓2
𝑆𝑆 (𝑚⃗𝑚)� for all

i,j=1,2,…,n. Smallest value of “S” metric gives the global 
best non-dominated solutions are uniformly distributed, 
thus if numeric value of  𝑑𝑑𝑀𝑀 and 𝑑𝑑 are same then value of 
“S” metric is equal to zero.

with wind power (ECEDWP). These can be classified 
into four groups given below:



Table 1:  Results of the multi-objective NSWOA algorithms (using GD, Δ, CT) on the unconstrained test functions 
employed 

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization 
Algorithm for Solving Engineering Design Problems

Algorithm

Function ↓

PFs
NSWOA

MEAN±SD
MOSOS

MEAN±SD
MOCBO

MEAN±SD
MOPSO

MEAN±SD
NSGA- II

MEAN±SD

GD 0.00722±0.00211 0.0075±0.0042 0.0083±0.0062 0.015±0.0075 0.0301±0.0043

KUR Δ 0.02699±0.00025 0.0295±0.0122 0.0357±0.0236 0.0991±0.031 0.0362±0.0240
CT 7.55752±0.43359 10.7413±0.822 7.9531±0.5823 8.0532±0.621 20.4368±3.102

GD 0.00163±0.00022 0.0019±0.0002 0.0022±0.0003 0.0042±0.000 0.0026±0.0003

FON Δ 0.28815±0.03648 0.3875±0.0062 0.3955±0.0068 0.4158±0.008 0.3987±0.0082
CT 09.6571±0.54537 11.4013±1.140 8.6606±0.8862 8.732±0.9134 22.0323±4.522

GD 0.36659±0.06618 0.3325±0.0256 0.3337±0.0319 0.3348±0.035 0.3352±0.038

ZDT-1 Δ 0.34579±0.00775 0.3803±0.0122 0.3825±0.0125 0.3876±0.024 0.3905±0.0220

CT 6.59899±0.00371 8.2351±0.0204 3.1435±0.0193 3.7533±0.006 11.2681±0.364

GD 0
.
07001±0.00066 0.0731±0.0010 0.0729±0.0005 0.0733±0.001 0.0725±0.0004

ZDT-2 Δ 0.04133±0.06577 0.4307±0.0007 0.4316±0.0007 0.4321±0.001 0.431±0.00075

CT 4.65825±0.02000 8.2345±0.0457 3.1502±0.0130 3.6113±0.014 11.2811±0.024

GD 0.07132±0.03917 0.1022±0.5187 0.0982±0.5007 0.1235±0.009 0.1147±0.0039

ZDT-3 Δ 0.69774±0.23268 0.6537±0.0052 0.65325±0.002 0.8234±0.108 0.7386±0.0474

CT 8.77756±0.34789 13.4567±0.129 6.2846±0.1059 8.3764±0.231 14.3406±0.144

GD 0.49888±0.00022 0.5015±0.0006 0.5078±0.0013 0.5146±0.001 0.5204±0.0019

ZDT-4 Δ 0.35779±0.01477 0.4585±0.0073 0.4795±0.0079 0.6543±0.024 0.7003±0.0089

CT 7.87855±0.12275 13.9022±0.121 6.6922±0.1440 8.8203±0.218 14.8102±0.170

GD 0.00999±0.00075 0.0028±0.0024 0.0031±0.0032 0.0032±0.003 0.0034±0.0042

SCHN-1 Δ 0.50066±0.01477 0.5295±0.1312 0.5302±0.1356 0.8582±0.164 0.5502±0.1360

CT 11.7600±1.23165 8.2135±1.121 5.4845±1.1320 5.5721±1.133 17.9121±2.162

GD 0.04977±0.00188 0.0705±0.0215 0.0932±0.0228 0.1497±0.022 0.3096±0.0217

SCHN-2 Δ 0.65698±0.02888 0.7821±0.0512 0.801±0.08326 0.8652±0.060 0.9562±0.0921

CT 5.79912±0.14008 8.7015±0.4532 5.9751±0.2821 6.0272±0.582 18.421±2.1802

© 2017    Global Journals Inc.  (US)
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b) Results on constrained test problems 

The next set of standard test functions 
consisting of constrained functions. For constrained test 
function it should be necessary that NSWOA algorithm 

 

 

The next set of standard test functions 
consisting of constrained functions. For constrained test 
function it should be necessary that NSWOA algorithm 
has a capability of handling constraints so algorithm is 
equipped with a death penalty function to search
that violate any of the constraints at any level [41].  For 
comparing the results of different algorithms, we have 
utilized GD and Δ metrics.  

 

 

has a capability of handling constraints so algorithm is 
equipped with a death penalty function to search agents 
that violate any of the constraints at any level [41].  For 
comparing the results of different algorithms, we have 
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Fig. 5: Best Pareto optimal front of KUR, FON, ZDT1, ZDT2, ZDT3, ZDT4, SCHN1 and SCHN2 obtained by the 
NSWOA algorithm
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Table 2:  Results of the multi

Algorithm 

Function ↓ 
PFs

 NSWOA 

MEAN±SD 

 
GD 0.14566±0.00216 

TNK Δ
 

0.09996±0.05027 

 
CT 10.7775±0.04668 

 
GD 0.10004±0.00029 

OSY Δ
 

0.54798±0.06679 

 
CT 15.4470±0.02008 

 
GD 0.14447±0.00488 

BNH Δ
 

0.44477±0.03786 

 
CT 07.5524±0.04587 

 
GD 0.05881±0.01499 

SRN Δ
 

0.20444±0.00098 

 
CT 7.24456±0.00122 

 
GD 0.42115±0.02998 

CONST Δ
 

0.7865±0.000666
 

 
CT 16.7555±0.00050 

Results of the multi-objective NSWOA algorithms on constrained test problems

 

 

 

 
 

 

MOSOS 

MEAN±SD 

MOCBO 

MEAN±SD 

MOPSO 

MEAN±SD 

0.1508±0.0040 0.1528±0.0051 0.1576±0.0062 0.1542±0.0072

0.1206±0.0423 0.1242±0.0512 0.1286±0.0522 0.126±0.06242

15.1286±0.063 11.0104±0.052 12.0212±0.054 17.
4204±0.055

0.1196±0.0031 0.1210±0.0041 0.1282±0.0042 0.1
242±0.0043

0.5354±0.0616 0.5422±0.0712 0.5931±0.0721 0.5682±0.0751

20.2124±0.032 12.2104±0.030
 

14.6420±0.042 24.
2204±0.039

0.1436±0.0062 0.1498±0.0076 0.1644±0.0078 0.1
566±0.0042

0.4288±0.0625 0.4798±0.0721 0.4975±0.0632 0.4892±0.0832

16.2664±0.054 9.1544±0.0420 9.7452±0.0464 19.
652±0.0511

0.0988±0.0014 0.1018±0.0015 0.1125±0.0026 0.1
024±0.0032

0.2295±0.0017 0.2352±0.0019 0.2730±0.0023 0.
2468±0.0018

12.3254±0.012 7.3251±0.0082 9.2134±0.0083 17.
0231±0.023

0.5162±0.0021 0.5202±0.0034 0.5854±0.0036 0.5532±0.0041

0.7122±0.0072 0.7235±0.0083 0.7344±0.0084 0.8126±0.0087

10.0112±0.003 5.2252±0.0028
 

6.4766±0.0035 14.
0892±0.003

problems 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

NSGA-II 

MEAN±SD 

0.1542±0.0072 

0.126±0.06242 

17.4204±0.055 

0.1
242±0.0043 

0.5682±0.0751 

24.
2204±0.039 

0.1566±0.0042 

0.4892±0.0832 

19.
652±0.0511 

0.1
024±0.0032 

0.2
468±0.0018 

17.
0231±0.023 

532±0.0041 

126±0.0087 

14.
0892±0.003 
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Fig. 6: Best Pareto optimal front TNK, OSY, BNH, SRN and CONST obtained by NSWOA 

Table 2 suggests that the NSWOA algorithm 
comparatively performs better than other four algorithms 
for most of the standard constrained test functions 
employed. The best Pareto optimal fronts in Fig. 6 also 
helps in proving since all the Pareto optimal solutions 
exactly follow the true pare to fronts obtained from by 
NSWOA algorithm. 

 
 
 

Best Pareto optimal front TNK, OSY, BNH, SRN and CONST obtained by NSWOA 

Table 2 suggests that the NSWOA algorithm 
comparatively performs better than other four algorithms 
for most of the standard constrained test functions 
employed. The best Pareto optimal fronts in Fig. 6 also 

ptimal solutions 
to fronts obtained from by 

c) Results On Constrained Engineering Design 
Problems 

The third set of test functions is the most 
complicated one and consists of four real engineering 

design problems. Mathematical model of all the four 

engineering design problem are given in Appendix C. 
Same as before both GD and diversity matrix is 
employed to measure the performance of NSWOA 
algorithm with respect to other algorithms to solve them, 
numeric results are given in Tables and Figure 
respectively shows the best optimal front obtained by 
NSWOA algorithm.  

i. Four-bar truss design problem 

The statistical results of four bar truss design 
problem [42] in given in Table 3 and best optimal front is 
given in Fig. 7. It consists of two minimization objectives 
displacement and volume with four design control 
variable mathematically given in Append
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On Constrained Engineering Design 

set of test functions is the most 
complicated one and consists of four real engineering 

design problems. Mathematical model of all the four 

engineering design problem are given in Appendix C. 
Same as before both GD and diversity matrix is 

ure the performance of NSWOA 
algorithm with respect to other algorithms to solve them, 
numeric results are given in Tables and Figure 
respectively shows the best optimal front obtained by 

The statistical results of four bar truss design 
problem [42] in given in Table 3 and best optimal front is 
given in Fig. 7. It consists of two minimization objectives 
displacement and volume with four design control 
variable mathematically given in Appendix C.  
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CONST function consists of concave front with 
linear front, OSY is similar to CONST but consists of 
many linear regions with different slops while TNK 
almost similar to wave shaped. These also suggests 
that NSWOA algorithm has a capability to solve various 
type of constraint problem. All the constraint test 
functions are mathematically given in Appendix B.



PFs
 
Methods ↓

 

NSWOA
 

MOWCA 

NSGA-II 

MOPSO 

μ- GA 

PAES 

 

Fig.7: Pareto optimal front obtained by the NSWOA Algorithm for “Four 

ii      Speed-reducer design problem 

The statistical results of speed reducer design 
problem [43] is given in Table 4 and best optimal front is 
given in Fig. 8. It is a well-known mechanical design 

PFs
 

Methods ↓ 

NSWOA 

MOWCA 

NSGA-II 

μ- GA 

PAES 

 

GD S 

MEAN±SD MEAN±SD 

0.1875±0.0414 1.9829±0.1102 

0.2076±0.0055 2.5816±0.0298 

0.3601±0.0470 2.3635±0.2551 

0.3741±0.0422 2.5303±0.2275 

0.9102±1.7053 8.2742±16.831 

0.9733±1.8211 3.2314±5.9555 

Pareto optimal front obtained by the NSWOA Algorithm for “Four –bus truss design problem”

The statistical results of speed reducer design 
problem [43] is given in Table 4 and best optimal front is 

known mechanical design 

problem consists of two minimization objectives stress 
and weight with seven design control var
mathematically given in Appendix C.  

GD S 

MEAN±SD 

0.96469±0.41014800 1.778124±04.943415

0.98831±0.17894217 16. 68520±2.6969443

9.843702±7.0810303 02.7654494±3.534978

3.117536±1.6781086 47.80098±32.8015157

77.99834±4.2102608 16.20129±4.26842769

bus truss design problem”

problem consists of two minimization objectives stress 
and weight with seven design control variable 
mathematically given in Appendix C.   

 

 

1.778124±04.943415 

16. 68520±2.6969443 

02.7654494±3.534978
 

47.80098±32.8015157
 

16.20129±4.26842769
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MEAN±SD 
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Table 3: Results of the multi-objective NSWO Aalgorithm on four-bar truss design problem in terms mean and 
standard deviation

Table 4: Results of the multi-objective NSWOA algorithm on speed-reducer design problem in terms mean and 
standard deviation
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Fig.8: Pareto optimal front obtained by the NSWOA Algorithm for “Speed Reducer design problem”

iii. Welded-beam design problem 
The statistical results of welded beam design 

problem [44] is given in Table 5 and best optimal front is 
given in Fig. 9. It is a well-known mechanical design 

PFs
 

Methods ↓ 

NSWOA 

MOWCA 

NSGA-II 

paɛ-ODEMO  

Fig.9: Paretooptimal front obtained by the NSWOA Algorithm for “Welded Beam Design problem”

Pareto optimal front obtained by the NSWOA Algorithm for “Speed Reducer design problem”

The statistical results of welded beam design 
problem [44] is given in Table 5 and best optimal front is 

known mechanical design 

problem consists of two minimization objectives 
fabrication cost and deflection of beam with four
control variable mathematically given in Appendix C.  

GD Δ 

MEAN±SD MEAN±SD

0.03641±0.02588 0.75543±0.02777

0.04909±0.02821 0.22478±0.09280

0.16875±0.08030 0.88987±0.11976

0.09169±0.00733 0.58607±0.04366

optimal front obtained by the NSWOA Algorithm for “Welded Beam Design problem”

Pareto optimal front obtained by the NSWOA Algorithm for “Speed Reducer design problem” 

problem consists of two minimization objectives 
fabrication cost and deflection of beam with four design 
control variable mathematically given in Appendix C.   

 

MEAN±SD 

0.75543±0.02777 

0.22478±0.09280 

0.88987±0.11976 

0.58607±0.04366 

optimal front obtained by the NSWOA Algorithm for “Welded Beam Design problem” 
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Table 5: Results of the multi-objective NSWOA algorithms on welded-beam design problem in terms mean and 
standard deviation
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 Disk brake design problem 
The statistical results of welded beam design 

problem [44] is given in Table 6 and best optimal front is 
given in Fig. 10. It is a well-known mechanical design 

Fig.10: Paretooptimal front obtained by the NSWOA Algorithm for “Disk brake design problem”

Due to high complexity of engineering design 
problem it is really hard to gain results alike true pare
front but we can clearly see that optimal pare
obtained by NSWOA algorithm is covers almost whole 
solutions that are the actual/true solutions of an 
engineering design problem. From all above tested 
function we can conclude that problem either it consists 
of constraints or unconstraint problem NSWOA 
algorithm shows its capability to solve any kind of linear, 
non-linear and complex real world problem.
next section we attached a highly non-linear complex 
real problem to show its effectiveness regarding the real 
world complex application with many objectives.

 
 

The statistical results of welded beam design 
problem [44] is given in Table 6 and best optimal front is 

known mechanical design 

problem consists of two minimization objectives 
stopping time and mass of brake of a disk brake 
four design control variable mathematically given in 
Appendix C.   

optimal front obtained by the NSWOA Algorithm for “Disk brake design problem”

Due to high complexity of engineering design 
problem it is really hard to gain results alike true pare to 

optimal pare to 
obtained by NSWOA algorithm is covers almost whole 
solutions that are the actual/true solutions of an 
engineering design problem. From all above tested 
function we can conclude that problem either it consists 

problem NSWOA 
algorithm shows its capability to solve any kind of linear, 

linear and complex real world problem. So in the 
linear complex 

real problem to show its effectiveness regarding the real 
ication with many objectives. 

d) Formulation Of Economic Constrained Emission
Dispatch (ECED) With Integration Of 
(WP) 

i. Mathematical Formulation Of Wind Power
In case of wind power generation, the output

power of wind generator is calculated with the help of a 
stochastic variable wind speed υ (meter/seconds). Wind 
speed is a variable function so their probability 
distribution plays a very important role. Wind sp
mathematically formulated as two
distribution function, probability density function (PDF) 
and cumulative distribution function (CDF) as follows:

       �(�) = (� �)⁄ (� �)⁄ �� �
∗ exp�− ( �

      �(�) = 1 − exp�− (� �)⁄ �
�, � ≥ 0  

problem consists of two minimization objectives 
stopping time and mass of brake of a disk brake with 
four design control variable mathematically given in 

optimal front obtained by the NSWOA Algorithm for “Disk brake design problem”

Economic Constrained Emission 
) With Integration Of Wind Power 

Formulation Of Wind Power 
In case of wind power generation, the output 

power of wind generator is calculated with the help of a 
(meter/seconds). Wind 

speed is a variable function so their probability
distribution plays a very important role. Wind speed 
mathematically formulated as two-parametric Weibull 
distribution function, probability density function (PDF) 
and cumulative distribution function (CDF) as follows: 

� � �)⁄ �
�, � ≥ 0     (4.1)

     (4.2) 
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Table 6: Results of the multi-objective NSWOA algorithms on the Disk brake design problem in terms mean and 
standard deviation

      

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
su

e 
 I
V
  

V
er
si
on

 I
  

  
  
 

  

29

Y
e
a
r

20
17

F

PFS Methods ↓
GD Δ

MEAN±SD MEAN±SD
NSWOA 0.0577±0.27030 0.23341±0.05226

paɛ-ODEMO 2.6928±0.24051 0.84041±0.20085

NSGA-II 3.0771±0.10782 0.79717±0.06608
MOWCA 0.0244±0.12314 0.46041±0.10961

iv.



where, S(v) and s(v) are CDF and PDF respectively. 
Shape factor and scale factor are k and c respectively. 
 The wind speed and output wind power are related as: 

     ����� = �

0,                             � < ��� �� � ≥ ����

������ �� ���

������� ���
��� ≤ � < ������

���������   ≤ � < ����

�    (4.3) 

where,  ������ and ������ are the rated speed of wind 
and rated power output.  ���� and ��� are cut-out and 
cut-in speed of wind respectively. The CDF of ����� in 
the boundary of [0, ������] on an accordance with the 
speed range of wind can be formulated as: 

                                           �(�����) = 1 − ��� �
− ��1 +

������� ���

���∗� �����
������

���

�
�

�

} + exp [− (���� �)⁄ �
],       

0 ≤ ����� < ������

�  (4.4)

Above equation is very meaningful to calculate 
the ECED problems with speculative wind power with 
variable speed. 

ii. Modeling of ECEDWP problem 
As wind power is formulated as system 

constraint, so the objective function of economic 
emission dispatch problem (EEDP) stays on unchanged 
as classical EEDP: 

Fuel cost objective is given by: 

       ������������      �(��) = ∑ (�� + ���� + ����
�)�

�     (4.5) 

where, the thermal power generators cost coefficients 
are ��, ��, ��  for i-th generator, Sum of the total fuel cost 
of the system and N is the total number of generators. 
Total Emission is calculated by: 

                                     ������������  �(��) =  ∑ [{(�� + ���� + ����
�) ∗ 10 � �} + �� ∗�

� exp (� � ∗ ��)]                     (4.6)

where,  ��, ��, ��, �� and �� are emission coefficients with 
valve point effect taking into consideration for i-th 
thermal generator.  

iii. System Constraints 
As wind power generation is considered as 

system constraint with the summation of stochastic 
variables the classical power balance constraint 
changes to fulfill the predefined confidence level. 

            �� ∑ (��
�
�� � + ����� ≥ �� + �����) ≥ ����    (4.7) 

where, ���� is confidence level that a power system 

must follow the load demand and so as it is selected 
nearer to unity as values lesser than unity represents 
high operational risk. �����represents system losses can 
be calculated by B-coefficient method given below: 

          ����� = ∑ ∑ �������
�
�� �

�
�� � + ∑ ����� + ���

�
�� �     (4.8) 

So as to change above described power 
balance constrained equation into deterministic form 
can be solved as: 

                                            ��{����� < �� + ����� − ∑ ��
�
�� � } = �(�� + ����� − ∑ ��

�
�� � ) ≤ 1 − ����                   (4.9)

                                               �� + ����� − ∑ ��
�
�� � ≤

�������

������� ���
� ��� + ��� ∗ �

����
�

�� ���

�

�
−

���∗� �����

������� ���

                 (4.10)

iv. Reserve capacity system constraint 
So as to reduce the impact of stochastic wind 

power on system, up and down spinning reserve needs 

to be maintained [22]. Such reserve constraints 
formulated as [15] and [16] respectively: 

      ��{∑ (��
��� − ��) ≥ ��� +�

�� � �� ∗ �����} ≥ ����  (4.11) 

                                                      ���∑ ��� − ��
���� ≥ ��

�
�� � ∗ (������ − �����)�≥ � ���                                                     (4.12) 

where, ��� represents the reserve demand of 
conventional thermal power plant system and it 
generally keeps the maximum value of thermal unit, 

��
��� and ��

��� are maximum and minimum output level 
of operational generators of i-th unit, ���� and ���� are 
predefined down and upper confidence level parameter 
respectively, �� and �� are the demand coefficients of up 
and down spinning reserves.  
 

v. Generational capacity constraint 

The real output power is bounded by each 
generators upper and lower bounds given as: 

                     �
�
������� ≤ �� ≤ ��

�������  (4.13) 
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Assume that the wind turbine has same speed and same direction and combination of Eqs. (4) and (9), the 
power balance constraint is represented as:

ln�𝜂𝜂
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V. Test System For Economic Emission 
Dispatch Problem 

a) 40-Operational Thermal Generating Unit 

i. Case Study I- 40 Thermal-Generator Lossless 
System Without Wind Power 

In this case forty operational generating unit is 
consider without integration of wind power means all the 
generating units are coal fired. Input parameters like 
generators operating limit, fuel cost coefficients and 
emission coefficients are given in Appendix D and in 

Table 11. extracted from [45]. System is considered 

lossless and its solution is compared with three well 
known multi-objective algorithms like SMODE [45], 
NSGA-II [45]and MBFA [46] in terms of various 

objectives such as best cost, best emission and best 
compromise between both objectives. Best compromise 
solution is then obtained by the fuzzy based method 
[47]. Total power demand for this system is 10500 MW. 

Results obtained by NSWOA algorithm is added to table 
7 and best pare to front obtained by NSWOA algorithm 
is represented in Fig. 12. 
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ii.  Case study II- 40 thermal-generator lossless system 
with wind power 

All the conditions are remaining same as case 
study I like input parameters and power demand. While 

generator lossless system 

All the conditions are remaining same as case 
y I like input parameters and power demand. While 

 
 

integrating with wind power plant, the total rated output 
power of wind farm is set to 1000 MW [45, 47].Statistical 
results obtained by NSWOA algorithm is reported in 
Table 8 and best optimal front is represented in Fig. 13.

integrating with wind power plant, the total rated output 
power of wind farm is set to 1000 MW [45, 47].Statistical 
results obtained by NSWOA algorithm is reported in 

sented in Fig. 13. 
 
 

Best
emission

Best
cost

Best
compromise

Best
emission

Best
Cost

Best
compromise

Best
emission

Best 
cost

Best
compromise

Best
emission

Best 
cost

Best
compromise

Cost
($/h)

156,700 119,650 124,230 128,490 124,380 126,180 129,995 121,415 123,638 127,555 119,310 124,831

Emission
(tons/h) 66,799 377,560 96,578 93,002 153,560 99,671 176,682 356,424 188,963 87,123 408,020 94,450

SMODE [45] NSGAII [45] MBFA [46] NSWOA
Case

Study I

© 2017    Global Journals Inc.  (US)

Table 7 : Results of the multi-objective NSWOA algorithms for case study I- 40 thermal-generator lossless system 
without wind power

Fig. 12: Pareto optimal front obtained by the NSWOA Algorithm for “40 thermal-generator lossless system without 
wind power”
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Table. 8: Results of WilcoxResults of Wilcox on test and simulation/computational time or speedon test and simulation/computational time or speed 

Case
Study-II

SMODE[45] NSGAII [45] MOEA/D[51] NSWOA

Best
emission Best cost

Best
emission Best cost Best

emission Best cost

 

Best cost

∑P G

PW

Cost 

Emission

10,245.76
254.24
153,830
54,055

10,177.55
322.45
116,430
385,770

10,225.71
274.29
123,590
68,855

10,241.72
258.28
132,410
73,894

10,242.09
257.91
122,610
121,850

10,241.63
258.37
126,240
78,860

10,244.43
255.568
154,0 0 0
55,754

10,242.71
257.294
115,770
440,240

10,242.8
257.156
120,950
79,485

10,241.6
255.321
145,636
56,508

10,224.18
276.81
118,789
179,098

10,236.58
263.75
123,449
68,804

Best
emission

Best
Compromise
- Point

Best
Compromise
- Point

Best
Compromise
- Point

Best
Compromise
- Point

Fig. 13: Pareto optimal front obtained by the NSWOA Algorithm for “40 thermal-generator lossless system with wind 
power”
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Table 9 9: Results of Wilcox on test and simulation/computational time or speed

NSWOA NSGAII[45] NSWOA NSGAII[45]

Case
Study I
Cost

Best
Worst
Mean Wilcox
on
test (H/P)
Simulation 
speed (s)

119310
127555
124831
1/5.38e−10
14.98

124,380
147,760
131,710

Case
Study II
Cost

Best
Worst
Mean
Wilcox on test 
(H/P)
Simulation 
speed (s)

118,789
145,636
123,449
1/5.65e

−10

19.876

122,610
173,060
134,880

Case
Study I
Emission

Best
Worst
Mean Wilcoxon
test (H/P) 

Simulation 
speed (s)

87,123
408.020
189,284
1/5.54e−10

40.57

93,002
194,830
141,800

154.78

Case
Study II
Emission

Best
Worst
Mean
Wilcox on
test (H/P)
Simulation 
speed (s)

56,508
179,098
104,185
1/5.65e−10

45.67

73,894
158,250
102,120

127.57

b) Test system with six operational generating unit
This test system consists of six operational 

generating unit with simply a quadratic fuel and 
emission objective function for a power demand of 1200 
MW. Input data for operational generating unit loading 
limits and loss parameters are given in Table 12 of 
Appendix D extracted from [52, 53].

It is represented in Table 10 that with the 
objective of least cost objective minimum fuel cost is 
6.4197e+04 $ and emission value is 1345.9 lb. But fuel 
cost increases to 6.992e+04 $ and emission value 
reduced to a numeric value 1242.7 lb with the objective 
of emission minimization. Compromise point or true 
operating point obtained by NSWOA algorithm for multi-

objective combined economic emission dispatch 
(MOCEED) problem is as fuel cost is 6.4830e+04 $ that 
is higher than minimum fuel cost 6.4197e+04$ and 
lower than 6.992e+04 $ obtained during least cost and 
emission value objectives respectively. So as with 
emission value for true operating point is 1285 lb that is 
lower than 1345.9 lb and higher than 1242.7 lb obtained 
during least cost and emission value objectives 
respectively. Statistical value obtained for compromise 
point is compared with other techniques solves same 
MOCEED problem like SPEA2, NSGA-II and PDE in 
Table 10. Fig. 14 shows 100 non-dominated solutions 
as true pare to front for 6-opertaional generating for 
PD=1200 MW.

Table 10: Statistical performance comparison of NSWOA Algorithm for 6-operational generating unit system.

Parameters
NSWOA MODE[53] PDE [53] NSGAII[53] SPEA2[53]

Economic 
dispatch

Emission 
dispatch EED EED EED EED EED

P1 (MW) 84.7275 125 107.9932 108.6284 107.3965 113.1259 104.1573

P2 (MW) 93.4118 150 118.3631 115.9456 122.1418 116.4488 122.9807

P3 (MW) 210 201.4824 210 206.7969 206.7536 217.4191 214.9553

P4 (MW) 211.8607 198.8723 204.65 210.0000 203.7047 207.9492 203.1387

P5 (MW) 315 288.5129 306.6592 301.8884 308.1045 304.6641 316.0302

P6 (MW) 325 286.2913 303.8712 308.4127 303.3797 291.5969 289.9396

Cost ($) 64,197 65,992 64,830 64,843 64,920 64,962 64,884

Emission (lb) 1345.9 1242.7 1285 1286.0 1281.0 1281.0 1285

      

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
su

e 
 I
V
  

V
er
si
on

 I
  

  
  
 

  

33

Y
e
a
r

20
17

F



                                 

© 2017    Global Journals Inc.  (US)

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization 
Algorithm for Solving Engineering Design Problems

Fig. 14: Pare to optimal front obtained by the NSWOA Algorithm for “six operational generating unit system”

VI. Result Discussion

In almost all the cases that we consider in this 
article where NSWOA algorithm proves its effectiveness
in both prospective quantitative and qualitative. From 
plots also evident that NSWOA algorithm follows the 
exact pare to front similar to the true pare to front for all 
constrained, unconstrained and complex engineering 
design problem. So as for real world application of 
economic emission dispatch problem and its integration 
with stochastic wind power generation. So for this 
application Wilcox on test (statistical test)is performed.

In Table 9 the signed rank test is presented in 
third row of each results whereas the calculation time is 
represented in forth row. For this test null hypothesis 
cannot be rejected at 5% level for numeric value ‘0’ while 
null hypothesis is rejected at 5% level with the value of 
‘1’. Where NSWOA algorithm performs superior to other 
algorithms that are considered for comparative purpose.

NSWOA algorithm shows good performance in 
both coverage and convergence as main mechanism 
that guarantee convergence in WOA and NSWO
Aalgorithms are continuously shrink its virtual limitation 
using helix shaped or 9-shaped path strategy in the 
movement of whales for their random walk. Both 
mechanism emphasizes convergence and exploitation 
proportional to maximum number of generation 
(iteration). Since this complex task might degrade its 
performance compare to without limitation or free 
movement should be a concern. However, the numerical 
results expresses that NSWOA algorithm has a little 
effect of slow convergence at all.

NSWOA algorithm has an advantage of high 
coverage, which is the result of the selection of position 
of whales and archive selection procedure. All the 
position is updated according to their fitness value that 
enable the algorithm to direct the search space in right 
direction to find the best solution without trapped in local 
solution. Archive selection criteria follow all the rules of 
the entrance and exhaust of any value in it for each 
iteration and updated when its size full. Solutions of 
higher fitness in archive have higher probability to 
thrown away first to improve the coverage of the pare to 
optimal front obtained during the optimization process.

VII. Conclusion

In this paper the non-dominated sorting whale 
optimization algorithm-multi-objective version of recently 
proposed whale optimizationalgorithm (WOA) is 
proposed known as NSWOA algorithm. This paper also 
utilizes the bubble-net swarming strategy for exploration 
purpose used in its parent WOA version.  The NSWOA 
algorithm is developed with equipping whale 
optimization algorithm with crowding distance criterion, 
an archive and whales position (accordance to ranking) 
selection method based on Pareto optimal dominance 
nature. The NSWOA algorithm is first applied on 17 
standard test functions (including eight unconstraint, five 
constraint and four engineering design multi-objective 
problems) to prove its capability in terms of qualities and 
quantities showing numerical as well as convergence 
and coverage of pare to optimal front with respect to 
true pare to front. Then after NSWOA algorithm is 
applied to real world complex ECEDWP problem where 

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
su

e 
 I
V
  

V
er
si
on

 I
  

  
  
 

  

34

Y
e
a
r

20
17

F



© 2017    Global Journals Inc.  (US)

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization 
Algorithm for Solving Engineering Design Problems

algorithm proves its dominance over other well 
recognized contemporary algorithms. The numeric 
results are stored and represented in performance 
indices: GD, metric of diversity, metric of spacing and 
computational time. The qualitative results are reported 
as convergence and coverage in best pare to optimal 
front found in 15 independent runs. To check 
effectiveness of proposed version of algorithm the 
results are verified with SMODE, MOSOS, MOCBO, 
MOPSO, NSGA-II and other well recognize algorithms in 
the field of multi-objective algorithms. We can also 
conclude from the standard test functions results that 
NSWOA algorithm is able to find pare to optimal front of 
any kind of shape. Finally, the result of complex real 
world ECEDWP problem validates that NSWOA 
algorithm is capable of solving any kind of non-linear 
and complex problem with many constraint and 
unknown search space. Therefore, we conclude that 
proposed non-dominated version of WOA algorithm has 
various merits among the contemporary multi-objective 
algorithms as well as provides an alternative for solving 
multi or many objective problems. 

For future works, it is suggested to test NSWOA 
algorithm on other real world complex problems. Also, it 
is worth to investigate and find the best constrained 
handling technique for this algorithm. 
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Appendix A: Unconstrained multi-objective test problems utilized in this work.

KUR:

Minimize:        𝑓𝑓1(𝑚𝑚) = ∑ �−10exp⁡(−0.2�𝑚𝑚𝑀𝑀2 + 𝑚𝑚𝑀𝑀+1
2 )�2

𝑀𝑀=1

𝑓𝑓2(𝑚𝑚) = ∑ [|𝑚𝑚𝑀𝑀|0.8 + 5𝑃𝑃𝑀𝑀𝑀𝑀(𝑚𝑚𝑀𝑀3)]2
𝑀𝑀=1

5 5
1 3

ix
i

− ≤ ≤
≤ ≤

FON:

2
1

1

2
2

1

1( ) 1 exp ( )
min

1( ) 1 exp ( )

n

i
i

n

i
i

f x x
n

imize
f x x

n

=

=

  = − − −    = 
  = − − +   

∑

∑

4 4
1

ix
i n

− ≤ ≤
≤ ≤

ZDT1:

ZDT2:

Minimise:      𝒇𝒇𝟏𝟏(𝒙𝒙) = 𝒙𝒙𝟏𝟏

Minimise:     𝑓𝑓2(𝑚𝑚) = 𝑔𝑔(𝑚𝑚) × ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)�

𝐺𝐺(𝑚𝑚) = 1 +
9

𝑁𝑁 − 1
�𝑚𝑚𝑀𝑀

𝑁𝑁

𝑀𝑀=2

ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)� = 1 − �
𝑓𝑓1(𝑚𝑚)
𝑔𝑔(𝑚𝑚) 0 ≤ 𝑚𝑚𝑀𝑀 ≤ 1, 1 ≤ 𝑀𝑀 ≤ 30

Where:      

 

Minimise:      𝑓𝑓1(𝑚𝑚) = 𝑚𝑚1

Minimise:     𝑓𝑓2(𝑚𝑚) = 𝑔𝑔(𝑚𝑚) × ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)�

Where:       𝐺𝐺(𝑚𝑚) = 1 + 9
𝑁𝑁−1

∑ 𝑚𝑚𝑀𝑀𝑁𝑁
𝑀𝑀=2 ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)� = 1 − �𝑓𝑓1(𝑚𝑚)

𝑔𝑔(𝑚𝑚)
�

2
0 ≤ 𝑚𝑚𝑀𝑀 ≤ 1, 1 ≤ 𝑀𝑀 ≤ 30

53. J .S. Dhillon , S.C. Parti and D P Kothari, “ Multi-
objective optimal thermal power dispatch”, Electrical 
Power & Energy Systems, Volume 16, Number 6, 
1994, pp.  383-389. 

54. Hof PR , Van Der Gucht E . Structure of the cerebral 
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novaeangliae (Cetacea, Mysticeti, Balaenopteridae). 
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55.

56. Goldbogen JA , Friedlaender AS , Calambokidis J , 
Mckenna MF , Simon M , Nowacek DP . Integrative 
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dispatch problem. Cogent Engineering, (1), 
1269383. 
https://doi.org/10.1080/23311916.2016.126933

ZDT3:

Minimise:      𝑓𝑓1(𝑚𝑚) = 𝑚𝑚1

Minimise:     𝑓𝑓2(𝑚𝑚) = 𝑔𝑔(𝑚𝑚) × ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)�
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Where:      

 

𝐺𝐺(𝑚𝑚) = 1 + 9
29
∑ 𝑚𝑚𝑀𝑀𝑁𝑁
𝑀𝑀=2 ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)� = 1 −�𝑓𝑓1(𝑚𝑚)

𝑔𝑔(𝑚𝑚)
− �𝑓𝑓1(𝑚𝑚)

𝑔𝑔(𝑚𝑚)
� sin�10𝜋𝜋𝑓𝑓1(𝑚𝑚)� 0 ≤ 𝑚𝑚𝑀𝑀 ≤ 1, 1 ≤ 𝑀𝑀 ≤ 30

ZDT4:

Minimise:      𝑓𝑓1(𝑚𝑚) = 𝑚𝑚1

Minimise:    

 

𝑓𝑓2(𝑚𝑚) = 𝑔𝑔(𝑚𝑚) × ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)�

ℎ�𝑓𝑓1(𝑚𝑚),𝑔𝑔(𝑚𝑚)� = 1 − �
𝑓𝑓1(𝑚𝑚)
𝑔𝑔(𝑚𝑚)

g(x) = 91 + �(𝑚𝑚𝑀𝑀2 − 10 ∗ cos⁡(4𝜋𝜋𝑚𝑚𝑀𝑀))
10

𝑀𝑀=2

SCHN-1 :

Minimize: 𝑓𝑓1(𝑚𝑚) = 𝑚𝑚𝑀𝑀2

𝑓𝑓2(𝑚𝑚) = (𝑚𝑚 − 2)2 A x A− ≤ ≤
                    

Where: value

 

of can be from 10 to 10^5.

SCHN-2 :

Minimize:          

( )

1

2
2

x,                  
 

1
x 2,              1  3

( )     
4 x,                3 4
x 4,                 4

( ) 5

if x
if x

f x
if x
if x

f x x

 − ≤
  − < ≤ =  − < ≤ 
  − >
 = −

5 10x− ≤ ≤

Appendix B: Constrained multi-objective test problems utilised in this work.

TNK:

Minimise:      𝑓𝑓1(𝑚𝑚) = 𝑚𝑚1

Minimise:     𝑓𝑓2(𝑚𝑚) = 𝑚𝑚2

Where:      𝑔𝑔1(𝑚𝑚) = −𝑚𝑚1
2 − 𝑚𝑚2

2 + 1 + 0.1𝐶𝐶𝑛𝑛𝑃𝑃(16𝑚𝑚𝑟𝑟𝑆𝑆𝑆𝑆𝑚𝑚𝑀𝑀 �𝑚𝑚1
𝑚𝑚2
�)

𝑔𝑔2(𝑚𝑚) = 0.5 − (𝑚𝑚1 − 0.5)2 − (𝑚𝑚2 − 0.5)2 0.1 ≤ 𝑚𝑚1 ≤ 𝜋𝜋, 0 ≤ 𝑚𝑚2 ≤ 𝜋𝜋

BNH:

This problem was first proposed by Binh and Korn [48]:

Minimise:      𝒇𝒇𝟏𝟏(𝒙𝒙) = 𝟒𝟒𝒙𝒙𝟏𝟏𝟐𝟐 + 𝟒𝟒𝒙𝒙𝟐𝟐𝟐𝟐

Minimise:     𝑓𝑓2(𝑚𝑚) = (𝑚𝑚1 − 5)2 + (𝑚𝑚2 − 5)2
  

      𝑔𝑔1(𝑚𝑚) = (𝑚𝑚1 − 5)2 + 𝑚𝑚2
2 − 25

𝑔𝑔2(𝑚𝑚) = 7.7 − (𝑚𝑚1 − 8)2 − (𝑚𝑚2 + 3)2 0 ≤ 𝑚𝑚1 ≤ 5,0 ≤ 𝑚𝑚2 ≤ 3

OSY:
The OSY test problem has five separated regions proposed by Osyczka and Kundu [49]. Also, there are six 

constraints and six design variables.

Minimise:      𝑓𝑓1(𝑚𝑚) = 𝑚𝑚1
2 + 𝑚𝑚2

2+𝑚𝑚3
2 + 𝑚𝑚4

2+𝑚𝑚5
2 + 𝑚𝑚6

2

Where:
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Minimise:     𝑓𝑓2(𝑚𝑚) − [25(𝑚𝑚1 − 2)2 + (𝑚𝑚2 − 1)2 + (𝑚𝑚3 − 1)2 + (𝑚𝑚4 − 4)2 + (𝑚𝑚5 − 1)2]

  Where:       𝑔𝑔1(𝑚𝑚) = 2 − 𝑚𝑚1 − 𝑚𝑚2
𝑔𝑔2(𝑚𝑚) = −6 + 𝑚𝑚1 + 𝑚𝑚2
𝑔𝑔3(𝑚𝑚) = −2 − 𝑚𝑚1 + 𝑚𝑚2
𝑔𝑔4(𝑚𝑚) = −2 + 𝑚𝑚1 − 3𝑚𝑚2
𝑔𝑔5(𝑚𝑚) = −4 + 𝑚𝑚4 + (𝑚𝑚3 − 3)2

𝑔𝑔6(𝑚𝑚) = 4 − 𝑚𝑚6 − (𝑚𝑚5 − 3)20 ≤ 𝑚𝑚1 ≤ 10,0 ≤ 𝑚𝑚2 ≤ 10,1 ≤ 𝑚𝑚3 ≤ 5,0 ≤ 𝑚𝑚4 ≤ 6,1 ≤ 𝑚𝑚5 ≤ 5,0 ≤ 𝑚𝑚6 ≤ 10
SRN:

The third problem has a continuous Pareto optimal front proposed by Srinivas and Deb [50].

Minimise:      𝑓𝑓1(𝑚𝑚) = 2 + (𝑚𝑚1 − 2)2 + (𝑚𝑚2 − 1)2

Minimise:     𝑓𝑓2(𝑚𝑚) = 9𝑚𝑚1 − (𝑚𝑚2 − 1)2

Where:      𝑔𝑔1(𝑚𝑚) = 𝑚𝑚1
2 + 𝑚𝑚2

2 − 255

𝑔𝑔2(𝑚𝑚) = 𝑚𝑚1 − 3𝑚𝑚2 + 10 −20 ≤ 𝑚𝑚1 ≤ 20,−20 ≤ 𝑚𝑚2 ≤ 20

CONSTR:
This problem has a convex Pareto front, and there are two constraints and two design variables.

Minimise:      𝑓𝑓1(𝑚𝑚) = 𝑚𝑚1

Minimise:     𝑓𝑓2(𝑚𝑚) = (1 + 𝑚𝑚2)/(𝑚𝑚1)

Where:      𝑔𝑔1(𝑚𝑚) = 6 − (𝑚𝑚2 + 9𝑚𝑚1), 𝑔𝑔2(𝑚𝑚) = 1 + 𝑚𝑚2 − 9𝑚𝑚1 0.1 ≤ 𝑚𝑚1 ≤ 1,0 ≤ 𝑚𝑚2 ≤ 5

Appendix C: Constrained multi-objective engineering problems used in this work.

Four-bar truss design problem:
The 4-bar truss design problem is a well-known problem in the structural optimisation field [42], in which 

structural volume (f1) and displacement (f2) of a 4-bar truss should be minimized. As can be seen in the following 
equations, there are four design variables (x1-x4) related to cross sectional area of members 1, 2, 3, and 4.

Minimise:      𝒇𝒇𝟏𝟏(𝒙𝒙) = 𝟐𝟐𝟐𝟐𝟐𝟐 ∗ (𝟐𝟐 ∗ 𝒙𝒙(𝟏𝟏) + 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝟐𝟐 ∗ 𝒙𝒙(𝟐𝟐)) + 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒙𝒙(𝟑𝟑)) + 𝒙𝒙(𝟒𝟒))

Minimise:     𝑓𝑓2(𝑚𝑚) = 0.01 ∗ (� 2
𝑚𝑚(1)

� + �2∗𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆 (2)
𝑚𝑚(2)

� − ((2 ∗ 𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆(2))/𝑚𝑚(3)) + (2/𝑚𝑚(1)))

1 ≤ 𝑚𝑚1 ≤ 3,1.4142 ≤ 𝑚𝑚2 ≤ 3,1.4142 ≤ 𝑚𝑚3 ≤ 3,1 ≤ 𝑚𝑚4 ≤ 3

Speed reducer design problem:
The speed reducer design problem is a well-known problem in the area of mechanical engineering [43], in 

which the weight (f1) and stress (f2) of a speed reducer should be minimized. There are seven design variables: 
gear face width (x1), teeth module (x2), number of teeth of pinion (x3 integer variable), distance between bearings 1 
(x4), distance between bearings 2 (x5), diameter of shaft 1 (x6), and diameter of shaft 2 (x7) as well as eleven 
constraints.

Minimise:      𝑓𝑓1(𝑚𝑚) = 0.7854 ∗ 𝑚𝑚(1) ∗ 𝑚𝑚(2)2 ∗ (3.3333 ∗ 𝑚𝑚(3)2 + 14.9334 ∗ 𝑚𝑚(3) − 43.0934) − 1.508 ∗ 𝑚𝑚(1) ∗
(𝑚𝑚(6)^2 + 𝑚𝑚(7)^2) + 7.4777 ∗ (𝑚𝑚(6)^3 + 𝑚𝑚(7)^3) + 0.7854 ∗ (𝑚𝑚(4) ∗ 𝑚𝑚(6)^2 + 𝑚𝑚(5) ∗ 𝑚𝑚(7)^2)

Minimise:     𝑓𝑓2(𝑚𝑚) = ((𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆(((745 ∗ 𝑚𝑚(4))/(𝑚𝑚(2) ∗ 𝑚𝑚(3)))^2 + 16.9𝑀𝑀6))/(0.1 ∗ … 𝑚𝑚(6)^3))

Where:      𝑔𝑔1(𝑚𝑚) = 27/(𝑚𝑚(1) ∗ 𝑚𝑚(2)^2 ∗ 𝑚𝑚(3)) − 1

𝑔𝑔2(𝑚𝑚) = 397.5/(𝑚𝑚(1) ∗ 𝑚𝑚(2)^2 ∗ 𝑚𝑚(3)^2) − 1

𝑔𝑔3(𝑚𝑚) = (1.93 ∗ 𝑚𝑚(4)^3)/(𝑚𝑚(2) ∗ 𝑚𝑚(3) ∗ 𝑚𝑚(6)^4) − 1

𝑔𝑔4(𝑚𝑚) = (1.93 ∗ 𝑚𝑚(5)^3)/(𝑚𝑚(2) ∗ 𝑚𝑚(3) ∗ 𝑚𝑚(7)^4) − 1

𝑔𝑔5(𝑚𝑚) = ((𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆(((745 ∗ 𝑚𝑚(4))/(𝑚𝑚(2) ∗ 𝑚𝑚(3)))^2 + 16.9𝑀𝑀6))/(110 ∗ 𝑚𝑚(6)^3)) − 1
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𝑔𝑔6(𝑚𝑚) = ((𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆(((745 ∗ 𝑚𝑚(5))/(𝑚𝑚(2) ∗ 𝑚𝑚(3)))^2 + 157.5𝑀𝑀6))/(85 ∗ 𝑚𝑚(7)^3)) − 1

𝑔𝑔7(𝑚𝑚) = ((𝑚𝑚(2) ∗ 𝑚𝑚(3))/40) − 1

𝑔𝑔8(𝑚𝑚) = (5 ∗ 𝑚𝑚(2)/𝑚𝑚(1)) − 1

𝑔𝑔9(𝑚𝑚) = (𝑚𝑚(1)/12 ∗ 𝑚𝑚(2)) − 1

𝑔𝑔10(𝑚𝑚) = ((1.5 ∗ 𝑚𝑚(6) + 1.9)/𝑚𝑚(4)) − 1

𝑔𝑔11(𝑚𝑚) = ((1.1 ∗ 𝑚𝑚(7) + 1.9)/𝑚𝑚(5)) − 1

2.6 ≤ 𝑚𝑚1 ≤ 3.6,0.7 ≤ 𝑚𝑚2 ≤ 0.8,17 ≤ 𝑚𝑚3 ≤ 28,7.3 ≤ 𝑚𝑚4 ≤ 8.3,7.3 ≤ 𝑚𝑚5 ≤ 8.3,2.9 ≤ 𝑚𝑚6 ≤ 3.95 ≤ 𝑚𝑚7 ≤ 5.5

Welded beam design problem:
The welded beam design problem has four constraints first proposed by Ray and Liew [44]. The fabrication 

cost (f1) and deflection of the beam (f2) of a welded beam should be minimized in this problem. There are four 
design variables: the thickness of the weld (x1), the length of the clamped bar (x2), the height of the bar (x3) and the 
thickness of the bar (x4).

Minimise:      𝑓𝑓1(𝑚𝑚) = 1.10471 ∗ 𝑚𝑚(1)^2 ∗ 𝑚𝑚(2) + 0.04811 ∗ 𝑚𝑚(3) ∗ 𝑚𝑚(4) ∗ (14.0 + 𝑚𝑚(2))

Minimise:     𝑓𝑓2(𝑚𝑚) = 65856000/(30 ∗ 10^6 ∗ 𝑚𝑚(4) ∗ 𝑚𝑚(3)^3)

Where:      𝑔𝑔1(𝑚𝑚) = 𝑆𝑆𝑚𝑚𝑆𝑆 − 13600

𝑔𝑔2(𝑚𝑚) = 𝑃𝑃𝑀𝑀𝑔𝑔𝑀𝑀𝑚𝑚 − 30000

𝑔𝑔3(𝑚𝑚) = 𝑚𝑚(1) − 𝑚𝑚(4)

𝑔𝑔4(𝑚𝑚) = 6000 − 𝑃𝑃

0.125 ≤ 𝑚𝑚1 ≤ 5,0.1 ≤ 𝑚𝑚2 ≤ 10,0.1 ≤ 𝑚𝑚3 ≤ 10,0.125 ≤ 𝑚𝑚4 ≤ 5

Where

𝑄𝑄 = 6000 ∗ �14 +
𝑚𝑚(2)

2
� ;𝐷𝐷 = 𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆 �

𝑚𝑚(2)2

4
+
�𝑚𝑚(1) + 𝑚𝑚(3)�2

4
�

𝐽𝐽 = 2 ∗ �𝑚𝑚(1) ∗ 𝑚𝑚(2) ∗ 𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆(2) ∗ �
𝑚𝑚(2)2

12
+
�𝑚𝑚(1) + 𝑚𝑚(3)�2

4
��

𝑚𝑚𝑙𝑙𝑝𝑝ℎ𝑚𝑚 =
6000

𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆(2) ∗ 𝑚𝑚(1) ∗ 𝑚𝑚(2)

𝑆𝑆𝑀𝑀𝑆𝑆𝑚𝑚 = 𝑄𝑄 ∗
𝐷𝐷
𝐽𝐽

𝑆𝑆𝑚𝑚𝑆𝑆 = 𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆 �𝑚𝑚𝑙𝑙𝑝𝑝ℎ𝑚𝑚2 + 2 ∗ 𝑚𝑚𝑙𝑙𝑝𝑝ℎ𝑚𝑚 ∗ 𝑆𝑆𝑀𝑀𝑆𝑆𝑚𝑚 ∗
𝑚𝑚(2)
2 ∗ 𝐷𝐷

+ 𝑆𝑆𝑀𝑀𝑆𝑆𝑚𝑚2�

𝑃𝑃𝑀𝑀𝑔𝑔𝑀𝑀𝑚𝑚 =
504000

𝑚𝑚(4) ∗ 𝑚𝑚(3)2

𝑆𝑆𝑀𝑀𝑝𝑝𝑓𝑓 = 4.013 ∗
30 ∗ 106

196

𝑃𝑃 = 𝑆𝑆𝑀𝑀𝑝𝑝𝑓𝑓 ∗ 𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆 �𝑚𝑚(3)2 ∗
𝑚𝑚(4)6

36
� ∗ �1 − 𝑚𝑚(3) ∗

𝑃𝑃𝑞𝑞𝑟𝑟𝑆𝑆 �30
48�

28
�

Disk Brake Design Problem:
The disk brake design problem has mixed constraints and was proposed by Ray and Liew [44]. The 

objectives to be minimized are: stopping time (f1) and mass of a brake (f2) of a disk brake. As can be seen in 

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
  

Is
su

e 
 I
V
  

V
er
si
on

 I
  

  
  
 

  

40

Y
e
a
r

20
17

F



© 2017    Global Journals Inc.  (US)

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization 
Algorithm for Solving Engineering Design Problems

following equations, there are four design variables: the inner radius of the disk (x1), the outer radius of the disk (x2), 
the engaging force (x3), and the number of friction surfaces (x4) as well as five constraints.

Minimise:      𝑓𝑓1(𝑚𝑚) = 4.9 ∗ (10^(−5)) ∗ (𝑚𝑚(2)^2 − 𝑚𝑚(1)^2) ∗ (𝑚𝑚(4) − 1)

Minimise:     𝑓𝑓2(𝑚𝑚) = (9.82 ∗ (10^(6)) ∗ (𝑚𝑚(2)^2 − 𝑚𝑚(1)^2))/((𝑚𝑚(2)3 − 𝑚𝑚(1)^3) ∗ … 𝑚𝑚(4) ∗ 𝑚𝑚(3))

Where:      𝑔𝑔1(𝑚𝑚) = 20 + 𝑚𝑚(1) − 𝑚𝑚(2)

𝑔𝑔2(𝑚𝑚) = 2.5 ∗ (𝑚𝑚(4) + 1) − 30

𝑔𝑔3(𝑚𝑚) = (𝑚𝑚(3))/(3.14 ∗ (𝑚𝑚(2)^2 − 𝑚𝑚(1)^2)^2) − 0.4

𝑔𝑔4(𝑚𝑚) = (2.22 ∗ 10^(−3) ∗ 𝑚𝑚(3) ∗ (𝑚𝑚(2)^3 − 𝑚𝑚(1)^3))/((𝑚𝑚(2)^2 − 𝑚𝑚(1)^2)^2) − 1

𝑔𝑔5(𝑚𝑚) = 900 − (2.66 ∗ 10^(−2) ∗ 𝑚𝑚(3) ∗ 𝑚𝑚(4) ∗ (𝑚𝑚(2)^3 − 𝑚𝑚(1)^3))/((𝑚𝑚(2)^2 − 𝑚𝑚(1)^2))

55 ≤ 𝑚𝑚1 ≤ 80,75 ≤ 𝑚𝑚2 ≤ 110,1000 ≤ 𝑚𝑚3 ≤ 3000,2 ≤ 𝑚𝑚4 ≤ 20

Appendix D: 
Test system 1: 40-operational thermal generating unit

Unit Pmin Pmax ai bi ci αi βi γi ζi λi

1 36 114 0.00690 6.73 94.705 0.048 -2.22 60 1.31 0.0569
2 36 114 0.00690 6.73 94.705 0.048 -2.22 60 1.31 0.0569
3 60 120 0.02028 7.07 309.54 0.0762 -2.36 100 1.31 0.0569
4 80 190 0.00942 8.18 369.03 0.054 -3.14 120 0.9142 0.0454
5 47 97 0.01140 5.35 148.89 0.085 -1.89 50 0.9936 0.0406
6 68 140 0.01142 8.05 222.33 0.0854 -3.08 80 1.31 0.0569
7 110 300 0.00357 8.03 287.71 0.0242 -3.06 100 0.655 0.02846
8 135 300 0.00492 6.99 391.98 0.0335 -2.32 130 0.655 0.02846
9 135 300 0.00573 6.6 455.76 0.425 -2.11 150 0.655 0.02846

10 130 300 0.00605 12.9 722.82 0.0322 -4.34 280 0.655 0.02846
11 94 375 0.00515 12.9 635.20 0.0338 -4.34 220 0.655 0.02846
12 94 375 0.00569 12.8 654.69 0.0296 -4.28 225 0.655 0.02846
13 125 500 0000421 12.5 913.40 0.0512 -4.18 300 0.5035 0.02075
14 125 500 0.00752 8.84 1760.4 0.0496 -3.34 520 0.5035 0.02075
15 125 500 0.00708 9.15 1728.3 0.0496 -3.55 510 0.5035 0.02075
16 125 500 0.00708 9.15 1728.3 0.0151 -3.55 510 0.5035 0.02075
17 220 500 0.00313 7.97 647.85 0.0151 -2.68 220 0.5035 0.02075
18 220 500 0.00313 7.95 649.69 0.0151 -2.66 222 0.5035 0.02075
19 242 550 0.00313 7.97 647.83 0.0151 -2.68 220 0.5035 0.02075
20 242 550 0.00313 7.97 647.81 0.0145 -2.68 220 0.5035 0.02075
21 254 550 0.00298 6.63 785.96 0.0145 -2.22 290 0.5035 0.02075
22 254 550 0.00298 6.63 785.96 0.0138 -2.22 285 0.5035 0.02075
23 254 550 0.00284 6.66 794.53 0.0138 -2.26 295 0.5035 0.02075
24 254 550 0.00284 6.66 794.53 0.0132 -2.26 295 0.5035 0.02075
25 254 550 0.00277 7.10 801.32 0.0132 -2.42 310 0.5035 0.02075
26 254 550 0.00277 7.10 801.32 1.842 -2.42 310 0.5035 0.02075
27 10 150 0.52124 3.33 1055.1 1.842 -1.11 360 0.9936 0.0406
28 10 150 0.52124 3.33 1055.1 1.842 -1.11 360 0.9936 0.0406
29 10 150 0.52124 3.33 1055.1 1.842 -1.11 360 0.9936 0.0406
30 47 97 0.01140 5.35 148.89 0.085 -1.89 50 0.9936 0.0406
31 60 190 0.00160 6.43 222.92 0.0121 -2.08 80 0.9142 0.0454
32 60 190 0.00160 6.43 222.92 0.0121 -2.08 80 0.9142 0.0454
33 60 190 0.00160 6.43 222.92 0.0121 -2.08 80 0.9142 0.0454
34 90 200 0.00010 8.95 107.87 0.0012 -3.48 65 0.655 0.02846
35 90 200 0.00010 8.62 116.58 0.0012 -3.24 70 0.655 0.02846
36 90 200 0.00010 8.62 116.58 0.0012 -3.24 70 0.655 0.02846
37 25 110 0.01610 5.88 307.45 0.095 -1.98 100 1.42 0.0677
38 25 110 0.01610 5.88 307.45 0.095 -1.98 100 1.42 0.0677
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39 25 110 0.01610 5.88 307.45 0.095 -1.98 100 1.42 0.0677
40 242 550 0.00313 7.97 647.83 0.0151 -2.68 220 0.5035 0.02075

Table 12: Input data for operational generating unit like loading limits and loss parameters of 6-unit system.

Test system 2: 6-operational thermal generating unit

Loss parameters:

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0.000140 0.000017 0.000015 0.000019 0.000026 0.000022
0.000017 0.000060 0.000013 0.000016 0.000015 0.000020
0.000015 0.000013 0.000065 0.000017 0.000024 0.000019
0.000019 0.000016 0.000017 0.000071 0.000030 0.000025
0.000026 0.000015 0.000024 0.000030 0.000069 0.000032
0.000022 0.000020 0.000019 0.000025 0.000032 0.000085⎦

⎥
⎥
⎥
⎥
⎤

A1 = [0 0 0 0 0 0]

A3 = 0

Unit 𝑷𝑷𝒊𝒊
𝒎𝒎𝒊𝒊𝒎𝒎

(MW)
𝑷𝑷𝒊𝒊
𝒎𝒎𝒎𝒎𝒙𝒙

(MW)
𝒎𝒎𝒊𝒊

($/𝒉𝒉𝒔𝒔)
𝒃𝒃𝒊𝒊

($/𝑴𝑴𝑴𝑴𝒉𝒉𝒔𝒔)
𝒄𝒄𝒊𝒊

($/𝑴𝑴𝑴𝑴𝟐𝟐𝒉𝒉𝒔𝒔)
𝜶𝜶𝒊𝒊

(𝒍𝒍𝒃𝒃/𝒉𝒉𝒔𝒔)
𝜷𝜷𝒊𝒊

(𝒍𝒍𝒃𝒃/𝑴𝑴𝑴𝑴𝒉𝒉𝒔𝒔)
𝜸𝜸𝒊𝒊

(𝒍𝒍𝒃𝒃/𝑴𝑴𝑴𝑴𝟐𝟐𝒉𝒉𝒔𝒔)

1 10 125 756.7988 38.539 0.15247 13.8593 0.32767 0.00419

2 10 150 451.3251 46.1591 0.10587 13.8593 0.32767 0.00419

3 35 210 1243.531 38.3055 0.03546 40.2669 −0.54551 0.00683

4 35 225 1049.998 40.3965 0.02803 40.2669 −0.54551 0.00683

5 125 315 1356.659 38.2704 0.01799 42.8955 −0.51116 0.00461

6 130 325 1658.57 36.3278 0.02111 42.8955 −0.51116 0.00461

Non-Dominated Sorting Whale Optimization Algorithm (NSWOA): A Multi-Objective Optimization 
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