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Abstract7

This study presents new empirical equations to estimate the initial shear modulus of clean8

sands under low strains by using soft computing methods. A series of resonant column tests9

were conducted on clean sand specimens. The effect of various factors, such as effective stress,10

saturation degree, void ratio and shear strain levels, were considered by using fuzzy expert11

systems, neural networks and regression analysis. A new empirical equation was developed to12

determine the initial shear modulus of clean sand samples and compared with the existing13

empirical relationships in the literature. Success of the new equation was increased by14

considering boundary conditions at the shear strain ranges given by the ASTM standards for15

the resonant column test. It was found that the new formulation has a high level accuracy for16

determining the initial shear modulus of Toyoura sand samples. And also it can be used for17

clean sandy soils having similar properties. It was suggested that new approaches can be18

developed by using soft computing techniques to identify the dynamic shear modulus of sandy19

soils.20

21

Index terms— toyoura sand; resonant column test; shear modulus; dynamic loading, empirical equation.22

1 Introduction23

he maximum shear modulus, G max (?<5×10 -4 %),provides information about the soil strength and rigidity24
in cyclic loading. Shear modulus of various soils at very small levels of strains can be called maximum shear25
modulus, initial shear modulus, or lowamplitude shear modulus, and denoted by G max or G 0 (Ishihara,26
2003).Shear modulus is generally determined by field tests or by laboratory tests, such asresonant column (RC),27
dynamic triaxialand bender element methods (Youn et al. 2008). The shear modulus can be measured at strain28
levels between %10 -4 and 10 -1 by performing resonant column test.29

There are many equation and various experimental relationships proposed for the determination of the initial30
shear modulus of sandy soils in the literature. The most popular empirical equation based on laboratory31
experiments is presented by ??ardin and Drnevich(1972a-b). Although these tests provide adequate results,32
preparing high quality undisturbed samples and simulating field conditions are the main problems in the33
laboratory testing. ??ltun and Goktepe(2006)emphasized the deficiencies of the laboratory test on the cyclic34
response of soils, such as reconstitution of non-cohesive samples and the unidentified geological stress history35
affect. Cyclic testing to simulate the real cyclic responseis also expensive and requires much time. Alternatively,36
the dynamic properties of soils can be determined by using soft computing techniques, such as artificial intelligence37
based on field or laboratory data (Hasal and Iyisan, 2014). However, artificial intelligence (AI) cannot fully38
simulate the complex response of the systems; the use of AI technologies, such as fuzzy logic, neural networks,39
evolutionary computations, and expert systems, provides partial simulations. In addition, using these methods40
provides effective feasibility analysis, early decisions and so on (Akbulut et. al. 2004).41

Engineers generally prefer AI applications due to the creation of non-linear mappings between the input and42
output variables in optimum time and cost. As a result, many researchers began to use AI applications to evaluate43
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5 A) GENERATION OF THE FUZZY EXPERT SYSTEM (FES)

dynamic soil parameters. ??abalar ??010) generalized formulations to simulate the strain-stress curves and the44
modeled dynamic stress-strain behavior of sands by using AIbased genetic programming. It can be concluded45
from many published studies that AI models well describe the dynamic characteristics of soils.46

Many previous study showed that the dynamic behavior of sandy soils are affected by various factors, such as47
water content, void ratio (relative density), confining stress, particle shape and soil fabric (Salgado et al. 2000).48
In this study, to determine the dynamic behavior using AI-based genetic applications, a series of RC tests were49
conducted on reconstituted sand samples. Clean sand samples were prepared under fully saturated, partially50
saturated and dry conditions. The tests were conducted under undrained and stresscontrolled conditions. The51
input variable data (void ratio, effective stress, shear strain, and saturation degree) were obtained from the52
tests and used by soft computing techniques to evaluate the output parameters (resonant frequency and shear53
modulus). A new empirical equation was developed and compared with the existing equations in the literature54
according to its accuracy level.55

2 II.56

3 Experimental Study57

A resonant column (RC) test device was used to determine the cyclic response of the reconstituted sand samples.58
The resonant column method is used to determine the dynamic properties of soils, concrete, and rocks with respect59
to the theory of wave propagation. The details of the resonant column tests are explained by Drnevich(1985)60
and in the Standard of ASTM D 4015-87 ??2000).61

The RC test configuration used in this study is a fixed-free system, in which the sample is fixed at the bottom62
and is free to rotate at the top. The wave velocity and the degree of material damping can be determined by63
measuring the motion of the free end. Then, the shear modulus is derived from the velocity and the density of64
the sample. The bottom of the specimen is fixed to the base of the apparatus. Sinusoidal torsional excitation65
is applied to the top of the specimen by an electric motor system. A torsional harmonic load with a constant66
amplitude is applied over a range of frequencies, and the response curve (strain amplitude) is calculated. The67
output angular acceleration at the top of the sample is recorded by an accelerometer. The frequency of the68
cyclic torque is gradually changed until the first resonance of torsional vibration is obtained. The shear wave69
velocity is obtained from the first-mode resonant frequency. The initial shear modulus for shear strain ranging70
from 0.001-0.009% to 0.01-0.023% is then calculated using the shear wave velocity and the density of the sample.71

Standard uniform Toyoura sand was chosen for the study to allow for easy comparison with the literature.72
Index and shear strength parameters of Toyoura sand is taken from different studies in the literature. Some73
basic characteristics are given in Table 1. The test specimens were solid cylindrical samples with an approximate74
diameter of 50 mm and a height of 130-135 mm. The initial relative density and saturation degree are the most75
important factors regarding the cyclic behavior of sandy soils. Therefore, the test samples were prepared at76
different initial void ratios and saturation degrees. Two methods of sample preparation, dry deposition (for dry77
samples) and moist placement (for partially saturated and fully saturated samples), were preferred because of78
time consuming by these methods. The experimental details of the study are shown in Table 2.79

4 Model Study80

Many real-world problems cannot be solved by using conventional approaches because of an inadequate amount81
of time. Therefore, various soft computing techniques using predictive modeling are preferred for such problems.82
In particular, fuzzy logic and neural networks are the most popular and widely used techniques because of their83
benefits in modeling.84

5 a) Generation of the fuzzy expert system (FES)85

Fuzzy modeling offers control mechanisms for problems that have uncertainties and building solution steps. A86
multi-level decision-making mechanism provides an expert system with a knowledge base, an inference mechanism,87
and a user interface, although with a varying number of elements (Zadeh, 1994, Jang et. al. 1997). In this study,88
Math Works MATLAB software was used for fuzzy membership functions and rules. The structure of the fuzzy89
expert system was created by using the MATLAB Fuzzy Logic Toolbox for all test results. In this study, the input90
variables were void ratio, effective stress, shear strain amplitude, saturation degree, and the output variables were91
resonant frequency and maximum shear modulus. The next step was definition of the fuzzy rules to perform fuzzy92
reasoning. The fuzzy rules were constructed on an ”ifthen” structure, in which they provided the conditional93
statements that comprised the fuzzy logic. The ”ifthen”statements are defined as follows: R: IF value x=A i and94
y=B i and z=C i THEN n = D i (i = 1,2,....,k)95

where x, y, and z are the input variables, and n is the output parameter described by fuzzy subsets. Two96
hundred and ten rules were written for the shear modulus and the resonant frequency. The abbreviations of97
the membership functions are given in Table 3. The output parameters related with each input variable were98
evaluated by using the test results. The percentages of the weighted output parameters were calculated and99
defined in the form of ”if-then” statements. A total of 516 rules for the maximum shear modulus, 492 rules for100
the resonant frequency were defined with this way.101
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The rules were defined according to the MATLAB Fuzzy Logic Toolbox to construct the FES variables. Two102
built-in AND methods, min (minimum) and prod (product), and two built-in OR methods, max (maximum) and103
probor (probabilistic OR method),were used to evaluate the values of the resonant frequency and the maximum104
shear modulus. The best recall performances of the FES indicate that the system has an acceptable performance.105
The determination value (R 2 ) for the resonance frequency and the maximum shear modulus are shown in Fig.106
2(a) and Fig. 2(b), respectively.107

6 b) Generation of the Artificial Neural Networks (ANNs)108

An artificial neural network is a soft computing technique that provides information processing by using the109
simulation of nerve cells and networks ??Fahman, 1988). In this study, a supervised learning network using110
feed forward back propagation was performed. Alyuda NeuroIntelligence (ANI) software was used to design the111
structure of the neural network, and the network was compared with the other structures created by MATLAB.112
Various results were observed by selecting different layers and neurons. The dataset was formed by randomly113
separation method into training and validation. The Levenberg-Marquardt (LM) algorithm was used to train114
all the networks. LM was used because the algorithm is known as the optimum training algorithm and gives a115
virtual standard in nonlinear optimization. LM is a pseudo-second-order method, i.e., it does not only work with116
function evaluations and gradient information but also it estimates the Hessian matrix using the sum of the outer117
products of the gradients. LM quickly minimizes the error function and uses the Jacobian matrix instead of the118
Hessian matrix. The parameter, ?, is the Marquardt parameter, used in the calculation of the Hessian matrix119
(Hagan and Menhaj 1994).H(n) = J T (n)J(n) + ?I(2)120

The weights and bias values are updated as follows:w(n + 1) = w(n) ? (H) ?1 J T (n)e(n)(3)121
The data for the input and output parameters are given in Table 4. An exhaustive search option in the ANI122

was used to choose the input variables. The optimal NN architecture was found as3-15-1 NN architecture for123
resonant frequencyand3-18-1 NN architecture for shear modulus. The NN architectures created by using Matlab124
NN are shown in Fig. 2. The same input variables were used and the linearity of the relationship between the125
parameters for the single-layer structure was found to be acceptable. The coefficients of determination value (R126
2 ) (Y=T) are 0.9785 and 0.9787for the ANI predictions of resonance frequency and maximum shear modulus,127
respectively, which implies a significant value for R 2 and hence a good performance for the whole model. The128
results are presented in Fig. ??.129

7 Resonant Frequency ANI Results130

8 c) Generation of the Empirical Equation131

The shear strain level is an important factor on the shear modulus. It is already known that the resonant column132
experiments are capable by achieving shear strain within an amplitude range of 10 -6 -10 -3 (Ishihara 2003).In133
any type of laboratory test, the shear modulus of cohesionless soils at low strain is measured under different134
effective confining stresses (?’ 0 ) for various conditions presented by different void ratios (e). In the early works135
by ??ardin and Richart(1972a-b), the effect of void ratio is found to be expressed by a function F(e): Thus, it136
is appropriate to divide the measured shear modulus (G max ) by the function F(e) and plot this ratio against137
the effective confining stress applied in the test (Kokusho 1987). The amplitude of the shear strain is obtained138
by converting the axial strain in the triaxial test through the following relationship:F(e) =? a = (1 + ?)? a(5)139

A number of similar formulas are proposed for various sand types, as shown in Table 5; however, most of these140
formulas can be expressed in the general form of Eq.( 5).(Kokusho1987)For a sufficient small shear strain of ? a141
= 10 -5 , a typical formula is specified as Eq.( 6):G 0 = AF(e)(? 0 ? ) n(6)142

G 0 = 8400143
(2,17?e) 2 1+e (? 0 ? ) 0.5 (7) In this study, the experimental results were compared with the existing144

empirical relationships for the initial shear modulus obtained by performing various test devices for several types145
of sands at the shear strain of 10 -5 . All the results (0.001 ? ?% ? 0.04) of the empirical relationships were146
recomputed using the void ratio and the effective stress from the test results. The empirical relationship for the147
shear modulus given by Kokusho(1987)was found more appropriate for the values obtained from the test results148
in the range of the shear strain amplitude. The comparison between experimental results and literatureis shown149
in Fig. ??. The experimental test results were found to be in excellent agreement with the literature at a small150
shear strain amplitude. R 2 = 0.9111 (x = y) 0.001 ? ?% ? 0.04 R 2 = 0.9742 (x = y) 0.001 ? ?% ? 0.005 R 2151
= 0.7452 (x = y) 0.005 < ?% ? 0.04 Fig. ??: Suitability of the experimental results and the Kokusho equation152
A new empirical relationship for the initial shear modulus was derived from the experimental studies at different153
shear strain levels by considering test data, the fuzzy expert system and the neural network results. Dynamic154
responses of soils can be determined atstrain levels between 10 -6 and 10 -2 by different test methods. But,155
decrease in shear modulus is observedfrom %0,005 strain levels to %0.0001 strain levels in the previous studies.156
Accuracy of the new equation was increased by considering boundary conditions at the shear strain ranges given157
by the ASTM standards for the resonant column test. Therefore, a new relationship to determine the initial158
shear modulus was divided into two parts given by Eq.( 8) and Eq.( 9).159

In the range of 0.001 ? ?% ? 0.005, the equation is given below,G0 = 8254 (2,17?e) 2 1+e (? 0 ? ) 0,49(8)160
In the range of 0.005 < ?% ? 0.04, the equation is given below,G 0 = 7294 (2,17?e) 2 1+e (? 0 ? ) 0,49(9)161
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9 CONCLUSIONS

The coefficients of determination value (R 2 ) (Y=T) are 0.9767 and 0.9362, respectively. Using these two162
equations for the prediction of the initial shear modulus, which implies a significant value for R 2 and indicates163
good performance for the whole model. The suitability of the derived empirical relationship according to the164
variation of the shear strain amplitude is shown in Fig. ??.165

9 Conclusions166

A series of RC tests was conducted on clean sand samples to create a new approach by using AI techniques for167
the prediction of the dynamic characteristics of soils. MATLAB software was used to perform data analysis and168
modeling. Test results were analyzed by considering saturation degree, effective stress and cyclic strain. First,169
two inference systems were performed to predict the maximum shear modulus and the database was created170
by using the experimental study. Compared with the test results, both inference system models were found to171
be quite suitable. Subsequently, new empirical relationships in the prediction of the dynamic characteristics of172
Toyoura sands were derived. New equation is divided in two groups by considering boundary conditions at the173
shear strain ranges given by the ASTM standards. Therefore, new formulation has a high level accuracy for174
determining the initial shear modulus of Toyoura sand samples. The equations showed acceptable results that175
were the analogous to those of the soft computing techniques. These results revealed that both methods can be176
used for practical purposes to solve complex real life problems. This study encourages further work to explore177
other inference systems for the estimation and generation of data from experimental studies.178

V. 1

Figure 1:
179
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Figure 2: Fig. 1 :
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Figure 3: Fig. 2 :
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Figure 4: R 2 =Fig. 3 :

25

Figure 5: R 2 =Fig. 5 :
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1

Material Toyoura Sand
D 50 (mm) 0.26
D 10 (mm) 0.21
C u 1.33
C c 0.98
G s 2.653
? maks (Mg/m 3 ) 1.34
? min (Mg/m 3 ) 1.64
e maks 0.97
e min 0.597
c (kPa) 4
? 39?
D 10 =

Figure 6: Table 1 :
2

Figure 7: Table 2 :

Year 2017
32
) Volume XVII Issue II Version I
Global Journal of Researches in
Engineering ( E

Max. (e int )
0.7959

? o
’(kPa)
348.8

%Dr
47.66

H
sample
(mm)
135

R
sam-
ple
(mm)
50

%S
r
99.98

%?
0.04

Min. 06166 25.8 94.85 130 50 0 0.001

[Note: © 2017 Global Journals Inc. (US)]

Figure 8:
3

Linguistic Rule Abbreviations
Extremely High VR7, EP6, G8, V6, FR7
Very High VR6, EP5, SS5, G7, V5, FR6
High VR5, EP4, SS4, G6, V4, FR5
Medium High G5
Medium VR4, SS3, FR4
Medium Low G4
Low VR3, EP3, SS2, G3, V3, FR3
Very Low VR2, EP2, SS1, G2, V2, FR2
Extremely Low VR1, EP1, G1, V1, FR1

Figure 9: Table 3 :
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9 CONCLUSIONS

4

Total Sam-
ple:711

e int ? o ’(kPa) ?(%) S r (%) f r G max
(MPa)

V s (m/sn)

Column
Type

Input Input Input Input Output Output Output

Format Numerical Numerical Numerical Numerical Numerical Numerical Numerical
Scaling
Range

[-1?1] [-1?1] [-1?1] [-1?1] [0?1] [0?1] [0?1]

Min 0.6166 25.8 0.001 0 66 27.97 120.34
Max 0.7959 348.8 0.04 99.98 171 193.92 343.83
Mean 0.733718 150.83884 0.005447 60.76166 130.734177112.976414 248.98495
Std. Devia-
tion

0.046822 75.95824 0.006556 46.54837 21.815257 35.981497 45.01604

[Note: Architecture Fitness R 2 = 0.99[3-18-1] ]

Figure 10: Table 4 :
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References A F(e) n Soil Material Test
Method

Hardin-Richart
(1963)

7000
3300

? (2,17 ? e) 2 (1 +
e) (2,97 ? e) 2 (1
+ e) ?

0,5
0,5

Round Grained
Crashed Quartz
Ottowa Sand Angular
Grained

Resonant
Column

Shibata-Soelarno
(1975)

42000 (0,67 ? e) (1 + e)
?

0,5 Three types of clean
sand

Ultrasonic
Pulse

Iwasaki et.al. (1978) 9000 (2,17 ? e) 2 (1 +
e) ?

0,38 Eleven types of clean
sand

Resonant
Column

Kokusho (1980) 8400 (2,17 ? e) 2 (1 +
e) ?

0,5 Toyoura Sand Cyclic Tri-
axial

Yu-Richart (1984) 7000 (2,17 ? e) 2 (1 +
e) ?

0,5 Three types of clean
sand

Resonant
Column

?? ?? :kPa; ð�??”ð�??” ?? ? :kPa; e: void ratio

Figure 11: Table 5 :
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