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7

Abstract8

Digital intercept receivers are currently moving away from Fourier-based analysis and towards9

classical timefrequency analysis techniques for the purpose of analyzing low probability of10

intercept radar signals. This paper presents the novel approach of characterizing low11

probability of intercept frequency modulated continuous wave radar signals through utilization12

and direct comparison of the Spectrogram versus the Scalogram. Two different triangular13

modulated frequency modulated continuous wave signals were analyzed. The following metrics14

were used for evaluation: percent error of: carrier frequency, modulation bandwidth,15

modulation period, chirp rate, and time-frequency localization (x and y direction). Also used16

were: percent detection, lowest signal-to-noise ratio for signal detection, and plot (processing)17

time. Experimental results demonstrate that overall, the Spectrogram produced more18

accurate characterization metrics than the Scalogram. An improvement in performance may19

well translate into saved equipment and lives.20

21

Index terms—22

1 Introduction23

requency Modulated Continuous Wave (FMCW) signals are frequently encountered in modern radar systems24
[WAN10], [WON09], ??WAJ08]. The frequency modulation spreads the transmitted energy over a large25
modulation bandwidth Î?”F, providing good range resolution that is critical for discriminating targets from26
clutter. The power spectrum of the FMCW signal is nearly rectangular over the modulation bandwidth, so27
non-cooperative interception is difficult.28

Since the transmit waveform is deterministic, the form of the return signals can be predicted. This gives it the29
added advantage of being resistant to interference (such as jamming), since any signal not matching this form can30
be suppressed ??WIL06]. Consequently, it is difficult for an intercept receiver to detect the FMCW waveform31
and measure the parameters accurately enough to match the jammer waveform to the radar waveform ? ? (?,32
ð�??”; ?) = ? ?(?)? +? ?? (? ? ?)? ??2?ð�??”? ?? (1)33

Where h(t) is a short time analysis window localized around t=0 and f=0. Because multiplication by the34
relatively short window h(u-t) effectively suppresses the signal outside a neighborhood around the analysis point35
u=t, the STFT is a ’local’ spectrum of the signal x(u) around t. Think of the window h(t) as sliding along the36
signal x(u) and for each shift h(u-t) we compute the usual Fourier transform of the product function x(u)h(u-37
t). The observation window allows The STFT was the first tool devised for analyzing a signal in both time and38
frequency simultaneously. For analysis of human speech, the main method was, and still is, the STFT. In general,39
the STFT is still the most widely used method for studying non-stationary signals ??COH95].40

The Spectrogram (the squared modulus of the STFT) is given by equation 2 as:? ? (?, ð�??”) = ?? ?(?) +?41
?? ?(? ? ?)? ??2?ð�??”? ??? 2 (2)42
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2 GLOBAL

The Spectrog ram is a real-valued and nonnegative distribution. Since the window h of the STFT is assumed43
of unit energy, the Spectrogram satisfies the global energy distribution property. Thus we can interpret the44
Spectrogram as a measure of the energy of the signal contained in the time-frequency domain centered on the45
point (t, f) and whose shape is independent of this localization.46

Here are some properties of the Spectrogram: 1) The idea of the wavelet transform (equation (3)) is to project47
a signal x on a family of zero-mean functions (the wavelets) deduced from an elementary function (the mother48
wavelet) by translations and dilations:? ? (?, ?; ?) = ? ?(?)? ?,? * +? ?? (?)?? (3)49

The wavelet transform is of interest for the analysis of non-stationary signals, because it provides still another50
alternative to the STFT and to many of the quadratic time-frequency distributions.51

The basic difference between the STFT and the wavelet transform is that the STFT uses a fixed signal52
analysis window, whereas the wavelet transform uses short windows at high frequencies and long windows at low53
frequencies. This helps to diffuse the effect of the uncertainty principle by providing good time resolution at54
high frequencies and good frequency resolution at low frequencies. This approach makes sense especially when55
the signal at hand has high frequency components for short durations and low frequency components for long56
durations.57

The signals encountered in practical applications are often of this type.58
The wavelet transform allows localization in both the time domain via translations of the mother wavelet, and59

in the scale (frequency) domain via dilations. The wavelet is irregular in shape and compactly supported, thus60
making it an ideal tool for analyzing signals of a transient nature; the irregularity of the wavelet basis lends itself61
to analysis of signals with discontinuities or sharp changes, while the compactly supported nature of wavelets62
enables temporal localization of a signal’s features ??BOA03]. Unlike many of the quadratic functions such as63
the Wigner-Ville Distribution (WVD) and Choi-Williams Distribution (CWD), the wavelet transform is a linear64
transformation, therefore cross-term interference is not generated. There is another major difference between65
the STFT and the wavelet transform; the STFT uses sines and cosines as an orthogonal basis set to which the66
signal of interest is effectively correlated against, whereas the wavelet transform uses special ’wavelets’ which67
usually comprise an orthogonal basis set. The wavelet transform then computes coefficients, which represents a68
measure of the similarities, or correlation, of the signal with respect to the set of wavelets. In other words, the69
wavelet transform of a signal corresponds to its decomposition with respect to a family of functions obtained by70
dilations (or The variable a corresponds to a scale factor, in the sense that taking |a|>1 dilates the wavelet ?71
and taking |a|<1 compresses ?. By definition, the wavelet transform is more a time-scale than a time-frequency72
representation. However, for wavelets which are well localized around a non-zero frequency ?_0 at a scale =173
, a time-frequency interpretation is possible thanks to the formal identification ? = ? 0 ? . localization of the74
spectrum in time, but also smears the contractions) and translations (moving window) of an analyzing wavelet.75

2 Global76

A filter bank concept is often used to describe the wavelet transform. The wavelet transform can be interpreted77
as the result of filtering the signal with a set of bandpass filters, each with a different center frequency[GRI08],78
[FAR96], [SAR98], [SAT98].79

Like the design of conventional digital filters, the design of a wavelet filter can be accomplished by using a80
number of methods including weighted least squares [ALN00], [GOH00], orthogonal matrix methods [ZAH99],81
nonlinear optimization, optimization of a single parameter (e.g. the passband edge) [ZHA00], and a method that82
minimizes an objective function that bounds the out-of-tile energy [FAR99].83

Here are some properties of the wavelet transform: 1) The wavelet transform is covariant by translation in time84
and scaling. The corresponding group of transforms is called the Affine group; 2) The signal x can be recovered85
from its wavelet transform via the synthesis wavelet; 3) Time and frequency resolutions, like in the STFT case,86
are related via the Heisenberg-Gabor inequality. However in the wavelet transform case, these two resolutions87
depend on the frequency: the frequency resolution becomes poorer and the time resolution becomes better as the88
analysis frequency grows; 4) Because the wavelet transform is a linear transform, it does not contain cross-term89
interferences[GRI07], [LAR92].90

A similar distribution to the Spectrogram can be defined in the wavelet case. Since the wavelet transform91
behaves like an orthonormal basis decomposition, it can be shown that it preserves energy:? |? ? (?, ?; ?)| 2 +?92
?? ?? ?? ? 2 = ? ? (4)93

As is the case for the wavelet transform, the time and frequency resolutions of the Scalogram are related via94
the Heisenberg-Gabor principle.95

The interference terms of the Scalogram, as for the spectrogram, are also restricted to those regions of the96
time-frequency plane where the corresponding signals overlap. Therefore, if two signal components are sufficiently97
far apart in the time-frequency plane, their cross-Scalogram will be essentially zero [ISI96], [HLA92].98

For this paper, the Morlet Scalogram will be used. The Morlet wavelet is obtained by taking a complex sine99
wave and by localizing it with a Gaussian envelope. The Mexican hat wavelet isolates a single bump of the Morlet100
wavelet. The Morlet wavelet has good focusing in both time and frequency [CHE09].101
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3 II.102

4 Methodology103

The methodologies detailed in this section describe the processes involved in obtaining and comparing metrics104
between the classical time-frequency analysis techniques of the Spectrogram and the Scalogram for the detection105
and characterization of low probability of intercept triangular modulated FMCW radar signals.106

The tools used for this testing were: MATLAB (version 7.12), Signal Processing Toolbox (version 6.15),107
Wavelet Toolbox (version 4.7), Image Processing Toolbox (version 7.2), Time-Frequency Toolbox (version 1.0)108
(http://tftb.nongnu.org/).109

All testing was accomplished on a desktop computer (HP Compaq, 2.5GHz processor, AMD Athlon 64X2110
Dual Core Processor 4800+, 2.00GB Memory (RAM), 32 Bit Operating System).111

Testing was performed for 2 different triangular modulated FMCW waveforms. For each waveform, parameters112
were chosen for academic validation of signal processing techniques.113

Due to computer processing resources they were not meant to represent real-world values. The number of114
samples for each test was chosen to be either 256 or 512, which seemed to be the optimum size for the desktop115
computer. Testing was performed at three different SNR levels: 10dB, 0dB, and the lowest SNR at which the116
signal could be detected. The noise added was white Gaussian noise, which best reflects the thermal noise present117
in the IF section of an intercept receiver [PAC09]. Kaiser windowing was used, when windowing was applicable.118
50 runs were performed for each test, for statistical purposes. The plots included in this paper were done at119
a threshold of 5% of the maximum intensity and were linear scale (not dB) of analytic (complex) signals; the120
color bar represented intensity. The signal processing tools used for each task were the Spectrogram and the121
Scalogram.122

Task 1 consisted of analyzing a triangular modulated FMCW signal (most prevalent LPI radar waveform123
[LIA09]) whose parameters were: sampling frequency=4KHz; carrier frequency=1KHz; modulation band-124
width=500Hz; modulation period=.02sec.125

Task 2 was similar to Task 1, but with different parameters: sampling frequency=6KHz; carrier fre-126
quency=1.5KHz; modulation bandwidth=2400Hz; modulation period=.15sec. The different parameters were127
chosen to see how the different shapes/heights of the triangles of the triangular modulated FMCW would affect128
the metrics.129

After each particular run of each test, metrics were extracted from the time-frequency representation.130
The different metrics extracted were as follows: 1) Plot (processing) time: Time required for plot to be131

displayed.132
where ? ? is the energy of ?. This leads us to define the Scalogram (equation (4)) of ? as the squared modulus133

of the wavelet transform. It is an energy distribution of the signal in the time-scale plane, associated with the134
measure?? ? 2 .135

2) Percent detection: Percent of time signal was detected -signal was declared a detection if any portion of136
each of the signal components (4 chirp components for triangular modulated FMCW) exceeded a set threshold137
(a certain percentage of the maximum intensity of the time-frequency representation).138

Threshold percentages were determined based on visual detections of low SNR signals (lowest SNR at which139
the signal could be visually detected in the timefrequency representation) (see Figure ??).140

Figure ??: Threshold percentage determination. This plot is an amplitude vs. time (x-z view) of the141
Spectrogram of a triangular modulated FMCW signal (256 samples, with SNR= -3dB). For visually detected low142
SNR plots (like this one), the percent of max intensity for the peak z-value of each of the signal components (the143
2 legs for each of the 2 triangles of the triangular modulated FMCW) was noted (here 98%, 60%, 95%, 63%), and144
the lowest of these 4 values was recorded (60%). Ten test runs were performed for both time-frequency analysis145
tools (Spectrogram and Scalogram) for this waveform. The average of these recorded low values was determined146
and then assigned as the threshold for that particular time-frequency analysis tool. Note -the threshold for the147
Spectrogram is 60%.148

Thresholds were assigned as follows: Spectrogram (60%); Scalogram (50%).149
For percent detection determination, these threshold values were included in the time-frequency plot algorithms150

so that the thresholds could be applied automatically during the plotting process. From the threshold plot, the151
signal was declared a detection if any portion of each of the signal components was visible (see Figure 2). ).152
From the frequency-intensity (y-z) view, the maximum intensity value is manually determined. The frequency153
corresponding to the max intensity value is the carrier frequency (here fc=984.4 Hz).154

5 4) Modulation bandwidth:155

Distance from highest frequency value of signal (at a threshold of 20% maximum intensity) to lowest frequency156
value of signal (at same threshold) in Y-direction (frequency).157

The threshold percentage was determined based on manual measurement of the modulation bandwidth of158
the signal in the time-frequency representation. This was accomplished for ten test runs of each time-frequency159
analysis tool (Spectrogram and Scalogram), for each of the 2 waveforms. During each manual measurement, the160
max intensity of the high and low measuring points was recorded. The average of the max intensity values for161
these test runs was 20%. This was adopted as the threshold value, and is representative of what is obtained when162
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8 DISCUSSION

performing manual measurements. This 20% threshold was also adapted for determining the modulation period163
and the time-frequency localization (both are described below).164

For modulation bandwidth determination, the 20% threshold value was included in the time-frequency plot165
algorithms so that the threshold could be applied automatically during the plotting process. From the threshold166
plot, the modulation bandwidth was manually measured (see Figure 4). Distance from highest frequency value167
of signal (at a threshold of 20% maximum intensity) to lowest frequency value of signal (at same threshold) in168
X-direction (time). automatically during the plotting process. From the threshold plot, the modulation period169
was manually measured (see Figure ??).170

For modulation period determination, the 20% threshold value was included in the time-frequency plot171
algorithms so that the threshold could be applied Measure of the thickness of a signal component (at a threshold172
of 20% maximum intensity on each side of the component) -converted to % of entire X-Axis, and % of entire173
Y-Axis.174

For time-frequency localization determination, the 20% threshold value was included in the timefrequency175
plot algorithms so that the threshold could be applied automatically during the plotting process. From the176
threshold plot, the time-frequency localization was manually measured (see Figure 6). plot algorithms so that177
the thresholds could be applied automatically during the plotting process. From the threshold plot, the signal178
was declared a detection if any portion of each of the signal components was visible. The lowest SNR level for179
which the signal was declared a detection is the lowest detectable SNR (see Figure ??). Year 2017180

6 F181

For lowest detectable SNR determination, these threshold values were included in the time-frequency ??: Lowest182
detectable SNR. This plot is an frequency vs. time (x-y view) of the Spectrogram of a triangular modulated183
FMCW signal (256 samples, with SNR= -3dB) with threshold value automatically set to 60%. From this threshold184
plot, the signal was declared a (visual) detection because at least a portion of each of the 4 signal components185
(the 2 legs for each of the 2 triangles of the triangular modulated FMCW) was visible. Note that the signal186
portion for the 60% max intensity (just above the ’x’ in ’max’) is barely visible, because the threshold for the187
Spectrogram is 60%. For this case, any lower SNR would have been a non-detect. Compare to Figure 2, which188
is the same plot, except that it has an SNR level equal to 10dB.189

The data from all 50 runs for each test was used to produce the actual, error, and percent error for each of190
these metrics listed above.191

The metrics from the Spectrogram were then compared to the metrics from the Scalogram. By and large, the192
Spectrogram outperformed the Scalogram, as will be shown in the results section.193

7 III. Results194

Table 1 presents the overall test metrics for the two classical time-frequency analysis techniques used in this195
testing (Spectrogram versus Scalogram).196

8 Discussion197

This section will elaborate on the results from the previous section.198
From Table 1, the Spectrogram outperformed the Scalogram in every category. The Spectrogram’s reduction199

of cross-term interference is grounds for its better plot time. Average percent detection and lowest the Time-200
Frequency representation. Figure 8 and Figure 9 show clearly that the signals in the Spectrogram plots are more201
readable than those in the Scalogram plots, which account for the Spectrogram’s better average percent detection202
and lowest detectable SNR. At relatively low frequencies (as in this paper), wavelets (Scalograms), because of their203
multi-resolution analysis basis, are better resolved (localized) in frequency and more poorly resolved (localized)204
in time. Therefore for relatively low frequencies, the best waveforms to be analyzed by wavelets (Scalograms)205
are tonals. In addition, the irregularity of the wavelet (Scalogram) basis lends itself to analysis of signals with206
discontinuities (such as frequency hopping signals (tonals)). Also, since the wavelet is irregular shape and207
compactly supported, it makes it an ideal tool for analyzing signals of transient nature (such as the frequency208
hopping signals (tonals)). Therefore as the signal goes from being ’flat’ (i.e. a tonal) signal, to more ’upright’ (i.e.209
a triangular modulated FMCW) signal, the Scalogram of this signal becomes more poorly resolved (localized), i.e.210
’fatter’, accounting for the Scalogram’s poorer metrics in the categories of modulation bandwidth, modulation211
period, chirp rate, carrier frequency, time-frequency localization (x), and timefrequency localization (y). Future212
plans include continuing to analyze low probability of intercept radar waveforms (such as the frequency hopping213
and the triangular modulated FMCW), using additional time-frequency analysis techniques. 1 2 3214

1Year 2017 © 2017 Global Journals Inc. (US)
2© 2017 Global Journals Inc. (US)
3F © 2017 Global Journals Inc. (US) detectable SNR are both based on visual detection in
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Figure 7:
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Figure 9: Figure 8
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Figure 10: Figure 8 :
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Figure 11: Figure 9
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Figure 12: Figure 9 :

Figure 13: Conclusions
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[Note: 1 Approved for Public Release; Distribution Unlimited: CaseNumber: 88ABW-2017-1873, 25-Apr-2017]

Figure 14:

1

parameters Spectrogram Scalogram
carrier frequency 6.83% 8.26%
modulation bandwidth 16.60% 28.17%
modulation period 0.68% 0.72%
chirp rate 16.25% 28.47%
percent detection 70.0% 62.22%
lowest detectable snr -3.67db -2.67db
plot time 3.28s 4.16s
time-frequency localization-x 2.88% 4.51%
time-frequency localization-y 5.75% 9.0%
From Table 1, the Spectrogram outperformed
the Scalogram in every metrics category.

Figure 15: Table 1 :
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