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6

Abstract7

This paper presents the outcome of an experimental and theoretical investigation into the8

loadcarrying capacity of Fiber Reinforced Polymer (FRP) I-section beams subjected to9

four-point loading. The overall lateral-torsional buckling, web and flange local buckling as well10

as material rupture load estimates are also made using the American Society of Civil11

Engineers? Load and Resistance Factor Design (ASCELRFD) Pre-Standard for FRP12

Structures. Lateral-torsional buckling failure mode is found to govern for each of the beams13

studied. The study also revealed that the height of applied loads relative to the shear center14

has a very significant influence on lateral-torsional buckling load of a beam thus making15

ASCELRFD buckling load estimates over-conservative in a vareity of cases.16

17

Index terms— impact, dynamic, elasto-plastic, flexural dynamic equilibrium.18

1 I. Introduction19

azzaq et al. [1] conducted a theoretical and experimental study of slender tubular columns with partial rotational20
end restraints in the presence of initial imperfections. New explicit formulas and finite-difference formulation were21
derived for predicting the elastic buckling load and predicting the natural frequency. Jones [2] studied the behavior22
of fully clamped beams when struck at the mid-span by a rigid mass and compared it with the corresponding23
exact theoretical predictions of dynamic rigid-plastic analyses. Wen et al. [3] proposed a quasi-static procedure24
based on the principle of virtual work for estimating the dynamic plastic response and failure of clamped metal25
beams subjected to a low velocity impact at any point on the span by a heavy mass. The paper by Zeinoddini et al26
[4] described experimental studies in which axially pre-loaded tubes were examined under lateral dynamic impact27
loads. The tubes were impacted by a dropped object with a velocity of about 7 meter/sec at their midspan.28

The current paper presents the outcome of an experimental and theoretical study of a partially endrestrained29
cantilever beam under impact loading. New terms are added to the governing dynamic equilibrium equation for30
the problem to account for elasto-plastic effects when transient dynamic response of the cantilever needs to be31
predicted. Numerical results are obtained using an iterative finite-difference procedure. The iterative solution32
process also involves a materially nonlinear tangent stiffness method to deal with cross-sectional plastification as33
a funcation of time.34

2 II. Experimental Study35

Figure ?? shows schematic of a cantilever beam QB subjected to a forcing function F(t) generated by a freely36
falling impact load. For the beam, the origin of the longitudinal ordinate z is at Q. At end B, the cantilever beam37
is attached to a rotationally flexible elastic support simulated as a rotational spring having a rotational spring38
constant valule of k B =6x10 6 kip-in/rad. The cantilever beam QBhas a length L of 33 in. and a 2x2x0.12539
in. hollow square cross section. The test setup is shown in Figure ??. The impact tests were performed using40
three different impactors numbered 1, 2, and 3 weighing 60 lb., 140 lb., and 400 lb., respectively. Each impactor41
had an accelerometer inside a steel chamber attached at the impactor bottom end to record acceleration-time42
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6 C) FINITE-DIFFERENCE SOLUTION

relationship which was curve-fitted using a quadratic function of time t. The relationships marked C1-1, C1-2,43
and C1-3 shown in Figure 3 correspond to Impactors 1, 2, and 3 each dropped onto the cantilever beam with a44
gap of one inch between the cantilever beam’s top surface and the bottom face of the steel chamber. In the same45
figure, the relationship marked C1-4 is for Impactor 3 dropped with a gap of two inches. The forcing function46
F(t) is generated by multiplying the ordinate of Figure 3 by mg, where m is the impactor mass and g is 32.247
ft./sec 2 .The forcing functions for Impactors 1, 2, and 3 when dropped from 1 inch height are as follow: F 2 (t)48
= (-49

The forcing function for Impactor 3 when dropped from 2 inches height is as follows: F 4 (t) = (-804.63 t 2 +50
111.12 t -1.4058) mg for 0.008 ? t ? 0.125 (4)51

The lower limit represents the time when the impactor hits the cantilever beam tip while the upper limit52
represents the time when the impactor is deatached from the beam.53

Global Journal of Researches in Engineering ( ) Volume XVI Issue V Version I F 1 (t) = (-6338.8 t 2 + 418.5654
t -3.0877) mg for 0.008 ? t ? 0.057 (1) Three strain gauges were installed on the cantilever beam to measure55
strain-time histories. The strain gauges, designated as SG1, SG2, and SG3, were installed on the cantilever beam56
at three locations at a distance of one inch from end B as shown in Figure 4.57

3 III. Theoretical Study58

The elastic dynamic flexural equilibrium equation for a beam without damping is given in the literature [5] as59
follows:???? ?? 4 ?? ???? 4 + ?? ?? 2 ?? ???? 2 = ??(??)(5)60

in which ????is the elastic flexural rigidity, ??is the beam deflection, mis the beam mass per unit length, zis61
the horizontal distance along the member, tis the time, and F(t)is aforcing function. In the inelastic range, EI62
changes with the applied load. Therefore, the inelastic partial differential equation of motion can be expressed63
as:?? 2 ???? 2 ??? ?? ?? 2 ?? ???? 2 ? + ?? ?? 2 ?? ???? 2 = ??(??)(6)64

where ?? ?? is the elasto-plastic flexural rigidity.In this equation, damping is not included since it is negligible65
due to the predominant influence of impact loading on the beam response for the duration of the impact. For a66
given time t, ?? ?? is a function of z, thus Equation 6 becomes:?? ?? ?? 4 ?? ???? 4 + 2 ?? 3 ???? 3 ? ???? ??67
???? ? + ?? 2 ?? ???? 2 ? ?? 2 ?? ?? ???? 2 ? + ?? ?? 2 ?? ???? 2 = ??(??)(7)68

To obtain the numerical results presented in this paper, the first and second partial derivatives of?? ??69
appearing in Equation 7 were iteratively generated with Lagrangian polynomials along the z axis.70

4 a) Boundary Conditions71

At Q in Figure ??, the bending moment is zero, thus:?? ?? = ?? 2 ?? ???? 2 (0, ??) = 0 (8a)72
The shear force at Q can be expresses as:?? ?? = ?? 3 ?? ???? 3 (0, ??) = ???(??)(8b)73
At end B, the cantilever beam has no vertical movement:?? (??,??) = ?? ?? = 0 (8c)74
The elastic moment-rotation relationship of the rotational spring at B is expressed as:?? ?? = ?? ?? ?? ??75

(8d)76
Where k B is the stiffness of the rotational spring at end B, and ? B is the rotation of the cantileverbeam at77

the same location. Since? B is the first derivative of the deflection at end B, thus:?? ?? = ????(??)(8e)78
The minus sign in this equation is consistent with downward deflections taken as positive in the derivation79

of Equation 7. The boundary conditions presented above are used in the elasto-plastic dynamic analysis of the80
cantilever beam.81

5 b) Initial Conditions82

The initial conditions for the problem are:??(??, 0) = 0 (9a) ???? ???? (??, 0) = 0 (9b)83
The initial condition given by Equation 9a states that at time t equal zero, the deflection is zero. Equation84

9b states that the initial velocity is zero.85

6 c) Finite-Difference Solution86

Central finite-difference expressions [6] were used to solve Equation 7 with boundary and intial conditions87
presented in Sections 3.1 and 3.2. A total of N panels were used for the cantilever beam over the interval88
(0, L) involving nodes i = 1, 2, 3, ?. (N+1). The finite-difference scheme also results in ’phantom points’89
outside of the interval (0,L) and are accounted-for in the solution algorithm. Using second order finite-difference90
expressions, Equation 7 can be written as:?? ?? ? 4 ??? ???2,?? ? 4?? ???1,?? + 6?? ??,?? ? 4?? ??+1,?? +91
?? ??+2,?? ? + 2 ? 3 ???? ???2,?? + 2?? ???1,?? ? 2?? ??+1,?? + ?? ??+2,?? ? ? ???? ?? ???? ? + 1 ? 292
??? ???1,?? ? 2?? ??,?? + ?? ??+1,?? ? ? ?? 2 ?? ?? ???? 2 ? + ?? (???) 2 ??? ??,?? ?1 ? 2?? ??,?? + ??93
??,?? +1 ? = ??(??)(10)94

in which, ? is the panel length along the z-axis of the sub-assemblage, and ??? is the time interval. The95
subscript ?? refers to the ith nodal point over the domain 0 < ?? < ??, and the subscript ?? refers to the number96
of time increments such that the time at ?? is given by the following equation:t j =j(Î?”t), for each j=0, 1, 2, 3, ?97

Similarly, the boundary conditions 8a, 8b, 8c, and 8d can be expressed in finite-difference form as follows:? 198
? 2 ? ??? 0,?? ? 2?? 1,?? + ?? 2,?? ? = 0 (11a) ? 1 2? 3 ? ???? ?1,?? + 2?? 0,?? ? 2?? 2,?? + ?? 3,?? ? =99
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???(??) (11b) ?? ??+1,?? = 0 (11c) ? ?? ?? ? + ? ?? ?? 2 ?? ??? ??+2,?? ? ? ? 2?? ?? ? ? ??? ??+1,?? ? ?100
? ??? ?? ? + ????2????,??=0(11d)101

Applying Equation 10 at i=1, 2, 3?, N, and invoking conditions 11a, 11b, 11c, and 11d leads to the following102
matrix equation:??? ??,?? +1 ? = ?? 1 [?]??? ??,?? ? + ?? 2 ??? ??,?? ?1 ? ? ?? 1 {??(??)} (12) in which ??103
1 = ? 1 (?? 3 ) (13a) ?? 2 = ?? 3 ?? 1 (13b) ?? 3 = ?? 2(13c)104

The [?]coefficient matrix is symmetric and of the order NxN.105
A finite-difference iterative algorithm was developed for the nonlinear dynamic analysis of the cantilever beam.106

The deflections along the cantilever beam were found for the first time increment using the elastic formula. To107
avoid having a negative time interval due to the use of central finite-difference, a start-up equation [1] was used108
to initialize the process. Initial nodal deflections were found using Equation 10.An iterative tangent stiffness109
procedure was utilized to compute the curvatures due to the applied moments which satisfied cross-sectional110
equilibrium. Next, the elasto-plastic cross-sectional properties were calculated using the computed curvatures,111
and Revised deflections were found using the updated cross-sectional properties. The revised deflections were112
compared with the intial deflections for the same time increment. If the difference was found to be larger than a113
specified tolerance value, another iteration was performed for that time increment. If the difference was found to114
be smaller than a tolerance value, the procedure was continued to the next time increment with the corresponding115
new value of the forcing forcing function. This solution procedure was used to generate the theoretical straintime116
curves shown in Figures 5 through 12.117

7 d) Cantilever Behavior under Impact Loading118

Table 1 compares the maximum experimental and theoretical moments at section B of the cantileverbeam for119
Tests C1-1, C1-2, C1-3, and C1-4. For Test C1-1, Impactor 1 was dropped from one inch above end Q of the120
cantilever beam. Figures ?? and 6 show theoretical and experimental strain-time curves for SG1 and SG2,121
respectively. Both figures show the same trending, and the peak values agreed well. The ratios between the122
tested to the predicted strain results ranged from 0.99 to 1.17.123

Table 2 shows the experimental and the theoretical strains, and their comparison. For this test, the124
experimental maximum moment at section B was 10.8 kip-in. and the theoretical value was 9.4 kip-in. The125
difference between the theoretical and the experimental results was 15%. The experimental and the theoretical126
moment values were in good agreement and they were in the elastic range. For Test C1-2, Impactor 2 was dropped127
from one inch above end Q of the cantilever beam. Figures ?? and 8 show the theoretical and the experimental128
straintime curves for SG1 and SG2, respectively. Table 3 shows the experimental and the theoretical strains and,129
their comparison. The ratios between the tested to the predicted strain results ranged from 0.93 to 1.01. For this130
test, the experimental maximum moment at section B was 20.3 kip-in and the theoretical value was 17.8 kipin.131
The difference between the theoretical and the experimental results was 14%. A good agreement was reached132
between the tested and the predicted results. Results from this test were in the elastic range. For Test C1-3,133
Impactor 3 was dropped from one inch above end Q of the cantilever. Figures 9 and 10 show the theoretical134
and the experimental strain-time curves for SG1 and SG2, respectively. Table 4 shows the experimental and the135
theoretical strains and, their comparison. The ratios between the tested to the predicted strain results ranged136
from 0.89 to 0.86, which are considered to be reasonable results. There was an overall good agreement in the137
shape of all the loadstrain curves. For this test, the experimental maximum moment at section B was 38.1 kip-in138
and the theoretical value was 37.7 kip-in. The difference between the theoretical and the experimental results139
was 2%. Both the experimental and the theoretical curves were very similar and their peak values were very140
close. This test caused partial plastification on the cantilever beam. For Test C1-4, Impactor 3 was dropped141
from two inches above end Q of the cantilever. Figures 11 and 12 show the theoretical and the experimental142
straintime curves for SG1 and SG2, respectively. Table 5 shows the experimental and theoretical strains, and143
their comparison. The ratios between the tested to the predicted strain results ranged from 1.01 to 1.06. For this144
test, the experimental maximum moment at section B was 39.5 kip-in and the theoretical value was 39.2 kipin.145
Both the theoretical and the experimental results showed the formation of a plastic hinge at section B. It can be146
seen that there was good agreement between the predicted and the experimental values for the strains and the147
moments.148

8 Global149

9 Conclusion150

A theoretical and experimental study of the dynamic elasto-plastic behavior of a steel cantileverbeam is presented.151
A mathematical model based on a partial differential equation of inelastic dynamic equilibrium is successfully152
developed including new terms to account for elasto-plastic behavior of a steel cantilever beam. The iterative153
finite-difference solution algorithm predicted experimental elasto-plastic behavior of the cantilever beam for154
various impact forcing functions. It was also found that the weight of the impactor is directly related to the total155
duration of impact. By comparing the curve-fitted acceleration response generated by different impactors, it was156
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Figure 6: Figure 7 : 2 Figure 8 :
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Figure 8: Figure 12 :

1

between theoretical and
experimental maximum moments at B for the cantilever

beam impact tests
Theoretical Experimental

Test Max. Moment at B (kip-in.) Max. Moment at B
(kip-in.)

C1-1 9.4 10.8
C1-2 17.8 20.3
C1-3 37.7 38.1
C1-4 39.8 39.5

Figure 9: Table 1 :

2

Figure 10: Table 2 :

3

Figure 11: Table 3 :

4

Figure 12: Table 4 :
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IV.

Figure 13: Table 5 :

found that the maximum curve-fitted acceleration value is inversely related to the mass of the impactor. 1157
2158
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