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6

Abstract7

This study simulated underground circular cylindrical shell structure to serve as water8

reservoir under known soil characteristics and conditions. Cognizance of prevailing acute9

scarcity of portable water supply, more often than not, during each year, this structural10

facility was also simulated for study under two distinct situations namely: when it is empty11

and when it is full of water. Structural analysis of the facility was carried out using the initial12

value model whereas the classical model served to establish validity. The study sought the13

stress effect arising from: empty condition and in full of water, on this facility. The14

investigation result revealed: Both classical and initial value models led to identical results.15

Effect of stress which resulted from the two different conditions did not diminish the16

structural integrity of this facility.17

18

Index terms— asymptotic integration, axi-symmetric, cylindrical shell, hoop tension, thin-walled structures.19

1 I. Introduction20

hell [1] is applied to bodies bounded by two curved surfaces, where, the distance between the surfaces is small21
in comparison with other body dimensions. The centre of points lying at equal distances from these two curved22
surfaces defines the middle surface of the shell. The lengths of the segment, which is perpendicular to the curved23
surfaces, is known as the thickness of the shell and is denoted by h. Shells have all the characteristics of plates,24
along with an additional one, which is curvature. Mindful of intrinsic, functional essence of shells, [2] presents25
shells as skin structures by virtue of their geometry and shell action, is essentially more towards transmitting the26
load by direct stresses with relatively small bending stresses. In line with this functional essence of the shell, [3],27
[15], shells are spatially curved surface structures which support applied external loads or forces. Shell structures28
[3], [5], [7] can be referred to as ”form resistant structures”. This implies a surface structure whose strength is29
derived from this shape, and which resists loads by developing stresses in its own plane [3], [5], [7].30

An early form of shell construction [6] was the dome known to Romans thousands of years ago. With shell31
concrete construction, [6] it becomes quite possible to produce satisfactory domes which weigh only a fraction of32
the weights of the much earlier massive domes.33

Properties of shells [1], [5] which are of particular importance in structural usage and which also earn wide34
application of shell structures in engineering are the following: (i) Efficiency of Load carrying behavior; (ii)35
High degree of reserved strength and structural integrity; (iii) High strength versus weight ratio; (iv) Very high36
stiffness; (v) Containment of space.37

Areas where shell structures [1], [4] are used in Building and Civil Engineering are:-(i) Large-span roofs; (ii)38
Liquid retaining structures and water tanks; (iii) Containment shells of nuclear power plants; and (iv) Concrete39
arch domes. Shell forms in Mechanical Engineering [1], [4] are used in: (i) Piping systems; (ii) turbine disks; (iii)40
Pressure vessels technology. The use of shells [1], [4] in aeronautical and marine engineering are in the following41
forms:-(i) aircrafts; (ii) missiles; (iii) rockets; (iv) ships; and (v) submarines. Shells [8] found in various biological42
forms such as the eye, the skull and the egg, represent another application of shell engineering, this time, in the43
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3 A) THE MEMBRANE THEORY

field of biomechanics. An egg, as a natural thin-walled structure, can be considered as one of the most beautiful44
structural shapes. It combines extreme fitness for its purpose with an economy of material and cleanliness of45
design. This account depicts only a small list of shell forms in engineering and nature.46

There are [1], [8] two different classes of shells: thin and thick shells. Shells are said to be thin when the ratio47
of their thickness, h, to the radius of curvature R of the middle surface is less than or equal to 1/20, i.e. h/R ?48
1/20. For a large number of practical applications [1], the thickness of thin shells lies within the range: 1/100 ?49
h/R ? 1/20. Hence, shells for which these h/R stipulations do not lie within the stated range, belong to thick50
shells [1].51

Thin plates and thin shells belong to a category of structures known as Thin-Walled Structures. Thinwalled52
structures [9] possess the following three characteristics: (i) two dimensions are much longer than the third, its53
thickness; (ii) They have a great strength as a result of their spatial character of working under the action of54
external loads; (iii) They make use of a minimal quantity of material.55

Depending on the curvature of the surface [1], [3], shells are divided into (i) cylindrical, comprising of56
noncircular and circular; (ii) conical; (iii) spherical (iv) ellipsoidal; (v) paraboloidal; (vi) toroidal; and (vii)57
hyperbolic paraboloidal shells.58

The usual theory of thin shells utilizes the main suppositions of the theory of thin plates. Nonetheless, thin59
plate and thin shell have a substantial difference in behaviour under external loadings. The static equilibrium60
of a plate element under lateral load [2], [8] is only possible by the action of bending and torsional or twisting61
moments, usually accompanied by shearing forces. Conversely, a shell, in general, [10] is capable of transmitting62
the surface load by ”membrane” stresses uniformly distributed over its thickness. This property of shells [8], [10]63
makes them to be not only more economical but also more rigid than plates and other types of construction64
under the same conditions. Apart from these obvious advantages over other systems [1], [8], shell structures are65
very well known and used for their performance, strength against accidental damage, resistance to fire and low66
upkeep cost as well as their aesthetic appearance.67

The economy and/or feasibility of many modern constructions necessitate light weight, a property which68
thin-walled structures are replete with. Strictly speaking, the aim in structural engineering has always been to69
lower, as much as possible, the cost and thus the quantity of material used without, compromising the structural70
integrity of the system. Thin-walled structures meet this requirement.71

The deliberate effort in the analysis and design of shells [3] is to make the shell as thin as practical requirements72
would permit, so the dead weight is reduced and the structure functions as a membrane free from the large bending73
stresses.74

Thin shell concrete structures [3] are pure compression structures formed from inverse catenary shapes. The75
inverse catenary is a pure compression scenario. Pure compression is ideal for concrete, as concrete has high76
compressive strength and very low tensile strength. These shapes maximize the effectiveness of concrete, allowing77
it to form thin light spans [3].78

This paper presents the application of initial value model in analysis of underground circular cylindrical shell79
structure subject to axi-symmetrical loads of hydrostatic pressure but considered under two conditions: (i) when80
the tank is empty; (ii) when the tank is full. In addition, the paper seeks validity through the classical model.81

Aim in this study is to investigate stress effect on the underground cylindrical shell structure when full of82
water as well as when empty. The study intends to achieve the aim through the following objectives:83

2) To evaluate the five internal stresses of the underground cylindrical shell structure when full of water, using84
the two models named above.85

3) To determine the five internal stresses of the underground cylindrical shell when empty, also using the same86
two models.87

2 II. Previous Works88

The analysis and design of shells attracted many researchers. Among them, perhaps the best known, are: Love,89
U. F., Pasternak, P. L. and Timoshenko, S. P. [11].90

3 a) The Membrane Theory91

Modern shell construction [11] has its origin in the work of Lame and Clopeyron who, in 1826, proposed the92
membrane analogy. This theory suggests that a shell is capable of resisting external loads by direct stresses93
called membrane stresses without bending. Hence, when membrane theory is applied for shell design, torsional94
or twisting, bending moments, and shear forces in the cross-section are neglected. This is only possible if torsion95
and bending stresses were small compared to stresses of normal or axial, and shear forces. Membrane theory96
fails to represent the true stresses in those portions close to the edges, since the edge conditions usually cannot97
be completely satisfied by considering only membrane stresses. It is expected [12] that membrane theory gives98
an approximate picture of stress distribution in the case of shells not long, say L ? 2R, where R is radius of the99
shell and L is its length. For longer shells a satisfactory solution can be obtained only by considering bending as100
well as membrane stresses [12].101
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4 b) The Moment Theory102

Mathematical conceptions [6], developed during the 19 th century, made possible a more accurate analysis than103
could be achieved using any membrane theory. Aron, H., who derived an expression for potential energy of a104
shell as well as equations for shell equilibrium and strains, was the first to consider the new theory, evolved from105
those mathematical conceptions, which made room for both membrane and bending stresses [11].106

Love [13] developed a detailed derivation of equilibrium equations and equations of motion of shells with107
correction to a number of slips in Aron’s original treatment as analogous to the theory of plates of Kirchhoff [14],108
and was based on identical assumptions. In each particular case, the moment theory involves the solution of a109
system of three differential equations, which is very complicated.110

5 c) The Semi-Moment Theory111

In the 20 th Century, [15] suggested a simplified method of analyzing and designing cylindrical shells using the112
theory of semi-moment. This theory, on the basis of experimental data concerning medium length cylindrical113
shells, length/diameter = 2 -8, neglects the effect of longitudinal bending moment, shear forces and torques, and114
introduces geometrical hypothesis. This method has the advantage to be simpler than the moment theory and115
gives accurate solution when a distributed load is applied. This paper admires this method for the simple reason116
it appears to be the most appropriate for circular cylindrical shell loaded symmetrically with respect to its axis117
-the axi-symmetric loading scenario. Detailed information on general thin-walled structure theory were given in118
many general treatises such as: [9], [8] and [16], as well as monographs: [10], [17], [18], and [19]. These consider,119
in a great extent, the mathematical theory of thin-walled structures and the derivation of differential equations120
pertaining to them. Furthermore, the possibility of solving various shell-theory problems using analytic methods,121
has also been discussed in: [25], [26], [27], [28], [29], [30], [31], [32], and [33].122

6 d) Methods of Solution123

As far as techniques of solving the derived differential equations are concerned, difficulties involved in realizing124
mathematically rigorous methods, led to approximate techniques of integrating equilibrium equations. One of125
such methods, known as asymptotic integration, consists in replacing a given differential equation by another126
with specially selected coefficients different from those in the exact equation, and whose solution can be obtained127
by strict method and expressed in elementary functions. Blumenthal [20] suggested the method in 1912. In 1913,128
Timoshenko [21] applied it to shell equations. Shtayerman, Novozhilov [8], and Gol’denveiser [22] perfected the129
same asymptotic integration method.130

Another widely accepted method was a version of the membrane theory which takes boundary effects into131
cognizance. Geckeler’s equations [23] replaced exact equations owing to the presence of boundary effect. Generally132
speaking, methods for obtaining solutions for the shell differential equations [8] can be classified as follows: (i)133
Exact analytical methods, also known as classical solution; (ii) methods using variational calculus; (iii) numerical134
methods such as: finite difference, finite element, finite strip, to mention but a few; (iv) approximate methods135
based upon exact equilibrium of the problem.136

Among others [1], [8], the classical solution, the finite difference, the finite element, the finite strip, the boundary137
element, the boundary collocation, and the boundary value methods are some of the well-known models used for138
solution of shell problems.139

The classical solution gives accurate results but fails to capture the boundary conditions. The finite difference140
model considers the boundary conditions but does not give room to further optimization for the simple reason141
solutions are obtained only for some selected nodes. Finite element generates very large matrices for considerable142
accuracy, handling of those large matrices being only suitable for use of computer. Besides, they are numerical143
models. Numerical models are more inclined to approximate solutions than exact solutions. Those models144
connoting boundary in their names, sound though they may be, involve a level of mathematics beyond the scope145
of an average engineer!146

The semi-moment theory is as suitable for circular cylindrical shells under hydrostatic pressure and uniform147
gas pressure as it is amenable to application of initial value model. This study adopts the initial value model148
for among the suggested analytical solutions. Initial value model gives the least number of unknowns enabling149
such manual handling as to imbue the analyst with the ability and privilege to solve a problem in so systemic150
a manner that represents a mandatorily profound understanding in the-every-step-of-the-way of the problem for151
the analyst. ( ) 0 3 2 2 0 2 0 1 h 4 (Z)W y (Z) W ? ? + = Z y Eh R Z y ? ? ? - ( ) 0 4 2 4 Q Z y Eh R152
?????????????.. (2) ( ) ( ) ( ) ( ) 0 4 2 3 0 1 4 4 4 M Z y Eh R Z y Wh Z y Z h ? ? ? ? ? + ? = - ( ) 0 4 2 2 4153
Q Z y Eh R ? ?????????????.. (3) ( ) ( ) ( ) ( ) 0 1 0 4 3 3 0 3 2 2 M Z y Z Y R Eh W Z y R Eh Z M h + + = ?154
? ? ??????????????.. (4) . ( ) ( ) ( ) 0 3 2 2 0 2 2 ? ? ? Z Y R Eh W Z y R Eh Z Q h + = ( ) ( ) 0 1 0 4 4 Q Z155
y M Z y + ? ?????????????.. (5) ( ) ( ) ( ) 0 2 0 1 ? ? ? ? ? ? ? ? + ? ? ? ? ? ? = Z y R Eh W Z y R Eh Z N156
h ( ) ( ) 0 4 0 3 2 4 4 Q Z y M Z Ry ? ? ? ?????????????.. (6)157

ii. The Initial Value Particular Solution Consider the following: d Q x -x dx x 1 1 1 x Q 0 A B C ? Z ? 1 Z Z158
? ? 1 dZ ? 1 Z159

IV. Analysis a) The Governing Equation of Equilibrium [1] and [24] derived the governing differential equation160
of equilibrium as:D W dx W d x ? ? = + 4 4 4 4 ????? (1)161
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12 B) INTERNAL STRESSES

Using, for the derivation, the following: i. Forces acting on the shell; ii. Moments acting on the shell;162
iii. Equilibrium equations of stress; iv. Equations of forces and moments displacements.163

7 b) Initial Value Solution of164

The Governing Differential Equation of Equilibrium for Circular Cylindrical Shell Structure i. In Summary,165
initial value homogenous solution becomes: ??) is applicable only to circular cylindrical shell structure subjected166
to axi-symmetric loading. This means the loading or forces and moments do not vary along the circumferential167
section. In other words, the loads are radially symmetrical loads.0 2 Q Z y ? + Equation (168

For radially symmetrical loads, the governing differential equation of circular cylindrical shell structure, the169
equation of equilibrium, is equivalent to that of Beam on an elastic Winkler Foundation [34].170

Understanding an origin transformation leads to finding the initial value particular solution. The origin that171
was previously at A is shifted to B, while introducing, at the same time, a new variable x 1 .? ? 1 1 1 1 Z Let172
dZ dx x = ? =173

He distributed load at the new origin, B, is given by:( ) ? ? 1 1 Z Z Z q w ? = ?174
The elemental force can be expressed as:( ) ( ) 1 2 1 1 1 dZ Z Z dZ Z q dQ ? ? ? ? = = ???? (7)175
In summary, the initial value particular solution would be:( ) [ ] Z y Z Eh R W p 2 2 ? = ? ? ?????? (8) ( ) [176

] Z y Eh R p 1 2 1 ? = ? ? ???.. (9) ( ) Z y M p 4 3 ? ? ? = ???.. (10) ( ) Z y p 3 2 ? ? ? ?????. (11) ?????.177
(11) ( ) [ ] Z y Z R N p 2 ? = ? ? ???.. (12)178

Obviously, general solution = homogeneous solution + particular solution.179

8 c) Classical Model Homogeneous Solution180

Basically, in summary, the homogenous solution would be as follows:181
( ) ??7) Equation [13] can be expressed as:x i x x i x i x x x i x h( ) ( )( ) ( )( ) ( )( ) ( )( ) x iSin x Cos x182

Sinh x Cosh C x iSin x Cos x Sinh x Cosh C x iSin x Cos x Sinh x Cosh C x iSin x Cos x Sinh x Cosh C x W h183
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + ? + ? ? + ? + + + + = 4 3 2 1184

Expanding the above equation gives:185
( )x xSin Cosh A x xCos Cosh A x W h ? ? ? ? 2 1 + = x xSin Sinh A x xCos Sinh A ? ? ? ? 4 3186

9 + + ???????????? (18)187

Where:A 1 = C 1 + C 2 + C 3 + C 4 A 2 = (C 1 -C 2 -C 3 + C 4 ) i A 3 = C 1 + C 2 -C 3 -C 4 A 4 = (C 1188
-C 2 + C 3 -C 4 ) i d)189

10 Classical Model Particular Solution190

Recall the static equation of equilibrium:x D W W IV ? ? = + 4 4 ????????????????????????..(19)191
Assuming the particular solution is of the form: W p (x) = ax ???????????????????????? (20)192
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It follows that:( ) 0 = x W IV p ???????????????????????.. (21)195
Making use of equations [20] and [21] in eqn [19] gives: Therefore, the classical model particular solution would196

be: A comparison of co-efficient in equation [22] yields: ( ) x D x W p 4 4 ? ? = ??????????????????????? (24)197

12 b) Internal Stresses198

The deflection curve, for the hydrostatic loading, fig. ??, has a parabolic like shape with a speak of 0.854 mm at199
x = 3.2m from the top. Zero deflection is obtained at both top and bottom ends of the reservoir, justifying zero200
deflection at the supports. Also, tables 3 and 4 refer.201

Under hydrostatic pressure, fig. ??, tables 3 and 4, the reservoir presented a maximum rotation of 0.078 x 10202
-3 radians at its top end.203

For the hydrostatic loading, fig. ??, tables 3 and 4, the bending moment varies from zero, at the top, to204
20.5KMN at the bottom, describing a concave parabolic-like curve due to the cantilever action.205

In the case of hydrostatic loading, the shearing force varies from 0.472KN, at the top, through 42.503KN, at206
the bottom, fig. ??, tables 3 and 4.207

The graphs, fig. 6, have the same shape as those obtained for direct deflection. For real, deflection and hoop208
tension are directly proportional. For the hydrostatic pressure, a peak of 180.729 KN is reached at x = 2.67m,209
fig. 6, tables 3 and 4.210

The tables 3 and 4 show values for deflection and rotation at the bottom, x = 4m, not exactly equal to zero,211
but very close to zero in the extent they can be taken as zero with sufficient accuracy. Table 5 reveals: (i)212
percentage difference for applied pressure on tank wall, when the tank is empty versus when the tank is full of213
water, is equal to: 36.572; (ii) Overall average percentage difference value for results of internal stresses for, when214
the tank is empty versus when the tank is full of water, is equal to: 36.572.215
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13 c) Conclusion and Recommendation216

The half-moment theory, otherwise known as semi-moment theory appears to have proven to be one of the most217
accurate theories in shell analysis. It has the advantage to be more realistic than the membrane theory which does218
not consider the bending effect. The semi-moment theory is simpler than the moment theory which generates219
heavy equations. In terms of capturing the boundary conditions of systems, the initial value model is more220
equipped than the classical model.221

Sequel to results revealing that: percentage difference for applied pressure on tank wall: when the tank is222
empty versus when the tank is full of water is equal to 36.572%; again the overall average percentage difference223
value for results of internal stresses with respect to: when the tank is empty versus when the tank is full of water224
came to 36.572% as well, stress effect on the water reservoir which resulted from the two conditions would not225
diminish the fundamental structural integrity of the underground circular cylindrical shell structure, if all other226
sources of stress such as from weather elements are under control. 1 2 3

Figure 1: Global
227

1Year 2016 E © 2016 Global Journals Inc. (US)
2© 2016 Global Journals Inc. (US) Application of Initial Value Model in Circular Cylindrical Shell Analysis
3© 2016 Global Journals Inc. (US)This page is intentionally left blank
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13 C) CONCLUSION AND RECOMMENDATION

1

X(m) Z DeflectionSlope ?( z) Bending Shear Force Hoop
Tension

W(
z
)(mm)

radians Moment Q( z ) (KN) N( z )(KN)

M( z ) (KNM)
0 0 0 0.000122536 0 0.743859755 0
0.8 1.036008026 0.000052788 0.000123922 -

0.4857128716
-1.183174309 91.03938151

1.6 2.072016051 0.000165917 0.000129602 -1.516548554 -3.019258682 170.0885245
2.4 3.108024077 0.000473429 0.000145863 -4.247252695 -8.416752018 226.0594408
2.67 3.453360086 0.000670475 0.000156135 -5.962376315 -11.88682999 284.9352786
3.2 4.144032102 0.000134648 0.000190643 -11.73091094 -23.73505572 211.3360398
4.0 5.180040128 3.55

x 10
-11

-4.4 x 10 -11 -32.31896214 -67.01017443 2.7 x 10 -7

Figure 2: Table 1 :

2

X(m) Z Deflection
W(Z)(mm)

Slope ( ) Z ?
radians

Bending
M(Z) (KNM)
Moment

Shear Force
Q(Z) (KN)

Hoop
Tension
N(Z)(KN)

0 0 0 0.000122486 0 -0.743859731 0
0.8 1.036008026 0.000052764 0.000123834 -0.48571286i8 -1.183174342 91.03938184
1.6 2.072016051 0.000165855 0.000129585 -1.516548484 -3.019258654 170.0885258
2.4 3.108024077 0.000473396 0.000145792 -4.247252615 -8.416752001 226.0594463
2.67 3.453360086 0.000670493 0.000156193 -5.962376293 -11.88682675 284.9352765
3.2 4.144032102 0.001345920.000190589 -11.73091124 -23.73505498 211.33360358
4.0 5.180040128 4.27 x

10 -12
3.84 x 10 -13 -32.31896187 -67.01017413 2.3 x 10 -8

Figure 3: Table 2 :
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3

Year 2016
36
Global
Journal
of Re-
searches
in Engi-
neering (
) Volume
XVI
Issue III
Version I
E

X(m)
0 0.8
1.6 2.4
2.67

Z 0
1.036008026
2.072016051
3.108024077
3.453360086

Deflection
W(Z)(m)
0
0.000033482
0.000105238
0.000300286
0.000425269

Slope ( ) Z
? (radians)
0.000077722
0.000078601
0.000082204
0.000092518
0.000099033

Bending
Moment
M(Z)
(KNM) 0 -
0.3085154309
-
0.9619133775
-
2.693938928
-
3.781804103

Shear Force
Q(Z) (KN) -
0.471813873
-
0.750461426
-
1.915049339
-
5.338560581
-
7.539554672

Hoop
Tension
N(Z)(KN)
0
57.7444589
107.8828632
143.3830003
180.7287485

3.2 4.144032102 0.000854047 0.000012092 -
7.44065868

-
15.05462351

134.0462233

4.0 5.180040128 -2.53 x 10
-11

-3.4 x 10 -
11

-
20.49920654

-
42.50307896

-1.14 x 10
-7

© 2016 Global Journals Inc. (US)

Figure 4: Table 3 :

4

X(m) Z Deflection
W(Z)(m)

Slope ( ) Z ?
(radians)

Bending
M(Z) (KNM)
Moment

Shear Force
Q(Z) (KN)

Hoop
Tension
N(Z)(KN)

0 0 0 0.000177694 0 -0.471813792 0
0.8 1.036008026 0.000033471 0.000078595 -

0.3085154293
-0.750461386 57.7444536

1.6 2.072016051 0.000105168 0.000082193 -
0.9619133724

-1.915049295 107.8828584

2.4 3.108024077 0.000300245 0.000092512 -2.693938892 -5.338560528 143.3830001
2.67 3.453360086 0.000425218 0.000099021 -3.781804084 -7.539554622 180.7287423
3.2 4.144032102 0.000854014 0.000012024 -7.44065818 -15.05462316 134.0462194
4.0 5.180040128 -

3.62
x 10
-12

2.94 x 10 -13 -20.49920612 -42.50307854 1.21 x 10 -8

Figure 5: Table 4 :

5

tank is full = 36.572
Fig. 2 : Deflection Diagram

Figure 6: Table 5 :
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13 C) CONCLUSION AND RECOMMENDATION

8



[Timoshenko ()] , S P Timoshenko . Bull.Eng.Tech 1913.228

[Finsterwalder et al. ()] , U Finsterwalder , F Dischenger , Bauingenier In . 1928. Berlin. 9.229

[Joiter (1959)] ‘A Consistent First Approximation in the General Theory of Thin Elastic Shells’. W T Joiter .230
Proc. Symp. on Theory of Thin Elastic Shells, (Symp. on Theory of Thin Elastic ShellsDelft; North -Holland231
Amsterdam) August, 1959. 1960. p. .232

[Vlasov ()] A General Theory of Shells, V Z Vlasov . 1949. Fizmatgiz, Moscow.233

[Blouza et al. ()] ‘A new Classification for Shell Problems’. A Blouza , F Brezzi , C Lovadina . Publicazioni IAN234
-CNR n. 1128, 1999.235

[Reissner ()] ‘A New Derivation of the Equations of the Deformation of Elastic Shells’. E Reissner . Am J. Math236
1941. 63 (1) p. .237

[Love ()] A Treatise on the Mathematical Theory of Elasticity, 1 st edn, A E H Love . 1982. 1944. New York:238
Dover. (4 th edn)239

[Blumenthal ()] O Blumenthal . Proc of the Fift Int’l Conf. on Math, (of the Fift Int’l Conf. on MathCambridge)240
1912.241

[Calladine ()] C R Calladine . Theory of Shell Structures, (London) 1983. Cambridge University Press.242

[Chandrasekaran and Gupta ()] ‘Design aids for Fixed Support Reinforced Concrete Cylindrical Shells under243
Uniformly Distributed Loads, Int’l J of Engineering’. S Chandrasekaran , S K Gupta , Carannante , F .244
Science and Technology 2009. 1 (1) p. .245

[Joythi ()] ‘Design and Analysis of Reinforced Concrete Shells’. V S Joythi . Int’l J. for Scientific Research and246
Development 2015. 3 (09) p. .247

[Mileikovskii and Raizer ()] ‘Development of Applied Methods in Problems in the Static Design of Thin-Walled248
Spatial Systems -Shells and Folds’. I E Mileikovskii , V D Raizer . proceedings of the seventh All-Union249
Conference on the Theory of Shells and Plates, (the seventh All-Union Conference on the Theory of Shells250
and PlatesMoscow) 1970. p. . (in Russian)251

[Winkler] Die Lahre Vonder Elastizit and Festigkeit, Praque, E Winkler . p. 1867.252

[Mir ()] Flexible Plates and Shells in [Russian, A S Mir . 1956. Gostekhizdat, Moscow.253

[Kolkunov ()] ‘Fundamentals of the Calculation of Elastic Shells’. N V Kolkunov . Vishcha Shkola, 1972. (in254
Russian)255

[Gol’denveizer ()] A Gol’denveizer . Theory of Thin Shells, (New York) 1961. Pergamon press.256

[Kirchhoff] G R Kirchhoff . Sungenuber Mathematishe Physik, Mechanik, p. 1877.257

[Kil’chevskii et al. ()] ‘Lectures on the Analytical Mechanics of Shells’. N A Kil’chevskii , G H Izdebskaya , L M258
Kiselevskaya . Vishcha Shkola, (Kiev) 1974. (in Russian)259

[Chernykh ()] ‘Linear Theory of Shells’. K F Chernykh . Izd. LGU. Leningrad, Part 1962. 1964. 1. (in Russian)260

[Mushtari and Galimov ()] Nonlinear Theory of Thin Shells, The Israel Program for Scientific translations, Kh261
M Mushtari , K Z Galimov . 1961. Jerusalem.262

[Timoshenko and Voinovskii-Krieger ()] Plates and Shells, S P Timoshenko , S Voinovskii-Krieger . 1963.263
Fizmatgiz, Moscow. (in Russian)264

[Podstrigach and Shvets ()] Ya S Podstrigach , R N Shvets . Thermoelasticity of Thin Shells, (Naukova Dumka,265
Kiev) 1983. (in Russian)266

[Zingoni ()] Shell Structures in Civil Engineering, Theory and Closed-Form Analytical Solution, Alphose Zingoni267
. 1997. Thomas Telford, London.268

[Lur’e ()] Statics of Thin-Walled Elastic Shells, A L Lur’e . 1947. Moscow -Leningrad: Gostekhizdat. (in Russian)269

[Shernina ()] Statics of Thin-Walled Shells of Revolution, V S Shernina . 1968. Moscow: Nauka. (in Russian)270

[Ambartaumyan ()] Theory of Anisotropic Shells, S A Ambartaumyan . 1961. Nauka, Moscow. (in Russian)271

[Gol’denveize ()] Theory of Elastic Thin Shells in [Russian, A L Gol’denveize . 1953. Gostekhizdat, Moscow.272

[Timoshenko and Woinowsky-Krieger ()] Theory of Plates and Shells, 2 nd edn., Tata McGraw-Hill Edition, S273
P Timoshenko , S Woinowsky-Krieger . 2010. 2010. New Delhi; New York.274

[Novozhilov ()] ‘Theory of Thin Elastic Shells, 2 nd edn’. V V Novozhilov . P. Noordnoff 1964.275

[Novozhilov ()] Theory of Thin Shells Monograph, V V Novozhilov . 1962. Sudostroerue, Leningrad. (Russian)276

[Guz et al. ()] ‘Theory of Thin Shells Weakened by Holes’. A N Guz , I S Chernyshenko , V N Chekhov . Methods277
of Calculating Shells, (Kiev) 1980. 1. (in Russian)278

[Timoshenko and Woinowsky-Krieger ()] S P Timoshenko , S Woinowsky-Krieger . theory of Plates and Shells,279
(New York) 1959. McGraw-Hill.280

[Ventsel and Krauthammer ()] Eduard Ventsel , Theodor Krauthammer . Thin Plates and Shells -Theory,281
Analysis, and Applications, 2001. Marcel Dekker, Inc. New York.282

[Vlasov ()] V Z Vlasov . General Theory of Shells and its application in Engineering, NASA TTF -99, 1964.283

9


	1 I. Introduction
	2 II. Previous Works
	3 a) The Membrane Theory
	4 b) The Moment Theory
	5 c) The Semi-Moment Theory
	6 d) Methods of Solution
	7 b) Initial Value Solution of
	8 c) Classical Model Homogeneous Solution
	9 + + ???????????? (18)
	10 Classical Model Particular Solution
	11 Global Journal of Researches in Engineering ( ) Volume XVI Issue III Version I
	12 b) Internal Stresses
	13 c) Conclusion and Recommendation

