Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

Application of Initial Value Model in Circular Cylindrical Shell Analysis Mbanusi E. C.¹, Obodoh D. A.², Ezeokonkwo J. U³, Ogunoh P. E⁴ and Okolie K. C⁵ ¹ NNAMDI AZIKIWE UNIVERSITY *Received: 13 April 2016 Accepted: 30 April 2016 Published: 15 May 2016*

7 Abstract

8 This study simulated underground circular cylindrical shell structure to serve as water

⁹ reservoir under known soil characteristics and conditions. Cognizance of prevailing acute

¹⁰ scarcity of portable water supply, more often than not, during each year, this structural

¹¹ facility was also simulated for study under two distinct situations namely: when it is empty

¹² and when it is full of water. Structural analysis of the facility was carried out using the initial

value model whereas the classical model served to establish validity. The study sought the

14 stress effect arising from: empty condition and in full of water, on this facility. The

- ¹⁵ investigation result revealed: Both classical and initial value models led to identical results.
- ¹⁶ Effect of stress which resulted from the two different conditions did not diminish the
- 17 structural integrity of this facility.
- 18

19

 $\label{eq:integration} \textit{Index terms} - \text{asymptotic integration, axi-symmetric, cylindrical shell, hoop tension, thin-walled structures.}$

²⁰ 1 I. Introduction

hell [1] is applied to bodies bounded by two curved surfaces, where, the distance between the surfaces is small 21 in comparison with other body dimensions. The centre of points lying at equal distances from these two curved 22 surfaces defines the middle surface of the shell. The lengths of the segment, which is perpendicular to the curved 23 24 surfaces, is known as the thickness of the shell and is denoted by h. Shells have all the characteristics of plates, 25 along with an additional one, which is curvature. Mindful of intrinsic, functional essence of shells, [2] presents shells as skin structures by virtue of their geometry and shell action, is essentially more towards transmitting the 26 load by direct stresses with relatively small bending stresses. In line with this functional essence of the shell, [3], 27 [15], shells are spatially curved surface structures which support applied external loads or forces. Shell structures 28 [3], [5], [7] can be referred to as "form resistant structures". This implies a surface structure whose strength is 29 derived from this shape, and which resists loads by developing stresses in its own plane [3], [5], [7]. 30 An early form of shell construction [6] was the dome known to Romans thousands of years ago. With shell 31

An early form of shell construction [6] was the dome known to Romans thousands of years ago. With shell concrete construction, [6] it becomes quite possible to produce satisfactory domes which weigh only a fraction of the weights of the much earlier massive domes.

Properties of shells [1], [5] which are of particular importance in structural usage and which also earn wide application of shell structures in engineering are the following: (i) Efficiency of Load carrying behavior; (ii) High degree of reserved strength and structural integrity; (iii) High strength versus weight ratio; (iv) Very high stiffness; (v) Containment of space.

Areas where shell structures [1], [4] are used in Building and Civil Engineering are:-(i) Large-span roofs; (ii) Liquid retaining structures and water tanks: (iii) Containment shells of nuclear power plants: and (iv) Concrete

Liquid retaining structures and water tanks; (iii) Containment shells of nuclear power plants; and (iv) Concrete arch domes. Shell forms in Mechanical Engineering [1], [4] are used in: (i) Piping systems; (ii) turbine disks; (iii)

⁴¹ Pressure vessels technology. The use of shells [1], [4] in aeronautical and marine engineering are in the following

42 forms:-(i) aircrafts; (ii) missiles; (iii) rockets; (iv) ships; and (v) submarines. Shells [8] found in various biological

43 forms such as the eye, the skull and the egg, represent another application of shell engineering, this time, in the

3 A) THE MEMBRANE THEORY

field of biomechanics. An egg, as a natural thin-walled structure, can be considered as one of the most beautiful
structural shapes. It combines extreme fitness for its purpose with an economy of material and cleanliness of
design. This account depicts only a small list of shell forms in engineering and nature.

There are [1], [8] two different classes of shells: thin and thick shells. Shells are said to be thin when the ratio

48 of their thickness, h, to the radius of curvature R of the middle surface is less than or equal to 1/20, i.e. h/R ? 49 1/20. For a large number of practical applications [1], the thickness of thin shells lies within the range: 1/100 ?

h/R? 1/20. Hence, shells for which these h/R stipulations do not lie within the stated range, belong to thick shells [1].

Thin plates and thin shells belong to a category of structures known as Thin-Walled Structures. Thinwalled structures [9] possess the following three characteristics: (i) two dimensions are much longer than the third, its thickness; (ii) They have a great strength as a result of their spatial character of working under the action of

55 external loads; (iii) They make use of a minimal quantity of material.

Depending on the curvature of the surface [1], [3], shells are divided into (i) cylindrical, comprising of noncircular and circular; (ii) conical; (iii) spherical (iv) ellipsoidal; (v) paraboloidal; (vi) toroidal; and (vii) hyperbolic paraboloidal shells.

59 The usual theory of thin shells utilizes the main suppositions of the theory of thin plates. Nonetheless, thin 60 plate and thin shell have a substantial difference in behaviour under external loadings. The static equilibrium 61 of a plate element under lateral load [2], [8] is only possible by the action of bending and torsional or twisting moments, usually accompanied by shearing forces. Conversely, a shell, in general, [10] is capable of transmitting 62 the surface load by "membrane" stresses uniformly distributed over its thickness. This property of shells [8], [10] 63 makes them to be not only more economical but also more rigid than plates and other types of construction 64 under the same conditions. Apart from these obvious advantages over other systems [1], [8], shell structures are 65 very well known and used for their performance, strength against accidental damage, resistance to fire and low 66 upkeep cost as well as their aesthetic appearance. 67

The economy and/or feasibility of many modern constructions necessitate light weight, a property which thin-walled structures are replete with. Strictly speaking, the aim in structural engineering has always been to lower, as much as possible, the cost and thus the quantity of material used without, compromising the structural integrity of the system. Thin-walled structures meet this requirement.

The deliberate effort in the analysis and design of shells [3] is to make the shell as thin as practical requirements would permit, so the dead weight is reduced and the structure functions as a membrane free from the large bending stresses.

Thin shell concrete structures [3] are pure compression structures formed from inverse catenary shapes. The inverse catenary is a pure compression scenario. Pure compression is ideal for concrete, as concrete has high compressive strength and very low tensile strength. These shapes maximize the effectiveness of concrete, allowing it to form thin light spans [3].

This paper presents the application of initial value model in analysis of underground circular cylindrical shell structure subject to axi-symmetrical loads of hydrostatic pressure but considered under two conditions: (i) when the tank is empty; (ii) when the tank is full. In addition, the paper seeks validity through the classical model.

Aim in this study is to investigate stress effect on the underground cylindrical shell structure when full of water as well as when empty. The study intends to achieve the aim through the following objectives:

2) To evaluate the five internal stresses of the underground cylindrical shell structure when full of water, using the two models named above.

3) To determine the five internal stresses of the underground cylindrical shell when empty, also using the same two models.

88 2 II. Previous Works

The analysis and design of shells attracted many researchers. Among them, perhaps the best known, are: Love,
U. F., Pasternak, P. L. and Timoshenko, S. P. [11].

⁹¹ 3 a) The Membrane Theory

Modern shell construction [11] has its origin in the work of Lame and Clopeyron who, in 1826, proposed the 92 93 membrane analogy. This theory suggests that a shell is capable of resisting external loads by direct stresses 94 called membrane stresses without bending. Hence, when membrane theory is applied for shell design, torsional 95 or twisting, bending moments, and shear forces in the cross-section are neglected. This is only possible if torsion 96 and bending stresses were small compared to stresses of normal or axial, and shear forces. Membrane theory fails to represent the true stresses in those portions close to the edges, since the edge conditions usually cannot 97 be completely satisfied by considering only membrane stresses. It is expected [12] that membrane theory gives 98 an approximate picture of stress distribution in the case of shells not long, say L? 2R, where R is radius of the 99 shell and L is its length. For longer shells a satisfactory solution can be obtained only by considering bending as 100

101 well as membrane stresses [12].

¹⁰² 4 b) The Moment Theory

Mathematical conceptions [6], developed during the 19 th century, made possible a more accurate analysis than could be achieved using any membrane theory. Aron, H., who derived an expression for potential energy of a shell as well as equations for shell equilibrium and strains, was the first to consider the new theory, evolved from those mathematical conceptions, which made room for both membrane and bending stresses [11].

Love [13] developed a detailed derivation of equilibrium equations and equations of motion of shells with correction to a number of slips in Aron's original treatment as analogous to the theory of plates of Kirchhoff [14], and was based on identical assumptions. In each particular case, the moment theory involves the solution of a system of three differential equations, which is very complicated.

111 5 c) The Semi-Moment Theory

In the 20 th Century, [15] suggested a simplified method of analyzing and designing cylindrical shells using the 112 theory of semi-moment. This theory, on the basis of experimental data concerning medium length cylindrical 113 shells, length/diameter = 2-8, neglects the effect of longitudinal bending moment, shear forces and torques, and 114 115 introduces geometrical hypothesis. This method has the advantage to be simpler than the moment theory and 116 gives accurate solution when a distributed load is applied. This paper admires this method for the simple reason 117 it appears to be the most appropriate for circular cylindrical shell loaded symmetrically with respect to its axis -the axi-symmetric loading scenario. Detailed information on general thin-walled structure theory were given in 118 many general treatises such as: [9], [8] and [16], as well as monographs: [10], [17], [18], and [19]. These consider, 119 in a great extent, the mathematical theory of thin-walled structures and the derivation of differential equations 120 pertaining to them. Furthermore, the possibility of solving various shell-theory problems using analytic methods, 121 has also been discussed in: [25], [26], [27], [28], [29], [30], [31], [32], and [33]. 122

¹²³ 6 d) Methods of Solution

As far as techniques of solving the derived differential equations are concerned, difficulties involved in realizing mathematically rigorous methods, led to approximate techniques of integrating equilibrium equations. One of such methods, known as asymptotic integration, consists in replacing a given differential equation by another with specially selected coefficients different from those in the exact equation, and whose solution can be obtained by strict method and expressed in elementary functions. Blumenthal [20] suggested the method in 1912. In 1913, Timoshenko [21] applied it to shell equations. Shtayerman, Novozhilov [8], and Gol'denveiser [22] perfected the same asymptotic integration method.

Another widely accepted method was a version of the membrane theory which takes boundary effects into cognizance. Geckeler's equations [23] replaced exact equations owing to the presence of boundary effect. Generally speaking, methods for obtaining solutions for the shell differential equations [8] can be classified as follows: (i) Exact analytical methods, also known as classical solution; (ii) methods using variational calculus; (iii) numerical methods such as: finite difference, finite element, finite strip, to mention but a few; (iv) approximate methods based upon exact equilibrium of the problem.

Among others [1], [8], the classical solution, the finite difference, the finite element, the finite strip, the boundary
 element, the boundary collocation, and the boundary value methods are some of the well-known models used for
 solution of shell problems.

The classical solution gives accurate results but fails to capture the boundary conditions. The finite difference model considers the boundary conditions but does not give room to further optimization for the simple reason solutions are obtained only for some selected nodes. Finite element generates very large matrices for considerable accuracy, handling of those large matrices being only suitable for use of computer. Besides, they are numerical models. Numerical models are more inclined to approximate solutions than exact solutions. Those models connoting boundary in their names, sound though they may be, involve a level of mathematics beyond the scope of an average engineer!

The semi-moment theory is as suitable for circular cylindrical shells under hydrostatic pressure and uniform 147 gas pressure as it is amenable to application of initial value model. This study adopts the initial value model 148 for among the suggested analytical solutions. Initial value model gives the least number of unknowns enabling 149 such manual handling as to imbue the analyst with the ability and privilege to solve a problem in so systemic 150 a manner that represents a mandatorily profound understanding in the every-step-of-the-way of the problem for 151 the analyst. () 0 3 2 2 0 2 0 1 h 4 (Z)W y (Z) W ? ? + = Z y Eh R Z y ? ? ? - () 0 4 2 4 Q Z y Eh R 152 153 ??????????.. (2) () () () () 0 4 2 3 0 1 4 4 4 M Z y Eh R Z y Wh Z y Z h ? ? ? ? ? ? + ? = - () 0 4 2 2 4 154 Q Z y Eh R ? ??????????. (3) () () () () 0 1 0 4 3 3 0 3 2 2 M Z y Z Y R Eh W Z y R Eh Z M h + + = ? ? ? ???????????. (4) . () () () 0 3 2 2 0 2 2 ? ? ? Z Y R Eh W Z y R Eh Z Q h + = () () 0 1 0 4 4 Q Z 155 y M Z y + ? ??????????. (5) () () () 0 2 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Z y R Eh W Z y R Eh Z N 156 h () () 0 4 0 3 2 4 4 Q Z y M Z Ry ? ? ? ??????????.. (6) 157

ii. The Initial Value Particular Solution Consider the following: d Q x -x dx x 1 1 1 x Q 0 A B C ? Z ? 1 Z Z ? ? 1 dZ ? 1 Z

IV. Analysis a) The Governing Equation of Equilibrium [1] and [24] derived the governing differential equation of equilibrium as:D W dx W d x ? ? = +4444????? (1)

12 B) INTERNAL STRESSES

Using, for the derivation, the following: i. Forces acting on the shell; ii. Moments acting on the shell;

163 iii. Equilibrium equations of stress; iv. Equations of forces and moments displacements.

¹⁶⁴ 7 b) Initial Value Solution of

The Governing Differential Equation of Equilibrium for Circular Cylindrical Shell Structure i. In Summary, initial value homogenous solution becomes: ??) is applicable only to circular cylindrical shell structure subjected to axi-symmetric loading. This means the loading or forces and moments do not vary along the circumferential

section. In other words, the loads are radially symmetrical loads.0 2 Q Z y $^{\circ}$ + Equation (

For radially symmetrical loads, the governing differential equation of circular cylindrical shell structure, the equation of equilibrium, is equivalent to that of Beam on an elastic Winkler Foundation [34].

Understanding an origin transformation leads to finding the initial value particular solution. The origin that was previously at A is shifted to B, while introducing, at the same time, a new variable x 1 .? ? 1 1 1 1 Z Let dZ dx x = ? =

He distributed load at the new origin, B, is given by:()?? $1 \ 1 \ Z \ Z \ q \ w$? = ?

The elemental force can be expressed as:() () 1 2 1 1 1 dZ Z Z dZ Z q dQ???? = =???? (7)

In summary, the initial value particular solution would be:() [] Z y Z Eh R W p 2 2 ? = ? ? ?????? (8) () [

177] Z y Eh R p 1 2 1 ? = ? ? ???.. (9) () Z y M p 4 3 ? ? ? = ???.. (10) () Z y p 3 2 ? ? ? ?????. (11) ?????. 178 (11) () [] Z y Z R N p 2 ? = ? ? ???.. (12)

179 Obviously, general solution = homogeneous solution + particular solution.

¹⁸⁰ 8 c) Classical Model Homogeneous Solution

181 Basically, in summary, the homogenous solution would be as follows:

 $\begin{array}{ll} & () ??7) \text{ Equation [13] can be expressed as:x i x x i x i x x x i x h()()()()()()()() x iSin x Cos x Sinh x Cosh C x iSin x Cos x Sinh x Cosh C x iSin x Cos x Sinh x Cosh C x iSin x Cosh C x W h \\ \end{array}$

185 Expanding the above equation gives:

() x xSin Cosh A x xCos Cosh A x W h ? ? ? ? 2 1 + x xSin Sinh A x xCos Sinh A ? ? ? ? 4 3

188 Where: A 1 = C 1 + C 2 + C 3 + C 4 A 2 = (C 1 - C 2 - C 3 + C 4) i A 3 = C 1 + C 2 - C 3 - C 4 A 4 = (C 1 189 - C 2 + C 3 - C 4) i d)

¹⁹⁰ 10 Classical Model Particular Solution

¹⁹³ 11 Global Journal of Researches in Engineering () Volume XVI ¹⁹⁴ Issue III Version I

¹⁹⁸ 12 b) Internal Stresses

The deflection curve, for the hydrostatic loading, fig. ??, has a parabolic like shape with a speak of 0.854 mm at x = 3.2m from the top. Zero deflection is obtained at both top and bottom ends of the reservoir, justifying zero deflection at the supports. Also, tables 3 and 4 refer.

Under hydrostatic pressure, fig. ??, tables 3 and 4, the reservoir presented a maximum rotation of 0.078 x 10 -3 radians at its top end.

For the hydrostatic loading, fig. ??, tables 3 and 4, the bending moment varies from zero, at the top, to 205 20.5KMN at the bottom, describing a concave parabolic-like curve due to the cantilever action.

In the case of hydrostatic loading, the shearing force varies from 0.472KN, at the top, through 42.503KN, at the bottom, fig. ??, tables 3 and 4.

The graphs, fig. 6, have the same shape as those obtained for direct deflection. For real, deflection and hoop tension are directly proportional. For the hydrostatic pressure, a peak of 180.729 KN is reached at x = 2.67m, fig. 6, tables 3 and 4.

The tables 3 and 4 show values for deflection and rotation at the bottom, x = 4m, not exactly equal to zero, but very close to zero in the extent they can be taken as zero with sufficient accuracy. Table 5 reveals: (i) percentage difference for applied pressure on tank wall, when the tank is empty versus when the tank is full of water, is equal to: 36.572; (ii) Overall average percentage difference value for results of internal stresses for, when

the tank is empty versus when the tank is full of water, is equal to: 36.572.

²¹⁶ 13 c) Conclusion and Recommendation

The half-moment theory, otherwise known as semi-moment theory appears to have proven to be one of the most accurate theories in shell analysis. It has the advantage to be more realistic than the membrane theory which does not consider the bending effect. The semi-moment theory is simpler than the moment theory which generates heavy equations. In terms of capturing the boundary conditions of systems, the initial value model is more equipped than the classical model.

Sequel to results revealing that: percentage difference for applied pressure on tank wall: when the tank is empty versus when the tank is full of water is equal to 36.572%; again the overall average percentage difference

value for results of internal stresses with respect to: when the tank is empty versus when the tank is full of water

came to 36.572% as well, stress effect on the water reservoir which resulted from the two conditions would not

diminish the fundamental structural integrity of the underground circular cylindrical shell structure, if all other sources of stress such as from weather elements are under control. 12^{3}

Figure 1: Global

227

¹Year 2016 E \odot 2016 Global Journals Inc. (US)

 $^{^2}$ © 2016 Global Journals Inc. (US) Application of Initial Value Model in Circular Cylindrical Shell Analysis 3 © 2016 Global Journals Inc. (US)This page is intentionally left blank

1

X(m)) Z	Deflec	tiShope ?(z)	Bending	Shear Force	Hoop
		W(radians	Moment	Q(z) (KN)	N(z)(KN)
		\mathbf{Z}				
)(mm))			
				M(z) (KNM)		
0	0	0	0.000122536	0	0.743859755	0
0.8	1.036008026 0.000	052788	0.000123922	-	-1.183174309	91.03938151
				0.4857128716		
1.6	2.072016051 0.000	165917	0.000129602	-1.516548554	-3.019258682	170.0885245
2.4	3.108024077 0.000	473429	0.000145863	-4.247252695	-8.416752018	226.0594408
2.67	3.453360086 0.000	670475	0.000156135	-5.962376315	-11.88682999	284.9352786
3.2	4.144032102 0.000	134648	0.000190643	-11.73091094	-23.73505572	211.3360398
4.0	5.180040128	3.55	-4.4 x 10 -11	-32.31896214	-67.01017443	$2.7 \ge 10$ -7
		x 10				
		-11				

Figure 2: Table 1 :

 $\mathbf{2}$

X(m)	Σ	Deflection $W(Z)(m)$	offlope () Z ? ma)dians	Bending M(Z) (KNM) Moment	Shear Force Q(Z) (KN)	Hoop Tension N(Z)(KN)
0	0	0	0.000122486	0	-0.743859731	0
0.8	1.036008026 0.	.000052764	0.000123834	-0.48571286i8	-1.183174342	91.03938184
1.6	2.072016051 0.	.000165855	0.000129585	-1.516548484	-3.019258654	170.0885258
2.4	3.108024077 0.	.000473396	0.000145792	-4.247252615	-8.416752001	226.0594463
2.67	3.453360086 0.	.000670493	0.000156193	-5.962376293	-11.88682675	284.9352765
3.2	4.144032102	0.001345	92 000190589	-11.73091124	-23.73505498	211.33360358
4.0	5.180040128	$4.27 \mathrm{~x}$	3.84 x 10 -13	-32.31896187	-67.01017413	2.3 x 10 -8
		10-12				

Figure 3: Table 2 :

3

Year 2016							
36							
Global	X(m)	Z 0	Deflection	Slope () Z	Bending	Shear Force	Hoo
Journal	0 0.8	1.036008026	W(Z)(m)	? (radians)	Moment	Q(Z) (KN) -	Tens
of Re-	$1.6 \ 2.4$	2.072016051	0	0.000077722	M(Z)	0.471813873	N(Z)
searches	2.67	3.108024077	0.000033482	0.000078601	(KNM) 0 -	-	0
in Engi-		3.453360086	0.000105238	0.000082204	0.3085154309	0.750461426	57.7
neering (0.000300286	0.000092518	-	-	107.
) Volume			0.000425269	0.000099033	0.9619133775	1.915049339	143.
XVI					-	-	180.
Issue III					2.693938928	5.338560581	
Version I					-	-	
Е					3.781804103	7.539554672	
	3.2	4.144032102	0.000854047	0.000012092	-	-	134.
					7.44065868	15.05462351	
	4.0	5.180040128	$-2.53 \ge 10$	-3.4 x 10 -	-	-	-1.14
			-11	11	20.49920654	42.50307896	-7
	© 2016 (Global Journals Inc. (US)					

Figure 4: Table 3 :

$\mathbf{4}$

X(m)Z		Deflec	tSchope () Z ?	Bending	Shear	Force	Hoop
		W(Z)((nn)adians)	M(Z) (KNM) Moment	Q(Z) (K	.N)	N(Z)(KN)
0	0	0	0.000177694	0	-0.47181	3792	0
0.8	1.036008026	0.000033471	0.000078595	-	-0.75046	1386	57.7444536
				0.3085154293			
1.6	2.072016051	0.000105168	0.000082193	-	-1.91504	9295	107.8828584
				0.9619133724			
2.4	3.108024077	0.000300245	0.000092512	-2.693938892	-5.33856	00528	143.3830001
2.67	3.453360086	0.000425218	0.000099021	-3.781804084	-7.53955	4622	180.7287423
3.2	4.144032102	0.000854014	0.000012024	-7.44065818	-15.0546	52316	134.0462194
4.0	5.180040128	-	$2.94 \ge 10 - 13$	-20.49920612	-42.5030	7854	1.21 x 10 -8
		3.62					
		x 10					
		-12					

Figure 5: Table 4 :

 $\mathbf{5}$

tank is full = 36.572Fig. 2 : Deflection Diagram

Figure 6: Table 5 :

- 228 [Timoshenko ()], S P Timoshenko . Bull.Eng.Tech 1913.
- 229 [Finsterwalder et al. ()], U Finsterwalder, F Dischenger, Bauingenier In. 1928. Berlin. 9.
- 230 [Joiter (1959)] 'A Consistent First Approximation in the General Theory of Thin Elastic Shells'. W T Joiter .
- Proc. Symp. on Theory of Thin Elastic Shells, (Symp. on Theory of Thin Elastic ShellsDelft; North -Holland
 Amsterdam) August, 1959. 1960. p. .
- 233 [Vlasov ()] A General Theory of Shells, V Z Vlasov . 1949. Fizmatgiz, Moscow.
- [Blouza et al. ()] 'A new Classification for Shell Problems'. A Blouza , F Brezzi , C Lovadina . *Publicazioni IAN* -CNR n. 1128, 1999.
- [Reissner ()] 'A New Derivation of the Equations of the Deformation of Elastic Shells'. E Reissner . Am J. Math
 1941. 63 (1) p. .
- [Love ()] A Treatise on the Mathematical Theory of Elasticity, 1 st edn, A E H Love . 1982. 1944. New York:
 Dover. (4 th edn)
- [Blumenthal ()] O Blumenthal . Proc of the Fift Int'l Conf. on Math, (of the Fift Int'l Conf. on MathCambridge)
 1912.
- 242 [Calladine ()] C R Calladine . Theory of Shell Structures, (London) 1983. Cambridge University Press.
- 243 [Chandrasekaran and Gupta ()] 'Design aids for Fixed Support Reinforced Concrete Cylindrical Shells under
- Uniformly Distributed Loads, Int'l J of Engineering'. S Chandrasekaran , S K Gupta , Carannante , F .
 Science and Technology 2009. 1 (1) p. .
- [Joythi ()] 'Design and Analysis of Reinforced Concrete Shells'. V S Joythi . Int'l J. for Scientific Research and
 Development 2015. 3 (09) p. .
- 248 [Mileikovskii and Raizer ()] 'Development of Applied Methods in Problems in the Static Design of Thin-Walled
- Spatial Systems -Shells and Folds'. I E Mileikovskii , V D Raizer . proceedings of the seventh All-Union
 Conference on the Theory of Shells and Plates, (the seventh All-Union Conference on the Theory of Shells
 and PlatesMoscow) 1970. p. . (in Russian)
- ²⁵² [Winkler] Die Lahre Vonder Elastizit and Festigkeit, Praque, E Winkler . p. 1867.
- 253 [Mir ()] Flexible Plates and Shells in [Russian, A S Mir. 1956. Gostekhizdat, Moscow.
- [Kolkunov ()] 'Fundamentals of the Calculation of Elastic Shells'. N V Kolkunov . Vishcha Shkola, 1972. (in
 Russian)
- 256 [Gol'denveizer ()] A Gol'denveizer . Theory of Thin Shells, (New York) 1961. Pergamon press.
- 257 [Kirchhoff] G R Kirchhoff . Sungenuber Mathematishe Physik, Mechanik, p. 1877.
- [Kil'chevskii et al. ()] 'Lectures on the Analytical Mechanics of Shells'. N A Kil'chevskii , G H Izdebskaya , L M
 Kiselevskaya . Vishcha Shkola, (Kiev) 1974. (in Russian)
- [Chernykh ()] 'Linear Theory of Shells'. K F Chernykh . Izd. LGU. Leningrad, Part 1962. 1964. 1. (in Russian)
- [Mushtari and Galimov ()] Nonlinear Theory of Thin Shells, The Israel Program for Scientific translations, Kh
 M Mushtari , K Z Galimov . 1961. Jerusalem.
- [Timoshenko and Voinovskii-Krieger ()] Plates and Shells, S P Timoshenko , S Voinovskii-Krieger . 1963.
 Fizmatgiz, Moscow. (in Russian)
- [Podstrigach and Shvets ()] Ya S Podstrigach , R N Shvets . Thermoelasticity of Thin Shells, (Naukova Dumka, Kiev) 1983. (in Russian)
- [Zingoni ()] Shell Structures in Civil Engineering, Theory and Closed-Form Analytical Solution, Alphose Zingoni
 . 1997. Thomas Telford, London.
- 269 [Lur'e ()] Statics of Thin-Walled Elastic Shells, A L Lur'e . 1947. Moscow -Leningrad: Gostekhizdat. (in Russian)
- 270 [Shernina ()] Statics of Thin-Walled Shells of Revolution, V S Shernina . 1968. Moscow: Nauka. (in Russian)
- 271 [Ambartaumyan ()] Theory of Anisotropic Shells, S A Ambartaumyan . 1961. Nauka, Moscow. (in Russian)
- 272 [Gol'denveize ()] Theory of Elastic Thin Shells in [Russian, A L Gol'denveize . 1953. Gostekhizdat, Moscow.
- [Timoshenko and Woinowsky-Krieger ()] Theory of Plates and Shells, 2 nd edn., Tata McGraw-Hill Edition, S
 P Timoshenko , S Woinowsky-Krieger . 2010. 2010. New Delhi; New York.
- 275 [Novozhilov ()] 'Theory of Thin Elastic Shells, 2 nd edn'. V V Novozhilov . P. Noordnoff 1964.
- 276 [Novozhilov ()] Theory of Thin Shells Monograph, V V Novozhilov . 1962. Sudostroerue, Leningrad. (Russian)
- 277 [Guz et al. ()] 'Theory of Thin Shells Weakened by Holes'. A N Guz, I S Chernyshenko, V N Chekhov. Methods

of Calculating Shells, (Kiev) 1980. 1. (in Russian)

- [Timoshenko and Woinowsky-Krieger ()] S P Timoshenko , S Woinowsky-Krieger . theory of Plates and Shells,
 (New York) 1959. McGraw-Hill.
- [Ventsel and Krauthammer ()] Eduard Ventsel , Theodor Krauthammer . Thin Plates and Shells Theory,
 Analysis, and Applications, 2001. Marcel Dekker, Inc. New York.
- 283 [Vlasov ()] V Z Vlasov . General Theory of Shells and its application in Engineering, NASA TTF -99, 1964.