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Abstract- Low probability of intercept radar signals, which are often problematic to detect and 
characterize, have as their goal ‘to see and not be seen’.  Digital intercept receivers are currently 
moving away from Fourier-based analysis and towards classical time-frequency analysis 
techniques for the purpose of analyzing these low probability of intercept radar signals. This 
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Low Probability of Intercept Frequency Hopping 
Signal Characterization Comparison using the 

Spectrogram and the Scalogram1 
Daniel L. Stevens α & Stephanie A. Schuckers σ

Abstract- Low probability of intercept radar signals, which are 
often problematic to detect and characterize, have as their 
goal ‘to see and not be seen’.  Digital intercept receivers are 
currently moving away from Fourier-based analysis and 
towards classical time-frequency analysis techniques for the 
purpose of analyzing these low probability of intercept radar 
signals. This paper presents the novel approach of 
characterizing low probability of intercept frequency hopping 
radar signals through utilization and direct comparison of the 
Spectrogram versus the Scalogram. Two different frequency 
hopping low probability of intercept radar signals were 
analyzed(4-component and 8-component). The following 
metrics were used for evaluation: percent error of: carrier 
frequency, modulation bandwidth, modulation period, and 
time-frequency localization. Also used were: percent detection, 
lowest signal-to-noise ratio for signal detection, and plot 
(processing) time.  Experimental results demonstrate that 
overall, the Scalogram produced more accurate 
characterization metrics than the Spectrogram. An 
improvement in performance may well translate into saved 
equipment and lives.   

I. Introduction 

 low probability of intercept (LPI) radar that uses 
frequency hopping techniques changes the 
transmitting frequency in time over a wide 

bandwidth in order to prevent an intercept receiver from 
intercepting the waveform.  The frequency slots used 
are chosen from a frequency hopping sequence, and it 
is this unknown sequence that gives the radar the 
advantage over the intercept receiver in terms of 
processing gain.  The frequency sequence appears 
random to the intercept receiver, and so the possibility 
of it following the changes in frequency is remote 
[PAC09].  This prevents a jammer from reactively 
jamming the transmitted frequency [ADA04]. Frequency 
hopping radar performance depends only slightly on the 
code used, given that certain properties are met.  This 
allows for a larger variety of codes, making it more 
difficult to intercept.  

Time-frequency signal analysis involves the 
analysis and   processing of signal s with  time - varying 
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frequency content. Such signals are best represented by 
a time-frequency distribution [PAP95], [HAN00], which is 
intended to show how the energy of the signal is 
distributed over the two-dimensional time-frequency 
plane [WEI03], [LIX08], [OZD03].  Processing of the 
signal may then exploit the features produced by the 
concentration of signal energy in two dimensions (time 
and frequency), instead of only one dimension (time or 
frequency) [BOA03], [LIY03].  Since noise tends to 
spread out evenly over the time-frequency domain, while 
signals concentrate their energies within limited time 
intervals and frequency bands; the local SNR of a noisy 
signal can be improved simply by using time-frequency 
analysis [XIA99].  Also, the intercept receiver can 
increase its processing gain by implementing time-
frequency signal analysis [GUL08]. 

Time-frequency distributions are useful for the 
visual interpretation of signal dynamics [RAN01].  An 
experienced operator can quickly detect a signal and 
extract the signal parameters by analyzing the time-
frequency distribution [ANJ09]. 

The Spectrogram is defined as the magnitude 
squared of the Short-Time Fourier Transform (STFT) 
[HIP00], [HLA92], [MIT01], [PAC09], [BOA03].  For non-
stationary signals, the STFT is usually in the form of the 
Spectrogram [GRI08]. 

The STFT of a signal 𝑥𝑥(𝑢𝑢)is given in equation 1 as: 

𝐹𝐹𝑥𝑥(𝑡𝑡, 𝑓𝑓; ℎ) = � 𝑥𝑥(𝑢𝑢)ℎ
+∞

−∞
(𝑢𝑢 − 𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑

           
(1)
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Where ℎ(𝑡𝑡) is a short time analysis window localized 
around 𝑡𝑡 = 0 and 𝑓𝑓 = 0.  Because multipli-cation by the 
relatively short window ℎ(𝑢𝑢 − 𝑡𝑡) effectively suppresses 
the signal outside a neighborhood around the analysis 
point 𝑢𝑢 = 𝑡𝑡, the STFT is a ‘local’ spectrum of the signal 
𝑥𝑥(𝑢𝑢) around 𝑡𝑡.  Think of the window ℎ(𝑡𝑡) as sliding 
along the signal 𝑥𝑥(𝑢𝑢) and for each shift ℎ(𝑢𝑢 − 𝑡𝑡) we 
compute the usual Fourier transform of the product 
function 𝑥𝑥(𝑢𝑢)ℎ(𝑢𝑢 − 𝑡𝑡). The observation window allows 
localization of the spectrum in time, but also smears the 
spectrum in frequency in accordance with the 
uncertainty principle, leading to a trade-off between time
resolution and frequency resolution.  In general, if the 
window is short, the time resolution is good, but the 
frequency resolution is poor, and if the window is long, 



the frequency resolution is good, but the time resolution 
is poor. 

The STFT was the first tool devised for analyzing 
a signal in both time and frequency simultaneously.  For 
analysis of human speech, the main method was, and 
still is, the STFT.  In general, the STFT is still the most 
widely used method for studying non-stationary signals 
[COH95]. 

The Spectrogram (the squared modulus of the 
STFT) is given by equation 2 as: 

𝑆𝑆𝑥𝑥(𝑡𝑡, 𝑓𝑓) = �� 𝑥𝑥(𝑢𝑢)
+∞

−∞
ℎ(𝑢𝑢 − 𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑�

2    
(2)

 

The Spectrogram is a real-valued and non-
negative distribution.  Since the window h of the STFT is 
assumed of unit energy, the Spectrogram satisfies the 
global energy distribution property.  Thus we can 
interpret the Spectrogram as a measure of the energy of 
the signal contained in the time-frequency domain 
centered on the point (t, f) and whose shape is 
independent of this localization.  

 

Here are some properties of the Spectrogram:  
1) Time and Frequency covariance -

 

The Spectrogram 
preserves time and frequency shifts, thus the 
spectrogram is an element of the class of quadratic 
time-frequency distributions that are covariant by 
translation in time and in frequency (i.e. Cohen’s class); 
2) Time-Frequency Resolution -

 

The time-frequency 
resolution of the Spectrogram is limited exactly as it is 
for the STFT; there is a trade-off between time resolution 
and frequency resolution.  This poor resolution is the 
main drawback of this representation; 3) Interference 
Structure -

 

As it is a quadratic (or bilinear) 
representation, the Spectrogram of the sum of two 
signals is not the sum of the two Spectrograms 
(quadratic superposition principle); there is a cross-
Spectrogram part and a real part.  Thus, as for every 
quadratic distribution, the Spectrogram presents 
interference terms; however, those interference terms 
are restricted to those regions of the time-frequency 
plane where the signals overlap.  Thus if the signal 
components are sufficiently distant so that their 
Spectrograms do not overlap significantly, then the 
interference term will nearly be identically zero [ISI96], 
[COH95], [HLA92].

 

The Scalogram is defined as the magnitude 
squared of the wavelet transform, and can be used as a 
time-frequency distribution [COH02], [GAL05], [BOA03].

 

The idea of the wavelet transform (equation (3)) 
is to project a signal 𝑥𝑥

 

on a family of zero-mean 
functions (the wavelets) deduced from an elementary 
function (the mother wavelet) by translations and 
dilations:

 

𝑇𝑇𝑥𝑥(𝑡𝑡,𝑎𝑎;Ψ) = � 𝑥𝑥(𝑠𝑠)Ψ𝑡𝑡,𝑎𝑎
∗

+∞

−∞
(𝑠𝑠)𝑑𝑑𝑑𝑑

                                         

(3)

 

 

Where Ψ𝑡𝑡 ,𝑎𝑎(𝑠𝑠) = |𝑎𝑎|−1/2Ψ�𝑠𝑠−𝑡𝑡
𝑎𝑎
�. The variable 𝑎𝑎 

corresponds to a scale factor, in the sense that taking 
|𝑎𝑎| > 1 dilates the wavelet Ψ and taking |𝑎𝑎| < 1 
compresses Ψ.  By definition, the wavelet transform is 
more a time-scale than a time-frequency representation.  
However, for wavelets which are well localized around a 
non-zero frequency 𝜈𝜈0 at a scale = 1 , a time-frequency 
interpretation is possible thanks to the formal 
identification 𝜈𝜈 = 𝜈𝜈0

𝑎𝑎
 . 

The wavelet transform is of interest for the 
analysis of non-stationary signals, because it provides 
still another alternative to the STFT and to many of the 
quadratic time-frequency distributions. The basic 
difference between the STFT and the wavelet transform 
is that the STFT uses a fixed signal analysis window, 
whereas the wavelet transform uses short windows at 
high frequencies and long windows at low frequencies.  
This helps to diffuse the effect of the uncertainty 
principle by providing good time resolution at high 
frequencies and good frequency resolution at low 
frequencies.  This approach makes sense especially 
when the signal at hand has high frequency 
components for short durations and low frequency 
components for long durations. The signals 
encountered in practical applications are often of this 
type.   

The wavelet transform allows localization in both 
the time domain via translation of the mother wavelet, 
and in the scale (frequency) domain via dilations.  The 
wavelet is irregular in shape and compactly supported, 
thus making it an ideal tool for analyzing signals of a 
transient nature; the irregularity of the wavelet basis 
lends itself to analysis of signals with discontinuities or 
sharp changes, while the compactly supported nature of 
wavelets enables temporal localization of a signal’s 
features [BOA03]. Unlike many of the quadratic 
functions such as the Wigner-Ville Distribution (WVD) 
and Choi-Williams Distribution (CWD), the wavelet 
transform is a linear transformation, therefore cross-term 
interference is not generated. There is another major 
difference between the STFT and the wavelet transform; 
the STFT uses sines and cosines as an orthogonal basis 
set to which the signal of interest is effectively correlated 
against, whereas the wavelet transform uses special 
‘wavelets’ which usually comprise an orthogonal basis 
set.  The wavelet transform then computes coefficients, 
which represents a measure of the similarities, or 
correlation, of the signal with respect to the set of 
wavelets. In other words, the wavelet transform of a 
signal corresponds to its decomposition with respect to 
a family of functions obtained by dilations (or 
contractions) and translations (moving window) of an 
analyzing wavelet.   

A filter bank concept is often used to describe 
the wavelet transform. The wavelet transform can be 
interpreted as the result of filtering the signal with a set 
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of bandpass filters, each with a different center 
frequency [GRI08], [FAR96],[SAR98], [SAT98].  

Like the design of conventional digital filters, the 
design of a wavelet filter can be accomplished by using 
a number of methods including weighted least squares 
[ALN00], [GOH00], orthogonal matrix methods [ZAH99], 
nonlinear optimization, optimization of a single 
parameter (e.g. the passband edge) [ZHA00], and a 
method that minimizes an objective function that 
bounds the out-of-tile energy [FAR99]. 

Here are some properties of the wavelet 
transform:  1) The wavelet transform is covariant by 
translation in time and scaling.  The corresponding 
group of transforms is called the Affine group; 2) The 
signal 𝑥𝑥 can be recovered from its wavelet transform via 
the synthesis wavelet; 3) Time and frequency 
resolutions, like in the STFT case, are related via the 
Heisenberg-Gabor inequality.  However in the wavelet 
transform case, these two resolutions depend on the 
frequency: the frequency resolution becomes poorer 
and the time resolution becomes better as the analysis 
frequency grows;4) Because the wavelet transform is a 
linear transform, it does not contain cross-term 
interferences [GRI07], [LAR92]. 

A similar distribution to the Spectrogram can be 
defined in the wavelet case.  Since the wavelet transform 
behaves like an orthonormal basis decomposition, it can 
be shown that it preserves energy: 

� |𝑇𝑇𝑥𝑥(𝑡𝑡,𝑎𝑎;Ψ)|2

+∞

−∞

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑎𝑎2 = 𝐸𝐸𝑥𝑥                                            (4) 

where 𝐸𝐸𝑥𝑥  is the energy of 𝑥𝑥 .  This leads us to define the 
Scalogram (equation (4)) of 𝑥𝑥 as the squared modulus 
of the wavelet transform.  It is an energy distribution of 
the signal in the time-scale plane, associated with the 
measure  𝑑𝑑𝑑𝑑

𝑎𝑎2  . 

As is the case for the wavelet transform, the 
time and frequency resolutions of the Scalogram are 
related via the Heisenberg-Gabor principle. 

The interference terms of the Scalogram, as for 
the spectrogram, are also restricted to those regions of 
the time-frequency plane where the corresponding 
signals overlap. Therefore, if two signal components are 
sufficiently far apart in the time-frequency plane, their 
cross-Scalogram will be essentially zero [ISI96], 
[HLA92].   

For this paper, the Morlet Scalogram will be 
used.  The Morlet wavelet is obtained by taking a 
complex sine wave and by localizing it with a Gaussian 
envelope.  The Mexican hat wavelet isolates a single 
bump of the Morlet wavelet.  The Morlet wavelet has 
good focusing in both time and frequency [CHE09]. 

II. Methodology 

The methodologies detailed in this section 
describe the processes involved in obtaining and 

comparing metrics between the classical time-frequency 
analysis techniques of the Spectrogram and the 
Scalogram for the detection and characterization of low 
probability of intercept frequency hopping radar signals.  

The tools used for this testing were:  MATLAB 
(version 7.12), Signal Processing Toolbox (version 6.15), 
Wavelet Toolbox (version 4.7), Image Processing 
Toolbox (version 7.2), Time-Frequency Toolbox (version 
1.0) (http://tftb.nongnu.org/). 

All testing was accomplished on a desktop 
computer (HP Compaq, 2.5GHz processor, AMD Athlon 
64X2 Dual Core Processor 4800+, 2.00GB Memory 
(RAM), 32 Bit Operating System). 

Testing was performed for 2 different 
waveforms (4 component frequency hopping, 8 
component frequency hopping). For each waveform, 
parameters were chosen for academic validation of 
signal processing techniques. Due to computer 
processing resources they were not meant to represent 
real-world values.  The number of samples for each test 
was chosen to be 512, which seemed to be the 
optimum size for the desktop computer. Testing was 
performed at three different SNR levels:  10dB, 0dB, and 
the lowest SNR at which the signal could be detected.  
The noise added was white Gaussian noise, which best 
reflects the thermal noise present in the IF section of an 
intercept receiver [PAC09].  Kaiser windowing was used, 
when windowing was applicable. 50 runs were 
performed for each test, for statistical purposes. The 
plots included in this paper were done at a threshold of 
5% of the maximum intensity and were linear scale (not 
dB) of analytic (complex) signals; the color bar 
represented intensity.  The signal processing tools used 
for each task were the Spectrogram and the Scalogram. 

Task 1 consisted of analyzing a frequency 
hopping (prevalent in the LPI arena [AMS09]) 4-
component signal whose parameters were: sampling 
frequency=5KHz; carrier frequencies=1KHz, 1.75KHz, 
0.75KHz, 1.25KHz; modulation bandwidth=1KHz; 
modulation period=.025sec.   

Task 2 was similar to Task 1, but for a frequency 
hopping 8-component signal whose parameters were: 
sampling frequency=5KHz; carrier frequencies=1.5 

KHz, 1KHz, 1.25KHz, 1.5KHz, 1.75KHz, 1.25KHz, 
0.75KHz, 1KHz; modulation bandwidth=1KHz; 
modulation period=.0125sec. 

After each particular run of each test, metrics 
were extracted from the time-frequency representation.  
The different metrics extracted were as follows:  

 

1)
 

Plot (processing) time:  Time required for plot to be 
displayed.

 

2)
 

Percent detection:  Percent of time signal was 
detected -

 
signal was declared a detection if any 

portion of each of the signal components (4 or 8 
signal components for frequency hopping) 
exceeded a set threshold (a certain percentage of 
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the maximum intensity of the time-frequency 
representation).  

Threshold percentages were determined based 
on visual detections of low SNR signals (lowest SNR at 

which the signal could be visually detected in the time-
frequency representation) (see Figure 1).  

Figure 1 : Threshold percentage determination.  This plot is an amplitude vs. time (x-z view) of the Spectrogram of a 
frequency hopping 4-component signal (512 samples, SNR= -2dB).  For visually detected low SNR plots (like this 
one), the percent of max intensity for the peak z-value of each of the signal components was noted (here 98%, 78%, 
75%, 63%), and the lowest of these 4 values was recorded (63%).  Ten test runs were performed for both time-
frequency analysis tools (Spectrogram and Scalogram) for this waveform.  The average of these recorded low values 
was determined and then assigned as the threshold for that particular time-frequency analysis tool.  Note - the 
threshold for the Spectrogram is 60%.

Thresholds were assigned as follows:  
Spectrogram (60%); Scalogram (50%).  

For percent detection determination, these 
threshold values were included in the time-frequency 
plot algorithms so that the thresholds could be applied 

automatically during the plotting process.  From the 
threshold plot, the signal was declared a detection if any 
portion of each of the signal components was visible 
(see Figure 2).  
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Figure 2 : Percent detection (time-frequency).  Spectrogram of 4-component frequency hopping signal (512 
samples, SNR=10dB) with threshold value automatically set to 60%.  From this threshold plot, the signal was 
declared a (visual) detection because at least a portion of each of the 4 FSK signal components was visible.
3) Carrier frequency:  The frequency corresponding to 

the maximum intensity of the time-frequency 
representation (there are multiple carrier frequencies 
(4 or 8) for the frequency hopping waveforms).

Figure 3: Determination of carrier frequency.  Spectrogram of a 4-component frequency hopping signal (512 
samples, SNR=10dB).  From the frequency-intensity (y-z) view, the 4 maximum intensity values (1 for each carrier 
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frequency) are manually determined.  The frequencies corresponding to those 4 max intensity values are the 4 
carrier frequencies (for this plot fc1=996 Hz, fc2=1748Hz, fc3=760Hz, fc4=1250Hz).

4) Modulation bandwidth:  Distance from highest 
frequency value of signal (at a threshold of 20% 
maximum intensity) to lowest frequency value of 
signal (at same threshold) in Y-direction (frequency).  

The threshold percentage was determined 
based on manual measurement of the modulation 
bandwidth of the signal in the time-frequency 
representation. This was accomplished for ten test runs 
of each time-frequency analysis tool (Spectrogram and 
Scalogram), for each of the 2 waveforms.  During each 
manual measurement, the max intensity of the high and 
low measuring points was recorded.  The average of the 

max intensity values for these test runs was 20%.  This 
was adopted as the threshold value, and is 
representative of what is obtained when performing 
manual measurements. This 20% threshold was also 
adapted for determining the modulation period and the 
time-frequency localization (both are described below).

For modulation bandwidth determination, the 
20% threshold value was included in the time-frequency 
plot algorithms so that the threshold could be applied 
automatically during the plotting process.  From the 
threshold plot, the modulation bandwidth was manually 
measured (see Figure 4).

Figure 4 : Modulation bandwidth determination.  Spectrogram of a 4-component frequency hopping signal (512 
samples, SNR=10dB) with threshold value automatically set to 20%.  From this threshold plot, the modulation 
bandwidth was measured manually from the highest frequency value of the signal (top red arrow) to the lowest 
frequency value of the signal (bottom red arrow) in the y-direction (frequency).

5) Modulation period:  From Figure 5 (which is at a 
threshold of 20% maximum intensity), the 
modulation period is the manual measurement of 
the width of each of the 4 frequency hopping 
signals in the x-direction (time), and then the 
average of the 4 signals is calculated.
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Figure 5 : Modulation period determination. Spectrogram of a 4-component frequency hopping signal (512 samples, 
SNR=10dB) with threshold value automatically set to 20%. From this threshold plot, the modulation period was 
measured manually from the left side of the signal (left red arrow) to the right side of the signal (right red arrow) in 
the x-direction (time). This was done for all 4 signal components, and the average value was determined.

6) Time-frequency localization:  From Figure 6, the 
time-frequency localization is a manual 
measurement (at a threshold of 20% maximum 
intensity) of the ‘thickness’ (in the y-direction) of the 

center of each of the 4 frequency hopping signal 
components, and then the average of the 4 values 
are determined.  The average frequency ‘thickness’ 
is then converted to: percent of the entire y-axis.   

Figure 6 : Time-frequency localization determination for the Spectrogram of a 4-component frequency hopping 
signal (512 samples, SNR=10dB) with threshold value automatically set to 20%. From this threshold plot, the time-
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Low Probability of Intercept Frequency Hopping Signal Characterization Comparison using the 

Spectrogram and the Scalogram1

frequency localization was measured manually from the top of the signal (top red arrow) to the bottom of the signal 
(bottom red arrow) in the y-direction (frequency). This frequency ‘thickness’ value was then converted to: % of entire 
y-axis.

7) Lowest detectable SNR:  The lowest SNR level at 
which at least a portion of each of the signal 
components exceeded the set threshold listed in the 
percent detection section above.  

For lowest detectable SNR determination, these 
threshold values were included in the time-frequency 

plot algorithms so that the thresholds could be applied 
automatically during the plotting process. From the 
threshold plot, the signal was declared a detection if any 
portion of each of the signal components was visible.  
The lowest SNR level for which the signal was declared 
a detection is the lowest detectable SNR (see Figure 7). 

Figure 7 : Lowest detectable SNR. Spectrogram of 4-component frequency hopping signal (512 samples, SNR=-
2dB) with threshold value automatically set to 60%.  From this threshold plot, the signal was declared a (visual) 
detection because at least a portion of each of the 4 frequency hopping signal components was visible.  For this 
case, any lower SNR would have been a non-detect.  Compare to Figure 2, which is the same plot, except that it has 
an SNR level equal to 10dB.

The data from all 50 runs for each test was used 
to produce the actual, error, and percent error for each 
of these metrics listed above.

large, the Scalogram outperformed the Spectrogram, as 
will be shown in the results section.

III. Results

Table 1 presents the overall test metrics for the two classical time-frequency analysis techniques used in this 
testing (Spectrogram versus Scalogram).

Table 1 : Overall test metrics (average percent error: carrier frequency, modulation bandwidth, modulation period, 
time-frequency localization-y; average: percent detection, lowest detectable snr, plot time) for the two classical time-
frequency analysis techniques (Spectrogram versus Scalogram). 

parameters Spectrogram Scalogram
carrier frequency 0.67% 0.44%

modulation bandwidth 25.70% 21.62%

The metrics from the Spectrogram were then 
compared to the metrics from the Scalogram.  By and 

modulation period 11.37% 10.25%

time-frequency localization-y 9.77% 9.44%
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percent detection 69.67% 80.84%

lowest detectable snr -2.0db -3.0db

Plot time 3.43s 5.62s

From Table 1, the Scalogram outperformed the 
Spectrogram in average percent error:  carrier frequency 
(0.44% vs. 0.67%), modulation bandwidth (21.62% vs. 
25.70%), modulation period (10.25% vs. 11.37%), and 
time-frequency localization (y-direction) (9.44% vs. 

9.77%);and in average: percent detection (80.84% vs. 
69.67%), and lowest detectable SNR (-3.0db vs. -2.0db), 
while the Spectrogram outperformed the Scalogram in 
average plot time (3.43s vs. 5.62s).

Figure 8 shows comparative plots of the Spectrogram vs. the Scalogram (4 component frequency hopping) 
at SNRs of 10dB (top), 0dB (middle), and -3dB (bottom).

Figure 8 : Comparative plots of the 4-component frequency hopping low probability of intercept radar signals 
(Spectrogram (left-hand side) vs. the Scalogram (right-hand side)). The SNR for the top row is 10dB, for the middle 
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row is 0dB, and for the bottom row is -3dB. In general, the Scalogram signals appear more localized (‘thinner’) than 
do the Spectrogram signals. In addition, the Scalogram signals appear more readable than the Spectrogram signals 
at every SNR level.

Figure 9 shows comparative plots of the Spectrogram vs. the Scalogram (8 component frequency hopping) 
at SNRs of 10dB (top), 0dB (middle), and -3dB (bottom).

Figure 9 : Comparative plots of the 8-component frequency hopping low probability of intercept radar signals 
(Spectrogram (left-hand side) vs. the Scalogram (right-hand side)). The SNR for the top row plots is 10dB, for the 
middle row plots is 0dB, and for the bottom row plots is -3dB (which is a non-detect for the Spectrogram).In general, 
the Scalogram signals appear more localized (‘thinner’) than do the Spectrogram signals. In addition, the Scalogram 
signals appear more readable than the Spectrogram signals at every SNR level.
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IV. Discussion

This section will elaborate on the results from 
the previous section.

From Table 1, the performance of the 
Spectrogram and the Scalogram will be summarized, 
including strengths, weaknesses, and generic scenarios 
in which each particular signal analysis tool might be 
used.
Spectrogram: The Spectrogram outperformed the 
Scalogram in average plot time (3.43s vs 5.62s). 
However, the Spectrogram was outperformed by the 
Scalogram in every other category. The Spectrogram’s 
extreme reduction of cross-term interference is grounds 
for its good plot time, but at the expense of signal 
localization (i.e. it produces a ‘thicker’ signal (as is seen 
in Figure 8 and Figure 9) – due to the trade-off between 
cross-term interference and signal localization). This 
poor signal localization (‘thicker’ signals) can account 
for the Spectrogram being outperformed in the areas of 
average percent error of modulation bandwidth, 
modulation period, and time-frequency localization (y-
direction). The spectrogram might be used in a scenario 
where a short plot time is necessary, and where signal 
localization is not an issue. Such a scenario might be a 
‘quick and dirty’ check to see if a signal is present, 
without precise extraction of its parameters.
Scalogram: The Scalogram outperformed the 
Spectrogram in every category but plot time. Because of 
the Spectrogram’s extreme reduction of cross-terms at 
the expense of signal localization (i.e. it produces a 
‘thicker’ signal), the Scalogram was more localized than 
the Spectrogram, accounting for its better performance
in the areas of average percent error of modulation 
bandwidth, modulation period, and time-frequency 
localization (y-direction). In addition, since the 
compactly supported nature of thewavelet (basis of 
Scalogram) enables temporal localization of a signal’s 
features, this may also have contributed to the the 
Scalogram’s better average percent error of modulation 
period. Average percent detection and lowest 
detectable SNR are both based on visual detection in 
the Time-Frequency representation. Figures 8 and 9 
clearly show that the signals in the Scalogram plots are 
more readable than those in the Spectrogram plots, 
which accounts for the Scalogram’s better average 
percent detection and lowest detectable SNR. Since the 
irregularity of the wavelet basis (basis of Scalogram) 
lends itself to analysis of signals with discontinuities 
(such as the frequency hopping signals used in this 
testing), this may have been a contributing factor to the 
Scalogram’s better overall performance versus the 
Spectrogram. Also, since the wavelet is irregular in 
shape and compactly supported, it makes it an ideal 
tool for analyzing signals of transient nature (such as the 
frequency hopping signals used in this testing), which 
may also have been a contributing factor to the 

Scalogram’s better overall perfromance. The scalogram 
might be used in a scenario where you need good 
signal localization in a fairly low SNR environment, 
without tight time constraints.

V. Conclusions

Digital intercept receivers, whose main job is to 
detect and extract parameters from low probability of 
intercept radar signals, are currently moving away from 
Fourier-based analysis and towards classical time-
frequency analysis techniques, such as the 
Spectrogram, and Scalogram, for the purpose of 
analyzing low probability of intercept radar signals. 
Based on the research performed for this paper (the 
novel direct comparison of the Spectrogram versus the 
Scalogram for the signal analysis of low probability of 
intercept frequency hopping radar signals) it was shown 
that the Scalogram by-and-large outperforms the 
Spectrogram for analyzing these low probability of 
intercept radar signals - for reasons brought out in the 
discussion section above. More accurate 
characterization metrics could well translate into saved 
equipment and lives.

Future plans include analysis of an additional 
low probability of intercept radar waveform (triangular 
modulated FMCW), again using the Spectrogram and 
the Scalogram as time-frequency analysis techniques.
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