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6

Abstract7

The paper devotes the proximity control for linear features that will apply for ship control in8

closed approach. In nautical practice of Vietnam, the ship has been encountered in the special9

situations, such as: coming approach ship to ship, ship to floating object, ship to mobile10

object... In order to solve this issue, the author presents his researches about task of the11

problem of the regulator of the optimal time; also he gives the solution of the problem of12

time-optimal controller for a linear system with constant parameters. Accordingly, the result13

is applied to design and create a control system to ensure the meeting of movements of ships.14

15

Index terms— proximity control for linear features, ship control in closed approach, linear system with16
constant parameters.17

1 Introduction18

n nautical practice of Vietnam, the ship has been encountered in the special situations, such as: coming approach19
ship to ship, ship to floating object, ship to mobile object,?In order to control the ship safely in these cases, this20
researcher has been developing the algorithm of proximity control for linear features which will apply for ship21
control in closed approach. For this purpose, it’s applied the results obtained for the problem to the case of linear22
systems with constant parameters. Throughout this paper, an area Sand the origin of the phase space will be23
considered. This task will be called the problem of the regulator of the optimal time.24

2 II.25

The Problem of Time-Optimal Controller for a Linear System with Constant Parameters26
It developed a set of control models for ships in closed approach. The linear production is considered that27

there is a dynamic system [1,4,11,12].( ) ( ) ( ) x t Ax t Bu t = + ? (2.1)28
Where ? Status of system x(t)is an n-dimensional vector; ? Matrix A of the system is a constant matrix size29

n x n; ? The matrix coefficients of the control functions(”gain”) B is a constant matrix size n x r;30
We consider that the system is completely controllable and components u 1 (t), u 2 (t),?, u r (t)limited in size.31
( ) 1, 1, 2,...,j u t j r ? = (2.2)32
At a given initial time t 0 = 0 the initial state of the system is equal to(0) x ? = (2.3)33
Find the control u*(t) transforming the system from ? to 0 at the minimum time.34
We denote ? 1 , ? 2 ,?,? n the eigen values of the matrix system A, and through b 1 , b 2 ,?, b r -column35

vectors of the matrix B ? ? ? ? ? ? ? = ? ? ? ? â??” â??” â??” ? ? ? ? ? ? ? ? ? ? ? ?(2.4)36
The system is fully controllable. This means that the control transferring system(3.1) from any initial state ?37

and the origin 0, exist. This occurs if the matrix size n × (rn)2 1 n G B AB A B A B ? ? ? = ? ? ? ? ???(2.5)38
It contains n linearly independent column vectors.39
Entrance y(t) ??3.1) is connected with its state x(t) and the control u(t)by the equation: Block diagram of an40

optimal feedback system is shown in Fig. ??.2. Functions x 1 (t), x 2 (t),?, x n (t)measured at each time and are41
introduced into a subsystem, designated C(”computer”). RF outputs are switching function ??[x(t)] which are42
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3 C) THE HEURISTIC GEOMETRIC PROOF

then fed to the ideal relay R 1 , R 2 ,?, R r for the control variables, timeoptimal. Receiving and developing of43
functions ??[x(t)]is the basis of the problem of optimal control. The Geometric Properties of the Optimal Time44
Controlh 1 [x(t)], h 2 [x(t)],?, h rh 1 [x(t)], h 2 [x(t)],?, h r45

a) The Surface of the Minimum Time Previously, the author discussed the geometric nature of the problem46
of optimal time basing on the reachable states areas [2,12]. Then we went from geometric considerations to the47
analytical results that obtained from the necessary conditions given by the principle of minimum. In this section48
we try to give a geometric interpretation of the necessary conditions. We assume that the task is normal [12].Note49
also that the material in this section is a specification of the above mentioned remarks.50

Consider the surface of the minimum time, and we will treat the optimal control that causes the system to51
move along the surface of the minimum time in the direction of fastest decrease. After that we will be able to52
establish a correspondence between the additional variable gradient and surface of minimum time. Our arguments53
are inherently heuristic, since we are primarily interested in giving a geometric interpretation of the necessary54
conditions.55

Let x -the state in the space of phase coordinates. Suppose that there is an optimal control(only) that send56
sx to 0. We denote the minimum time required for translation x to 0 through:( ) T x * (3.1)57

We show that the minimum time T*(x) depends on the state of the x and does not depend explicitly on the58
time that( ) 0 T x t * ? = ? (3.2)59

It is true, as the time-invariant of systems,( ) ( ) ( ) x t Ax t Bu t = + ?60
it implies that the minimum time may be only a function of state. In other words, if x is the state of the61

system at t = 0 and the minimum time required for translation x in 0 is T*(x) and x -state while t = t 0 , then62
the optimal control will translate x into 0 at time t 0 + T*(x).63

Since the time required to transfer the system from 0 to 0 is zero and we are considering only positive solutions64
times, it is obvious that T*(x) has properties as( ) 0, 0 T x x * = = (3.3) ( ) 0, 0 T x x * > ? (3.4)65

In the future, for the gradient of function T*(x) of x we use the notation [11] 1 ( )( ) ( ) n T x x T x x T x x66
* * * ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? (3.5)67

We next consider some properties of the function T*(x). It is useful to consider T*(x) as the minimum time68
surface and present it graphically as shown in Fig. ??.3 Suppose that ( ) S ? is the set of states from which you69
can go to the origin by using of the optimal control for a timeless than or equal to ? [3,7] 0 1 ? < < (3.11)70

and consider the state of x, defined by the relation: T x ? * = ) . We show that ’ ? ? < (3.14)71
To prove this, we note:{ } ’ ’ 1 0 ( ) At x e BSIGN B p t dt ? ? * = ? (3.15)72
From (2.14) it follows that the control{ } { } ’ 1 2 1 ’ 2 ( ) (1 ) ( ) ( ) (1 ) ( ) u t u t S I GN B p t SIGN B p73

t ? ? ? ? * * * * + ? = + + ? (3.16)74
converts x to 0. However, this control is not optimal in performance, since it is not a vector whose components75

are functions of the type of sign. To prove this, let us assume that at some time t ? we have:1 2 1 1 1 1 ( ) , ( )76
1 1 u t u t * * + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (3.17)77

From here you can get1 2 2 1 1 ( ) (1 ) ( ) 1 1 u t u t ? ? ? * * ? ? ? ? ? ? ? ? ? ? + ? = ? ? ? ? ? ? ? ? ?78
? ? ? ? (3.18)79

But since 0 < ? ? 1, we have the inequality:-1 < 2? -1< +1 (3.19)80
and therefore the control(3.17)cannot be the optimal time. If this control is not optimal and transform s x to81

0 during ?, then the optimal control will require ?’ < ?. Thus the statement(2.14) is proved. We have seen that82
S(?) is a border of ( ) S ? ?83

. Consequently, the state x = ?x 1 +(1?)x 1 , ? ? (0,1) is an element of the interior ( ) S ? ? and therefore84
the set ( ) S ? ? is strictly convex.85

3 c) The Heuristic Geometric Proof86

Note that the minimal isochrones ? ”grow” with the ? increase [2,12,18]. Suppose that ? 1 -? 2 two arbitrary87
time, wherein ?1 2 0 ? ? < < (3.20)88

Then we can show that:1 2 0 ( ) ( ) S S ? ? ? ? ? ? (3.21)89
Value for inclusion (3.21) means that the minimum isochrones s increase their ”distance” from the origin with90

increasing time, and this increase is ”smooth”. To clarify this provision, we will give a heuristic geometric proof.91
Suppose that ? -state when t = 0, and assume that for transfer ? to 0 by means of optimal control u*(t)takes92

time 0 ? t ? ?. Thus In other words, the components of the gradient vector:1 ( ) ( ) ( ) ( ) n T x x T x T x x T93
x x * * * * ? ? ? ? ? ? ? ? ? ? ? ? = = ? ? ? ? ? ? ? ? ? ? ? ? (3.22)94

It is well-defined functions for all x X ? ? .95
Gradient T* at. The vector ( ) If t= 0 we have:(0) (0), (0) x A Bu u ? = + ? ? ? (3.23)96
The direction and magnitude of the vector (0) x? is obviously dependent on a vector A? that depends on the97

state ? , and the vector Bu(0), magnitude and direction of which can be selected within the constraints (0) u ?98
? . If ”try” all control u(0) of ? , we get the set of vectors { } (0) x ? that form a cone K. We assume that this99
cone is shown in Fig. ??.6.Thus, the restriction (0) u ? ? defines regional directions in Fig. ??.6, and we can do100
so that the vector (0)101

x ? is directed along ( )x T x x ? * = ? ? ? .102
However, there is a vector (0)103
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x * ? pointing in the direction of fastest decrease under the restrictions imposed. We denote the control vector104
u*(0) such that:(0) (0) x A Bu ? * * = + ? (3.24)105

Consider the difference between a vector (0)106
x * ? from all the other possible vectors (0)107
x ? ? It is easy to see that (0)108
x * ? satisfies(see. Fig. ??.6)( ) ( ) (0),(0)109
,x x T x T x x x x x ? ? * * * = = ? ? ? ? ? ? ? (3.25) for all (0) x K ? ?110
. Similarly, from (3.23) and (3.24), we find that for all (0) u ? ? .111
( ) (0), ( ) (0), Physically, it should beat the point x ? = of optimal control u*(0), because it makes the112

state of the system or the representative point in the phase space to move, maximizing the rate of change in the113
minimum time. If u*(0) -optimal control, the prerequisite is known that there is a variable p*(0)in which the114
relation: ? are states near ? in the isochronous ( ) S ? . We say that 1 ? is the ”right” of, ? and 2 ?to the left.115
The statement ” ? is in the corner isochrones ( ) S ? ” means that the gradient ( ) ( ) lim lim’ ’ 1 , (0) (0),(0) 1116
,x x T x T x x x ? ? ? ? ? ? * * ? ? = = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (3.32)117

Thus, if x ? = we cannot find the direction of the steepest gradient of decreasing just when x ? = , as the118
latter is not defined. This means that optimal control at this point cannot be determined by a geometrical proof119
given in the preceding discussion. If, p*(0)however, there is a vector corresponding to ? and u*(0) then (3.31)120
remains in force. When this line is lost between p*(0) and the normal to the minimum isochrone.121

The preceding discussion was limited to the initial states located on this minimum isochrone. Note that the122
same comments by the principle of optimalityare true of any state on x*(t) the optimal trajectory to the origin.123

Let x*(t)-the state on the optimal trajectory and let p*(t) -corresponding additional variable. Suppose IV.124

4 Conditions for the Existence of Optimal Control a) The125

Particular Problem of Existence of Optimal Control to the126

Origin with a Heuristic Point of View127

In this section is a discussion of consider the optimal control for the control system, which guarantees the existence128
of optimal control to the origin of any initial state in phase space [1,15,16].129

The question of the existence of an optimal control when moving from an arbitrary initial state to an arbitrary130
area S is extremely complex. It is useful to consider the particular problem of existence of optimal control to the131
origin with a heuristic point of view.132

Suppose that we are given a dynamical system is fully controlled and control is limited in size ratio ( ) u t133
? ? . Using the assumption of controllability of the system, we can find at least one control that will translate134
any initial state ? to 0 for a finite time. It may, however, prove that the initial state ? is so far from the origin,135
which translate to0 can only control that do not meet the limit ( ) u t ? ? . In this case, there are initial states,136
which cannot be converted into offices 0 satisfying the constraints.137

We can make the following observations: for a given plane controlled dynamical system [ ]( ) ( ), ( ) x t f x t138
u t = ?139

and the area limitation ? , ndimensional phase space R n can be divided into two subspaces and with the140
following properties:141

1. If ? ? ? ? there exists at least one admissible control transferring to 0for a finite time; 2. If n R ? ? ? ?142
? , there is no optimal control taking ? to any of the elements ? ? for the final time (and therefore cannot be143
translated ? to 0 using a valid management).144

In essence, the control is not limited to provide sufficient ”push” to convert from a state n R ? ? ? to ? ? ,145
and hence the origin.146

From a physical point of view, control u(t) can add or take away power from the dynamical system. If we147
imagine the state x = 0 as a state of zero energy, we can see that the system for which the set n R ? ? ? is148
not empty, in fact unstable. For this reason, it is believed that a stable, fully controlled dynamic system is149
characterized by the ratio n R ? ? = , and for unstable, there is a fully controlled systemn R ? ? ? , but n R ? ?150
? .151

The theorem is useful to confirm this and guarantees the existence of optimal control to the origin of any152
initial state, it can be formulated as follows. Consider the optimal control for the controlled system ( ) ( ) ( )x t153
Ax t Bu t = + ?154

in accordance with the objective of movement [1,12]. If the eigen values of A are not positive (negative or155
zero) real parts, then the optimal control to the origin exists for any initial state of n R .156

A rigorous proof of this theorem can be found in [17]. Consider the example of the essence of the proof of a157
distinct real eigen values, and the sole control variable u(t).( ) ( ) ( ), 1, 2,..., ( ) 1 (0)158

; 1, 2,...,i i i i i i x t x t b u t i n u t x i n ? ? = + = ? ? ? ? ? = = ? ? (4.1)159
The solution of (3.2-3.130) for any given formula 0 ( ) ( )i i t t i i i160
x t e e b u d? ? ? ? ? ? ? ? ? ? ? = + ? ? ? ? ? (4.2)161
Suppose [1,6,15,16]we found an admissible control ( ) u t ? , for that. ( ) 0 n x T x T x T = = = = ? ? ?1 2162

( ) ( ) . .163
. This means that the ratio:0 ( ) i T t i i e b u t dt ? ? = ? ? ? ?(4.3)164

3



8 B) THE MINIMUM TIME FUNCTION

Satisfied for all i = 1, 2, ?, n.165
Since [1,11,12], it can be concluded that ( ) 1 u t ? ? ( ) from whence [1,11,12]. Thus, if, 1 0 ? ? and0 0 0 ( )166

()1 i i i i T T t t i i i T i t T i1 1 1 b ? ? ? it is impossible to find T ? such that 1 ( ) 0 x T = ?167
and therefore there is no optimal control. If all the eigen values i ? are not positive, it is easy to show that168

the equation (4.4) can be true for any i ? and i = 1, 2, ?, n, as you can pick up a large enough value T ? . This,169
in turn, means that the optimal control exists for all initial states of the system.170

5 c) The Optimal Control System171

Consider the optimal control system:( ) ( ) ( ), ( ) 1, (0 ) x t a xt u t u t x ? = + ? = ? (4.8)172
If a ? 0, then [1,13]optimal control to the state x = 0 exists for all ?. If a > 0 the system is unstable. We173

find the region of initial conditions ?? for which there is optimal control. If the optimal control u*(t) exists, and174
|u*(t)| = 1 we have: The ratio(4.9) is satisfied for some positive end, you must have1 a ? ?175

Thus, the scope of the initial values ? ? , for which there exists an optimal control of the origin is determined176
by the relation:1 : , 0 a a ? ? ? ? ? ? = < > ? ? ? ? (4.10) If 1 a177

? ? then there is an optimal control. Thus, the region is an open set containing the origin [1,6,9,13,16]. The178
Hamilton-Jacobi Equation179

6 Global180

7 a) The State on Optimal Trajectory and the Value of Optimal181

Control182

Previously, they discussed changes in the minimum of time along the optimal path, and examined geometric183
properties of optimal control problem [2,12]. In this section we relate these concepts together and study Hamilton184
-Jacobi equation for the problem of optimal performance. The purpose of this section is to show how you can185
use the overall results for the problem of optimal performance [1,14,15].186

Throughout this section we will deal with the optimal control to a normal system ( ) ( ) ( ) x t Ax t Bu t = +187
? with field goal(the origin)S = 0. At the same time we use the following notation: if we set the state x, denoted188
by T*(x) the minimum time required for translation x in 0 and through u*-the value of optimal control in the189
state x.190

The specific objectives of this section are as follows: 1) To show how you can use the Hamilton -Jacobi equation191
to check whether the function T(x) is found by solving the problem of optimal control to be equal T*(x); 2) To192
point out the difficulties that arise if the assumption that the optimal control is wrong; 3) Noted the difficulties193
associated with determining optimal control directly from the Hamilton -Jacobi equation.194

Let us turn to a discussion of the use of the Hamilton-Jacobi, seeing it as a necessary condition. The general195
theory of the minimum principle can be deduced the following.196

Let x*-the state on-optimal trajectory and u*the value of optimal control at x*.Since ( ) ( ) 1 , , 0 x x x x T197
x T x Ax u B x x * * * * * * = = ? ? + + = ? ? (5.1) Provided ( ) x x T x x * * = ? ? that exists.198

This lemmais useful in the case when the problem of optimal control has been solved and we want to find out199
whether this function T(x) is to be an expression that determines the minimum time as a function of the state.200
If this function does not satisfy the equation ??5.1), at least at one point, it can be immediately excluded from201
the number of possible options for the minimum time. We show this in the following example.202

8 b) The Minimum Time Function203

Suppose that the linear system is described by the following equations: ( ) ( ) 0 1 0 ( ) ( ) 1 ( ) ( ) 0 0 1204
x t x t u t u t x t205
x t? ? ? ? ? ? ? ? = + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (5.2)206
We can be sure that the best is the control: Suppose that somehow we found a relationship: which expresses207

the minimum time as a function of state. This suspicion is not unfounded, because ( ) 0 T x > for all x, (0) 0 T208
= and lim ( )x T x ?? = ? .209

We now show that our assumption is wrong. First of all, we calculate the gradient T(x).From (5.5) we find210
that this gradient is:1 1 2 2 ( ) ( ) ( ) T x x x T x x T x x x ? ? ? ? ? ? ? ? ? ? ? = = ? ? ? ? ? ? ? ? ? ? ? ?211
?(5.6)212

We calculate it by x = x ? and x = x ? : 1 ( ) 4 ? ? ? ? ? ? ? ? ? ? ? ? + ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ?213
? ? ? ? ? ? ? ? = + ? =? ? (5.9)214

It can be concluded that the T(x) ratio(5.4) cannot be a formula that expresses the minimum amount of time,215
because when x = x ? equation(5.1) is not satisfied. Let’s see what happens if we experience T(x) at x = x?. In216
its left-hand side of (5.1) is equal to: [ ] 0 1 1 1 1 1 , 1 0,1 0 0 1 2 2 1 1 2 0 ? ? ? ? ? ? ? ? ? ? ? ? + ? = ? ?217
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = + ? = 1 2218

1© 2015 Global Journals Inc. (US)
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Figure 1: Fig. 3 . 1 :
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Figure 2: Fig. 3 . 2 :
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Figure 3: Fig. 3 . 3 :

Figure 4:
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Figure 5: Fig. 3 . 4 :
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Figure 6: Fig. 3 . 5 :Fig. 3 . 6 :
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Figure 7:

Figure 8:
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( ) ? = S ? { : (
) ;
x
T
x ?
?
* ?

? } 0 (3.7)

Equations (3.5) and (3.6), we conclude that there is a subset ( ) S ? ? of ( ) S ? . It can be sure that ( ) S ? is the boundary and closed ( ) S ? ? [4, 13].
We prove that the set of ( ) S ? ? is strictly

convex.
Let x 1 and x 2 -two different states at the ? -minimum
isochrones.

1 x S ? ( ), ? 2 x
S ?

(
)
?

(3.8)

In view of normality, we know that there are only
optimal control 1 u t ( ) * = ? { SIGN B

p t ’ 1 ( )
} *

transform
x 1
to

0, and 2 u t ( ) * =
?

{ SIGN B p t ’ 2 ( ) } * transform
x 2 to 0.
Thus,

the equations should be valid:
1 x { e BSIGN B p t dt } ’ 1 ( ) At

0

Figure 9:
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.1 H x p u Ax p S I GN B p B p a x p a x p

test, we can conclude that T(x) may be the minimum time. However, the test for x = x ? excludes this219
possibility.220

Suppose now that in determining the optimal control mistake. For example, we believe that. Then, instead221
of (5.10), we obtain:222

[ ] ??5.12) and could be removed from consideration T(x). It is true that T(x) ? T*(x), but on the basis of the223
expression (5.12) it is impossible to conclude, as incorrectly set u* = +1 for x ? . In other words, if you make a224
mistake in determining the optimal control law, in the course of such checks can be excluded from consideration225
the correct dependence T*(x).226

In practice, this item (5.2) is not very useful, since the engineer often need to build an optimal feedback227
system, and not check if T(x)is equal this optimal T*(x) or not. Nevertheless, the use of the Hamilton -Jacobi is228
essential matters in theoretical studies and validates the results obtained by using the minimum principle.229

Hamilton -Jacobi equation was largely seen as a sufficient condition. Let us now discuss the problem of solving230
the Hamilton-Jacobi and finding the optimal control. We know that the Hamiltonian of the problem of the231
optimal control [6,16]:232

.1 H x p u Ax p S I GN B p B p a x p a x p233

Consider the partial differential equation(Hamilton -Jacobi):234
Suppose that we were able to find a solution:235
(5.17) differential equation in partial derivatives(5.16), and 1) Function236
2) The control vector:237
Substituting this solution into the equation system, we have:238
The solution of this equation:239
(5.21) It has property:240
In other words, the decision ( ) T x ? of Hamilton -Jacobi equation ??5.16) c) The Locally Optimal Control241

Suppose we are given a system of first order [1,13]:242
Require to translate an arbitrary initial state ? to 0 in a minimum time. The Hamiltonian for this problem243

has the form:244
where the minimum control H is defined by:245
Hamilton -Jacobi equation for this problem has the form:246
We define two areas of X 1 and X 2 (onedimensional) phase space as following:247
It is easy to see that the function;248
is the solution of differential equations in partial derivatives(5.25) for all249
x X X ? ?250
, because of:251
Note that:252
Consider the control of u ? , defined as:253
and u ? undefined when x = 0 (5.35) Assume that 1 X ? ? , then 0 ? > As a result of the substitution of the254

expression (5.33) into (5.32), we obtain:255
(5.37) From (5.27) we have:256
Further, for all 0, ( )257
It means that:258
Thus, the control is unchanged:259
And is an optimal time control for all 1260
x X ? Similarly it is proved that, the control:261
is also the optimal time control for all 2262
x X ? Thus, we find the area X 1 and X 2 , such that263
VI.264

.2 Conclusion265

For this system, we did not encounter any difficulties in finding the optimal control using the Hamilton -Jacobi266
equation, as it was simple enough: ? To guess the solution of Hamilton -Jacobi, satisfying the boundary conditions267
[5, ??0,12,14]; ? Identify two areas of X 1 and X 2 ;268

If we try to find the optimal control for systems of higher order, at once confronted with the following challenges:269
It is almost impossible to find a solution of the Hamilton -Jacobi systems higher than second order.270
For the system n th order, it is necessary to subdivide the phase space at least 2nof areas X 1 , X 2 ,?,X n ,271

indicate that for the systems of higher than second order is extremely difficult. Therefore, at present the optimal272
design of feedback systems often is carried out by using the necessary conditions of the minimum principle, but273
not the sufficient conditions of the equation Hamilton -Jacobi. [12,15]. In general, we can conclude that: ? A274
procedure for obtaining control for linear objects in closed approach which is provided in relation to the movement275
of vessels [7,8]. ? The analysis of the structure of the optimal control system obtained by the developed control276
algorithms, based on which we can design and create a control system to ensure the meeting of movements of277
ships. These results of further research will be presented in next article.278
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